Le magma du super volcan de Yellowstone // Magma of the Yellowstone super volcano

J’ai écrit plusieurs articles sur ce blog concernant la source magmatique de Yellowstone et la présence d’un double réservoir sous le super volcan.
À l’aide d’une modélisation par superordinateur, des scientifiques de l’Université de l’Oregon ont pu fournir de nouvelles hypothèses concernant ce double réservoir qui se cache sous le Parc National de Yellowstone. L’étude a été publiée dans Geophysical Research Letters.
À des profondeurs de 5 à 10 kilomètres, des forces opposées donnent naissance à une zone de transition où les roches froides et rigides de la croûte supérieure cèdent la place à des roches chaudes et partiellement fondues qui se trouvent en dessous. Cette zone de transition piège les magmas ascendants et les pousse à s’accumuler et à se solidifier dans un filon horizontal appelé sill qui, selon la modélisation informatique réalisée par les chercheurs, peut atteindre 15 kilomètres. Les résultats de la modélisation confirment les observations effectuées précédemment en envoyant des ondes sismiques à travers cette zone.
Le sill se compose essentiellement de gabbro solidifié. Au-dessus et au-dessous se trouvent des corps magmatiques distincts. Celui du dessus contient un magma rhyolitique qui peut produire de temps en temps des explosions très puissantes. Des structures similaires existent probablement sous des super volcans ailleurs dans le monde. La morphologie du sill peut aussi expliquer des signatures chimiques différentes que l’on observe dans les matériaux éruptifs.
En 2014, un article publié dans Geophysical Research Letters par une équipe scientifique de l’Université de l’Utah a révélé, grâce à l’analyse d’ondes sismiques, la présence d’un grand volume de magma dans la croûte supérieure. Les scientifiques avaient toutefois remarqué que d’énormes quantités de dioxyde de carbone et d’hélium s’échappaient du sol, ce qui laissait supposer la présence d’une autre poche de magma sous la précédente. Ce mystère a été résolu en mai 2015, lorsqu’une étude réalisée par l’Université de l’Utah, publiée dans la revue Science, a identifié, au moyen d’ondes sismiques, la présence d’un deuxième volume de magma, encore plus important, à une profondeur de 20 à 45 kilomètres.
Cependant, les études des données sismiques n’ont pas permis de déterminer la composition, ou la quantité de magma dans ces deux réservoirs, ni comment et pourquoi ils se sont formés. Pour comprendre les deux structures, les chercheurs de l’Université de l’Oregon ont créé de nouveaux codes de modélisation pour les superordinateurs afin de savoir à quel niveau le magma est susceptible de s’accumuler dans la croûte. Le travail a été réalisé en collaboration avec des chercheurs de l’Institut fédéral suisse de technologie de Zurich.
Les résultats de la modélisation ont révélé qu’une importante couche de magma refroidi, avec un point de fusion élevé, existait au niveau du sill séparant deux corps magmatiques avec un magma à un point de fusion inférieur ; une grande partie de cette couche de magma refroidi proviendrait de la fusion de la croûte. Les auteurs de l’étude pensent que cette structure est à l’origine du volcanisme rhyolite-basalte que l’on trouve dans l’ensemble du point chaud de Yellowstone, y compris les matériaux produits par les super éruptions. En particulier, la modélisation a permis d’identifier la structure géologique du secteur où se trouve le matériau rhyolitique.
Pour le moment, la dernière étude ne permet pas de savoir quand se produiront les prochaines éruptions du super volcan de Yellowstone, mais elle permet d’expliquer la structure du système d’alimentation magmatique. Elle montre l’endroit où le magma prend sa source et là où il s’accumule.
Étudier l’interaction de l’ascension du magma avec la zone de transition dans la croûte terrestre, et comment ce processus influence les propriétés des poches magmatiques qui se forment au-dessus et au-dessous, devrait permettre de mieux comprendre le rôle joué par les panaches mantelliques dans l’évolution et dans la structure de la croûte continentale.
Source: Université de l’Oregon.

———————————————-

I have written several posts on this blog about the magma source of Yellowstone and the presence of two magma bodies beneath the volcano.

Using supercomputer modelling, University of Oregon scientists have unveiled a new explanation for the geology underlying magma bodies below Yellowstone National Park. The study was published in Geophysical Research Letters.

At depths of 5-10 kilometres, opposing forces counter each other, forming a transition zone where cold and rigid rocks of the upper crust give way to hot, partially molten rock below. This transition traps rising magmas and causes them to accumulate and solidify in a large horizontal body called a sill, which can be up to 15 kilometres, according to the team’s computer modelling. The results of the modelling matches observations done by sending seismic waves through the area.

The sill is comprised of mostly solidified gabbro. Above and below lay separate magma bodies. The upper one contains rhyolitic magma that occasionally erupts in very powerful explosions. Similar structures may exist under super volcanoes around the world. The geometry of the sill also may explain differing chemical signatures in eruptive materials.

In 2014, a paper in Geophysical Research Letters by a University of Utah-led team revealed evidence from seismic waves of a large magma body in the upper crust. Scientists had suspected, however, that huge amounts of carbon dioxide and helium escaping from the ground indicated that more magma is located farther down. That mystery was solved in May 2015, when a second University of Utah-led study, published in the journal Science, identified by way of seismic waves a second, larger body of magma at depths of 20 to 45 kilometres.

However, the seismic-imaging studies could not identify the composition, state and amount of magma in these magma bodies, or how and why they formed there. To understand the two structures, University of Oregon researchers wrote new codes for supercomputer modelling to understand where magma is likely to accumulate in the crust. The work was done in collaboration with researchers at the Swiss Federal Institute of Technology, also known as ETH Zurich.

The researchers repeatedly got results indicating a large layer of cooled magma with a high melting point forms at the mid-crustal sill, separating two magma bodies with magma at a lower melting point, much of which is derived from melting of the crust. The authors of the study think that this structure is what causes the rhyolite-basalt volcanism throughout the Yellowstone hotspot, including supervolcanic eruptions. More particularly, the modelling helps to identify the geologic structure of where the rhyolitic material is located.

The new research, for now, does not help to predict the timing of future eruptions. Instead, it helps explain the structure of the magmatic plumbing system that fuels these eruptions. It shows where the eruptible magma originates and accumulates.

Studying the interaction of rising magmas with the crustal transition zone, and how this influences the properties of the magma bodies that form both above and below it should boost scientific understanding of how mantle plumes influence the evolution and structure of continental crust.

Source: University of Oregon.

Source: University of Oregon

Publicités

Nouvelle étude sur le panache mantellique de Yellowstone // New study on the Yellowstone mantle plume

Au cours des dernières années, plusieurs études ont été réalisées sur le panache mantellique qui alimente le super volcan de Yellowstone. Elles ont révélé que la source du panache est beaucoup plus à l’ouest que prévu. De nouvelles recherches publiées dans la dernière édition de Nature Geoscience révèlent que des scientifiques de l’Université du Texas à Austin ont cartographié la trajectoire précise suivie par ce panache magmatique depuis la surface de la Terre jusqu’à son origine dans le manteau inférieur. L’étude révèle que la source de chaleur qui alimente Yellowstone est un panache de forme cylindrique, de 345 kilomètres de large, qui trouve son origine à 2900 kilomètres de profondeur, à la verticale de la partie nord de la Péninsule de Basse Californie. Cela confirme ce que pensent depuis longtemps les géophysiciens et explique pourquoi le super volcan avec ses geysers, ses sources thermales, ses mares de boue et ses fumerolles est situé dans le nord-ouest du Wyoming.
Jusqu’à présent, les chercheurs avaient réussi à localiser le panache mantellique qui alimente le point chaud de Yellowstone jusqu’à environ 960 kilomètres de profondeur. La dernière étude s’appuie sur les techniques tomographiques existantes qui permettent de cartographier comment les ondes sismiques « S » traversent le manteau terrestre. Par exemple, ces ondes ralentissent lorsque elles rencontrent un point chaud, comme un panache magmatique.
Les chercheurs ont analysé les données de 71 séismes de magnitude 5 ou plus enregistrés dans le monde entier entre 2005 et 2012. Ces séismes font partie d’un ensemble de données fournies par le programme « USAArray » qui regroupe un réseau de 400 sismomètres à travers les États-Unis continentaux. Avant la création de l’USAArray, personne n’avait installé une telle densité de sismomètres sur une zone aussi vaste. Ce réseau a révolutionné notre compréhension de la Terre, du moins sur le continent nord-américain.
L’hypothèse de départ était que le panache mantellique de Yellowstone était probablement une structure plutôt verticale. En fait, les chercheurs ont trouvé que le panache était plus incliné que prévu, jusqu’à la frontière entre le Mexique et la Californie. A son point de départ, à la limite noyau-manteau, on estime que le panache a une température d’environ 590 à 815 degrés Celsius supérieure à celle du manteau environnant. Au fur et à mesure qu’il s’élève vers la surface, sa température s’abaisse et n’est plus que de 400 degrés Celsius supérieure à celle du manteau au moment où il se trouve à 1 000 kilomètres sous la surface de la Terre. Il contient alors de la roche à haute température, mais pas de matière en fusion ou liquide.
Source: Gillette News Record.

—————————————–

In recent years, several studies have been made about the mantle plume that feeds the Yellowstone super volcano. They revealed that the source of the plume was much farther west than expected. In a recent research published in the latest edition of Nature Geoscience, University of Texas at Austin scientists have mapped the precise route of this magma plume from the Earth’s surface all the way to its outer core. It reveals that the source of heat slowly swelling the Yellowstone Plateau is a 345-kilometre-wide cylindrical plume that originates 2,900 kilometres beneath the northern reaches of Baja California. The finding confirms geophysicists’ long time suspicions and explains why the super volcano with its geysers, hot springs, mud pots and fumaroles is located in northwest Wyoming.

Until now, researchers had been able to trace the magma plume feeding the Yellowstone hotspot down to only about 960 kilometres underground. The latest study relied on existing tomography techniques, mapping how seismic “S” waves from earthquakes pass through Earth’s mantle. When the waves reach a hotspot, like a magma plume, they slow down.

The researchers analysed data from 71 M 5 or larger earthquakes that were recorded all around the world between 2005 and 2012. Those quakes were part of the “USAArray” dataset which sweeps a network of 400 seismometers across the continental United States. Before the USAArray was set up, nobody had ever put so many seismometers with such a density over such a large an area. It revolutionized our understanding of the Earth, at least in the North American continent.

The original hypothesis was that the Yellowstone mantle plume would be a rather vertical structure. Actually, the researchers found it was tilted more than they expected, going as far as the Mexico-California border. Where it originates, at the core-mantle boundary, the plume is estimated to be about 590 to 815 degrees Celsius warmer than the surrounding mantle. The structure is pulled to the surface by its buoyancy, and as it rises it loses its temperature, running only 400 degrees warmer than the mantle by the time it’s 1,000 kilometres away from the Earth’s surface. Its content is hot rock, not molten or liquid material.

Source: Gillette News Record.

Imperial Geyser à Yellowstone (Photo: C. Grandpey)

Sommes-nous prêts à affronter la prochaine super éruption? // Are we ready to face the next super eruption ?

Je termine généralement ma conférence «Volcans et risques volcaniques» en disant que ce que je crains le plus, c’est l’éruption d’un «super volcan» comme le Taupo en Nouvelle-Zélande, le Toba en Indonésie ou le Yellowstone aux États-Unis. S’agissant de Yellowstone, j’explique que les volumineux nuages ​​de cendre produits par l’éruption causeraient de très sérieux dégâts aux Grandes Plaines qui sont le grenier des États-Unis. Ils affecteraient aussi profondément les communications. Notre société basée sur Internet serait certainement en grande difficulté si une telle situation se produisait. Je suis d’accord avec les scientifiques qui disent que le monde doit faire davantage d’efforts pour se préparer à la prochaine méga éruption volcanique.
Le tsunami dévastateur dans l’Océan Indien en 2004 et le séisme de Tohoku au Japon en 2011 sont des exemples de graves catastrophes naturelles. Cependant, le monde moderne n’a pas eu à faire face à une véritable catastrophe volcanique depuis au moins 1815, lorsque l’éruption du Tambora en Indonésie a tué des dizaines de milliers de personnes et provoqué une «année sans été» en Europe et en Amérique du Nord. De telles éruptions majeures atteignent le niveau 7 ou plus sur l’Indice d’Explosivité Volcanique (VEI) qui présente 8 échelons.
Il faut garder à l’esprit que la prochaine éruption de VEI-7 pourrait survenir au cours de notre vie et nous ne savons pas prévoir les éruptions. Même si nous en étions capables, je ne suis pas certain que nous soyons prêts à affronter de tels super événements
Un article publié par trois chercheurs américains au début du mois de mars 2018 dans Geosphere examine les conséquences potentielles d’une éruption de VEI-7. Les trois scientifiques ont analysé l’éruption de VEI-5 du Mont St Helens en 1980, et l’éruption de VEI-6 du Pinatubo en 1991. Ces événements ont tué des dizaines, voire des centaines de personnes, et occasionné des perturbations à des régions entières. Le Pinatubo a même envoyé assez de SO2 dans la stratosphère pour provoquer une baisse des températures sur la planète.
Une éruption de VEI-7 aurait des conséquences bien différentes. En 1257, une éruption de VEI-7 en Indonésie a probablement refroidi suffisamment la planète pour provoquer un Petit âge glaciaire. Le problème est que la prochaine super éruption aura lieu dans un environnement bien différent de celui du 13ème siècle. Aujourd’hui, l’agriculture, les systèmes de santé, le monde de la finance et d’autres secteurs de la vie moderne sont beaucoup plus interconnectés à l’échelle mondiale qu’ils ne l’étaient il y a quelques décennies. Il suffit de voir ce qui s’est passé en 2010 lors de l’éruption d’Eyjafjallajökull en Islande. L’éruption qui n’avait qu’un VEI-3 a paralysé le trafic aérien européen pendant plusieurs jours à cause des nuages ​​de cendre émis par le volcan. L’événement a causé des pertes économiques estimées à 5 milliards de dollars.
En conséquence, il serait souhaitable que les chercheurs commencent à anticiper une éruption de VEI-7 en étudiant ses effets potentiels sur les liaisons de communication. Par exemple, il faudrait savoir comment l’humidité atmosphérique et les cendres volcaniques peuvent interférer avec les signaux GPS. Il faudrait aussi faire des études afin de mieux comprendre comment de grandes quantités de magma s’accumulent et provoquent des éruptions. Cela permettrait de mieux prévoir où le prochain événement de VEI-7 est susceptible de se produire.
Les chercheurs possèdent déjà une longue liste de volcans capables de déclencher une éruption de VEI-7. Comme je l’ai écrit plus haut, ces volcans comprennent le Taupo en Nouvelle-Zélande, site de la dernière éruption du VEI-8 il y a 26 500 ans, et le Mont Damavand, situé à seulement 50 kilomètres de Téhéran.
Même s’il existe actuellement une faible probabilité de voir une super éruption survenir dans le court terme, si un tel événement devait se produire, les gens se tourneraient vers les scientifiques, les gestionnaires des services d’urgences, les gouvernements et d’autres entités et s’attendraient à ce qu’ils soient prêts à y faire face.
Source: D’après un article publié dans Nature.

——————————————

I usually end my conference « Volcanoes and volcanic risks” with the conclusion that what I fear most is an eruption of a ‘super volcano’ like Taupo in New Zealand, Toba in Indonesia, or Yellowstone in the United States. As far as Yellowstone is concerned, I explain that the massive ash clouds produced by the eruption would cause very serious damage to the Great Plains which are the granary of the U.S. They would also deeply affect communications. Our society based on the Internet would certainly be at a loss if such a situation occurred.  I agree with the scientists who say that the world needs to do more to prepare for the next huge volcanic eruption.

The devastating Indian Ocean tsunami of 2004 and the Tohoku earthquake in Japan in 2011 highlighted some of the worst-case scenarios for natural disasters. However, humanity has not had to deal with a cataclysmic volcanic disaster since at least 1815, when the eruption of Tambora in Indonesia killed tens of thousands of people and led to a ‘year without a summer’ in Europe and North America. Such powerful eruptions rank at 7 or more on the Volcanic Explosivity Index (VEI), which goes to 8.

We have to admit that the next VEI-7 eruption could occur within our lifetime, but we are not yet able to predict future eruptions. Even if we did, I am not sure we are ready to face super events

A paper published by three American researchers in early March 2018 in Geosphere explores the potential consequences of the next VEI-7 eruption.  All three have researched the VEI-5 eruption of Mount St Helens in Washington state in 1980, and the VEI-6 eruption of Mount Pinatubo in the Philippines in 1991. Those events killed dozens to hundreds of people and disrupted entire regions. Pinatubo even spewed enough SO2 into the stratosphere to cause global cooling.

A VEI-7 eruption would be of an entirely different scale. In 1257, a VEI-7 eruption in Indonesia probably cooled the planet down enough to kick off the Little Ice Age. The problem is the next super eruption will take place in quite a different environment. Today, agriculture, health care, financial systems and other aspects of modern life are much more globally interconnected than they were just a few decades ago. It suffices to see what happened in 2010 with the eruption of Eyjafjallajökull in Iceland. The eruption that ranked at just VEI 3 grounded European air traffic for days because of the ash clouds emitted by the volcano. The event caused an estimated 5 billion US dollars in economic losses.

As a consequence, researchers should start to prepare for a VEI-7 eruption by studying potential effects on crucial communications links such as how atmospheric moisture and volcanic ash can interfere with GPS signals. Others could work to improve their understanding of how large amounts of magma accumulate and erupt, helping scientists to forecast where the next VEI-7 event might occur.

The researchers already have a long list of candidate volcanoes that might be capable of a VEI-7 blast. As I put it before, they include Taupo in New Zealand, site of the world’s last VEI-8 eruption 26,500 years ago, and Iran’s Mount Damavand, which lies just 50 kilometres from Tehran.

Even if there is currently a low probability of a super eruption in the short term, when it occurs people will look to scientists, emergency managers, governments and other entities and expect them to be prepared.

Source : After an article published in Nature.

Yellowstone fait partie des super volcans de la planète (Photo: C. Grandpey)

Yellowstone: Un nouvel essaim sismique affole les médias // New seismic swarm drives the media wild

Chaque fois qu’une activité sismique inhabituelle est enregistrée à Yellowstone, les médias – surtout les tabloïds britanniques – se demandent si une super éruption ne va pas se produire, avec toutes les catastrophes imaginables dans son sillage. Ainsi, le Daily Express rappelle à ses lecteurs que « si le volcan du Wyoming devait entrer en éruption, on estime que 87 000 personnes seraient immédiatement tuées et que les deux tiers des États-Unis deviendraient immédiatement inhabitables. La grande quantité de cendre rejetée dans l’atmosphère bloquerait la lumière du soleil et affecterait directement la vie sur Terre en provoquant un ‘hiver nucléaire’. L’éruption pourrait être 6 000 fois plus puissante que celle du Mont St Helens dans l’Etat de Washington en 1980 ; elle a tué 57 personnes et déposé de la cendre dans 11 Etats différents ainsi que dans cinq provinces canadiennes. Si le volcan [de Yellowstone] explosait, il se produirait un changement climatique car le volcan enverrait d’importantes quantités de dioxyde de soufre dans l’atmosphère, susceptibles de former un aérosol qui réfléchirait et absorberait la lumière du soleil. »
Un essaim de plus de 200 séismes a effectivement été enregistré dans le Parc National de Yellowstone en février 2018, mais – comme pour les précédents événements du même type – les géologues de l’Observatoire (YVO) insistent sur le fait que cela ne signifie pas qu’une éruption va se produire. L’USGS indique que les 200 événements sismiques ont débuté le 8 février et ont duré jusqu’au 15 février dans une zone située à environ 13 kilomètres au nord-est de West Yellowstone.
Même si l’essaim était plus important que la sismicité habituelle dans le Parc, il n’annonce pas forcément, non plus, un séisme majeur. Il correspond à l’activité sismique fréquemment observée à Yellowstone. Par exemple, un essaim encore plus significatif a fait frémir la région entre juin et septembre 2017. Les géologues pensent que l’essaim actuel pourrait être la suite de cet événement antérieur.

Certains scientifiques pensent toutefois que le risque d’un séisme majeur est sous-estimé à Yellowstone. Outre le tremblement de terre meurtrier de 1959 avec une magnitude de M 7,3 et 28 victimes, un séisme de magnitude M 6.1 a frappé la région de Yellowstone en 1975. Les gens ont tendance à redouter une super éruption, qui semble peu probable à court ou moyen terme, et ils oublient que l’on pourrait enregistrer beaucoup plus souvent des séismes de magnitude M 7.0 ou plus dans la région.
Sources: YVO, Science en direct, Gillette News Record, The Daily Express.

En cliquant sur ce lien, vous verrez des images des dégâts provoqués par le séisme de 1959 :

https://youtu.be/R1wSmqXH44s

  ———————————————

Each time some unusual seismic activity is recorded at Yellowstone and the media – mostly the British tabloids – wonder whether a super eruption will not occur, with all the disasters in its wake. The Daily Express reminds its readers that “if the Wyoming volcano were to erupt, an estimated 87,000 people would be killed immediately and two-thirds of the USA would immediately be made uninhabitable. The large spew of ash into the atmosphere would block out sunlight and directly affect life beneath it creating a “nuclear winter”. The massive eruption could be a staggering 6,000 times as powerful as the one from Washington’s Mount St Helens in 1980 which killed 57 people and deposited ash in 11 different states and five Canadian provinces. If the volcano exploded, a climate shift would ensue as the volcano would spew massive amounts of sulphur dioxide into the atmosphere, which can form a sulphur aerosol that reflects and absorbs sunlight.”

A swarm of more than 200 earthquakes recently struck Yellowstone National Park in February 2018, but – like the previous events of this sort – the geologists at the Yellowstone Volcano Observatory (YVO) insist that does not mean a super eruption is coming anytime soon. USGS indicates that the 200 seismic events began on February 8th and lasted until February 15th in an area about 13 kilometres northeast of West Yellowstone,

However, even though the swarm was more significant than the usual seismicity in the Park, it is not a sign of a major earthquake. It corresponds to the seismic activity frequently observed at Yellowstone. For instance, an even bigger swarm shook the area between June and September of 2017. Geologists suggest that the current swarm may be the continuation of that earlier swarm.

Some scientists think the possibility of a large earthquake is an underappreciated risk at Yellowstone. Aside from the deadly, damaging 1959 Hebgen Lake earthquake with an M 7.3 magnitude and 28 casualties, an M 6.1 quake struck the Yellowstone region in 1975. People tend to focus on the possibility of a super eruption, which is unlikely to occur in the short or even medium term, whereas M 7.0 earthquakes could happen comparatively more often.

Sources : YVO, Live Science, Gillette News Record, The Daily Express.

By clicking on this link, you will see images of the damage caused by the 1959 earthquake:

https://youtu.be/R1wSmqXH44s

Photos: C. Grandpey

 

Une année de sismicité à Yellowstone // A year of seismicity at Yellowstone

À partir du 1er janvier 2018, on pourra lire les Yellowstone Caldera Chronicles, un nouvel article hebdomadaire rédigé par des scientifiques du Yellowstone Volcano Observatory. Chaque lundi sur la page d’accueil du YVO (https://volcanoes.usgs.gov/observatories/yvo/), ils publieront une nouvelle prose qui abordera un sujet différent, comme la géologie, l’histoire, l’activité en cours, etc. Le premier numéro de ces Chroniques dresse un bilan de l’activité observée à Yellowstone en 2017.
L’année 2017 a commencé assez calmement, avec seulement quelques centaines de séismes enregistrés pendant les premiers mois. Cette tendance était visiblement la suite de la faible sismicité observée en  2015 et 2016, avec seulement un millier de secousses enregistrées chaque année.
La situation a changé à partir du 12 juin 2017, lorsque a débuté l’essaim sismique de Maple Creek dans la partie occidentale du Parc, à quelques kilomètres au nord de West Yellowstone, dans le Montana. Au cours des trois mois suivants, environ 2400 séismes ont été localisés par les sismographes. L’essaim a duré jusqu’au début du mois de septembre et de petits accès de sismicité ont encore eu lieu dans la même région fin septembre et fin octobre. L’événement le plus significatif de la séquence avait une magnitude de M 4,4 le 16 juin 2017. D’autres essaims sismiques ont eu lieu à l’extérieur de la région de Yellowstone, près de Lincoln dans le Montana, et de Soda Springs dans l’Idaho. Cependant, cette sismicité n’était pas causée par le système magmatique de Yellowstone. Les séismes étaient provoqués par des failles liées à l’extension tectonique de l’ouest des États-Unis.
Au total,  pour l’année 2017, plus de 3 300 séismes se sont produits dans la région de Yellowstone, ce qui fait de cette année l’une des plus sismiques jamais enregistrées. Près de 80% de tous ces événements appartiennent à environ 13 essaims, dont celui de Maple Creek qui fut de loin le plus important.
L’essaim séismique de Maple Creek en 2017 arrive en seconde position après celui de 1985. Cette année-là, un essaim enregistré près de West Yellowstone avait duré trois mois, avec plus de 3 000 événements ; le plus significatif atteignait une magnitude de M 4,9. Si le système de surveillance actuel avait existé en 1985, il est probable que beaucoup plus de séismes auraient été répertoriés. L’essaim de Madison en 2010, au sud-ouest de West Yellowstone, est le troisième plus important jamais enregistré, avec environ 2 300 événements.
Les essaims de 1985 et 2010 ont été attribués à une évolution de la déformation de la caldeira. Au cours de ces deux années, la caldeira est passée du soulèvement à l’affaissement, ce qui laisse supposer que les essaims étaient provoqués par une libération de fluides en provenance de la région de la caldeira.
En 2017, toutefois, on n’a pas observé de changement significatif de déformation de la caldeira au moment de l’essaim. Pendant la majeure partie de l’année, la caldeira s’est affaissée et le secteur autour du Norris Geyser Basin a continué à se soulever, comme l’ont indiqué de nombreuses stations GPS dans la région. L’affaissement de la caldeira et le soulèvement de Norris se poursuivent depuis 2015. Au début du mois de décembre, cependant, cette tendance a commencé à changer, avec un début d’affaissement à Norris. Il sera intéressant de voir si cette situation va continuer.
Au lieu d’être lié à une migration des fluides, il se peut également que l’essaim sismique de Maple Creek soit une poursuite de l’effet du séisme de M 7,3 enregistré en 1959 à Hebgen Lake. Ce fut l’événement le plus important jamais enregistré dans la région de Yellowstone. Les recherches à venir permettront probablement de mieux comprendre ce qui se passe dans le sous-sol de Yellowstone.
Source: Observatoire Volcanologique de Yellowstone.

——————————————-

Starting on January 1st 2018, the Yellowstone Caldera Chronicles is a new weekly article written by scientists of the Yellowstone Volcano Observatory. Each Monday on the YVO homepage (https://volcanoes.usgs.gov/observatories/yvo/), they will post a new article that covers a different topic, including geology, history, current activity, and other subjects.The first issue of the Chronicles reviews the activity that occurred in Yellowstone during 2017.

2017 began calmly enough, with only a few hundred earthquakes during the first months of the year. This trend continued the low earthquake rates of 2015 and 2016, during which only about 1,000 earthquakes were located per year.

The situation changed on June 12th, 2017, when the Maple Creek earthquake swarm began on the west side of the Park, a few kilometres north of West Yellowstone, Montana. Over the ensuing three months, about 2,400 earthquakes were located by the seismographs. The swarm lasted until early September, and small bursts of seismicity occurred in the same area in late September and late October. The largest event in the sequence was an M 4.4 event on June 16th, 2017. Additional seismic swarms occurred outside the Yellowstone area, near Lincoln, Montana, and Soda Springs, Idaho. However, this seismicity was not related to the Yellowstone magmatic system. Instead, the earthquakes were caused by faulting associated with tectonic extension of the western United States.

Overall for 2017, over 3,300 earthquakes were located in the Yellowstone region, making this year one of the most seismically active ever recorded. Almost 80% of all the earthquakes that were located occurred as part of approximately 13 swarms, of which the Maple Creek swarm was by far the largest.

The 2017 Maple Creek seismic swarm comes in a distant second to that of 1985. In that year, an earthquake swarm also near West Yellowstone lasted for 3 months and included over 3,000 events, with the largest reaching M 4.9. If today’s monitoring system had been in place in 1985, it is likely that many more earthquakes would have been located. The 2010 Madison swarm, just southwest of West Yellowstone, is now the third largest swarm ever recorded, with about 2,300 events.

The 1985 and 2010 swarms were associated with a change in deformation style of the caldera. During both years, the caldera switched from uplift to subsidence, suggesting that the swarms were associated with a release of fluids from the caldera region.

In 2017, however, there was no significant change in deformation at the time of the swarm. Throughout most of the year, the caldera subsided and the area around Norris Geyser Basin continued to uplift, as indicated by numerous continuous GPS stations in the region. Both caldera subsidence and Norris uplift have been ongoing since 2015. In early December, however, that pattern began to change, with subsidence beginning at Norris. Whether this pattern will continue remains to be seen.

Instead of being related to fluid migration, it is also possible that the Maple Creek earthquake swarm is a lingering effect of the 1959 M7.3 Hebgen Lake earthquake, the largest earthquake ever recorded in the Yellowstone region. Future research will help understand better what is happening at Yellowstone.

Source: Yellowstone Volcano Observatory.

Voici quelques vues du Norris Geyser basin, l’une des zones des plus chaudes et les plus dangereuses du Parc de Yellowstone. Les visiteurs sont priés de ne pas quitter les sentiers.

Photos: C. Grandpey

Nouvelle théorie sur Yellowstone // New theory about Yellowstone

Les scientifiques se sont toujours posé des questions sur le super volcan de Yellowstone. Ils ont essayé de comprendre son fonctionnement interne et les résultats de leurs études ont souvent été remis en question ou débattus. Un exemple des incertitudes concernant Yellowstone est donné par une étude récente menée par des chercheurs de l’Université de l’Illinois.
Les scientifiques ont utilisé des simulations informatiques pour étudier l’histoire de Yellowstone sur plus de 20 millions d’années, et leurs résultats contredisent la théorie la plus répandue sur l’activité volcanique dans la région. Ils ont constaté que l’activité volcanique à Yellowstone est beaucoup plus complexe et dynamique qu’on ne le pensait auparavant. Ils ont utilisé la tomographie sismique pour scruter les profondeurs du sous-sol de l’ouest des États-Unis et reconstituer l’histoire géologique qui se cache derrière le volcanisme.
À l’aide de puissants ordinateurs, l’équipe scientifique a imaginé différents scénarios tectoniques et leurs résultats ne valident pas l’hypothèse traditionnelle du panache mantellique qui s’élève verticalement vers la surface et provoquerait l’activité volcanique dans la région. Les observations des chercheurs révèlent que c’est plutôt une activité proche de la surface de la planète qui serait responsable du volcanisme, même si la cause exacte reste un mystère.
Selon l’étude, il semble que le panache mantellique sous l’ouest des États-Unis se soit enfoncé de plus en plus profondément dans la Terre au fil du temps. Cela laisse supposer qu’un obstacle proche de la surface – peut-être une plaque océanique en provenance de la limite tectonique occidentale – interfère avec l’ascension du panache. En conséquence, la source de chaleur dont dépend le volcanisme à l’intérieur des terres proviendrait en fait du manteau océanique peu profond à l’ouest de la côte nord-ouest du Pacifique.
La chaleur qui provoque le volcanisme naît habituellement dans les zones où les plaques tectoniques se rencontrent et où l’une d’elles glisse sous une autre dans un processus de subduction. Cependant, Yellowstone et d’autres zones volcaniques de l’ouest des États-Unis sont loin des limites de la zone de subduction le long de la côte ouest. S’agissant du volcanisme à l’intérieur des terres, on pensait qu’une source de chaleur profonde – un panache mantellique – faisait fondre la croûte et générait le volcanisme en surface. L’hypothèse du panache mantellique a été controversée pendant de nombreuses années et la dernière étude vient s’ajouter aux preuves d’un nouveau scénario tectonique.
Dans une étape suivante, l’équipe de chercheurs de l’Université de l’Illinois espère inclure dans les modélisations des données chimiques provenant des roches volcaniques. Cela permettra de mieux localiser la source exacte du magma car les roches des panaches mantelliques profonds et des plaques tectoniques proches de la surface ont des composantes chimiques différentes.
University of Illinois at Urbana-Champaign.

——————————————–

Scientists have always been asking questions about the super volcano of Yellowstone. They have tried to understand the inner workings of the volcano and the results of their studies have often been questioned or debated. An example of the uncertainties about Yellowstone is given by a recent study led by researchers at the University of Illinois.

The scientists used computer simulations to study the history of Yellowstone over 20 million years, with findings contradicting the traditional theory of volcanic activity in the region. They digitally played back a portion of the park’s geologic history, finding that volcanic activity at Yellowstone is far more complex and dynamic than was previously thought. They used seismic tomography to peer deep into the subsurface of the western US and piece together the geologic history behind the volcanism.

Using supercomputers, the team ran different tectonic scenarios to simulate a range of possible geologic histories for the region. The results gave little support for the traditional mantle plume hypothesis, which argues that heat from deep within the Earth rising vertically toward the surface is the cause of volcanic activity in the area. The team’s observations instead suggest activity much closer to the planet’s surface is responsible, although the exact cause remains a mystery.

According to the study, it appears that the mantle plume under the western US is sinking deeper into the Earth through time. This suggests that something closer to the surface – an oceanic slab originating from the western tectonic boundary – is interfering with the rise of the plume. A robust result from these models is that the heat source behind the extensive inland volcanism actually originated from the shallow oceanic mantle to the west of the Pacific Northwest coast.

The heat needed to drive volcanism usually occurs in areas where tectonic plates meet and one slab subducts under another. However, Yellowstone and other volcanic areas of the inland western US are far away from the active plate boundaries along the west coast. In these inland cases, a deep-seated heat source – a mantle plume – was suspected of driving crustal melting and surface volcanism. The mantle plume hypothesis has been controversial for many years and the new findings add to the evidence for a revised tectonic scenario.

Eventually, the team hopes to include chemical data from volcanic rocks in their models.

This should help them to further pinpoint the exact source of the magma, as rocks from deep mantle plumes and near-surface tectonic plates would have different chemical components.

University of Illinois at Urbana-Champaign.

Photo: C. Grandpey

Les grizzlis de Yellowstone (Etats-Unis) // Yellowstone grizzlies

Depuis 1975, année où ils ont été considérés comme une espèce en voie de disparition, les grizzlis du Parc National de Yellowstone ont plus que quadruplé leur territoire et leur population. On trouve les plantigrades également plus au nord, jusque dans la région de Glacier National Park où ils peuvent entraîner la fermeture de certains sentiers de randonnée. J’en ai personnellement fait l’expérience il y a trois ans.
Les ours migrent désormais si loin qu’ils sont susceptibles d’entrer en contact avec d’autres populations, ce qui pourrait contribuer à assurer la santé et la diversité génétique de l’espèce. Les défenseurs de l’environnement espèrent que les grizzlis pourront également atteindre les étendues sauvages de l’Idaho, ce qui permettrait de recoloniser une petite partie d’un vaste territoire qu’ils occupaient autrefois.
Alors que les grizzlis s’éloignent de plus en plus d’un Parc National qui a longtemps été leur refuge, ils rencontrent plus de gens, de routes et d’activités humaines, ainsi que plus de tentations sous la forme de détritus et de bétail. Alors que leur présence augmente, il en va du risque pour les humains, ce qui rend plus périlleuses les activités comme la chasse et la randonnée. La dure réalité est que les ours seront probablement les perdants dans leur interaction avec les humains, de la même façon que cela se produit dans un pays comme la France. Autoriser les ours à revenir dans une contrée occupée par les hommes et leur agriculture est forcément source de conflits. Ainsi, au moins 58 grizzlis sont morts en 2016 et 51 avaient péri à la mi-novembre de cette année aux Etats Unis. La plupart ont été tués par des personnes qui les ont heurtés accidentellement avec des voitures, les ont croisés pendant la chasse ou les ont abattus parce qu’il avaient blessé des animaux ou attaqué des biens.
Il a fallu quatre décennies et des millions de dollars aux Américains pour sauver les grizzlis de l’extinction. Maintenant, la grande question est de savoir si les gens peuvent accepter de vivre à leurs côtés.
Selon les chiffres avancés par le gouvernement, les conflits avec les populations avaient contribué à faire faire chuter la population de grizzlis de Yellowstone à seulement 136 animaux dans les années 1970. Ce chiffre a rebondi par la suite et atteint aujourd’hui environ 700, voire 1000 plantigrades. C’est pourquoi le Ministère de l’Intérieur a retiré les ours de la région de Yellowstone de la liste des espèces menacées au cours de l’été 2017.
Tout le monde n’est pas d’accord avec cette décision et des protecteurs de l’environnement ont engagé des procès visant à la faire annuler en faisant valoir l’isolement génétique de la population de Yellowstone et l’importance spirituelle de l’espèce pour les tribus amérindiennes. Certains soulignent également l’empreinte grandissante des grizzlis et affirment que le changement climatique a provoqué une diminution des sources d’alimentation naturelles. L’écosystème de Yellowstone a atteint sa capacité maximale d’acceptation des ours, ce qui oblige les mâles, en particulier, à chercher plus d’espace. Cette migration pose donc de nouveaux problèmes.
La disparition des ours des espèces menacées pourrait entraîner un nouveau risque, avec la possibilité, dans les trois États appartenant à l’écosystème de Yellowstone (Montana, Wyoming et Idaho) du retour la chasse au trophée de grizzli. Alors que les scientifiques affirment que des chasses limitées ne nuiraient pas nécessairement à l’ensemble de la population d’ours, les détracteurs critiquent ce qu’ils considèrent comme une menace supplémentaire inutile pour l’espèce.
Source: The Washington Post.

————————————

Since 1975, when they were listed as an endangered species, grizzlies in Yellowstone National Park have more than quadrupled their range and population. Well to the north, grizzlies in the Glacier National Park region also are spreading out. Yjey may cause the closure of some trails in the Park, as this happened to me three years ago.

The bear pioneers are now migrating so far that they are viewed as the vanguard of a possible union between the two populations, a connection that could help ensure the bears’ health and genetic diversity. At some point, conservationists hope, grizzlies might even reach the Idaho wilderness, recolonizing a small portion of the vast territory they once occupied.

But as grizzlies fan out from the parks that have long been their refuges, they are encountering more people, roads and development – and more temptation in the form of trash and livestock. While their presence raises the risk to humans and makes activities like hunting and hiking more perilous, the reality is that bears tend to be on the losing end of interactions with humans. This happens in countries like France. Allowing bears to get into in places occupied by men and their agriculture can only be a source of problems. At least 58 died in 2016 and 51 as of mid-November this year, most killed by people who accidentally hit them with cars, crossed paths with them while hunting or shot them for harming animals or property.

Americans have spent four decades and millions of dollars to rescue grizzlies from the brink of extinction. Now, experts say, one big question is whether people can live alongside them.

Conflicts with people helped to drive the Yellowstone grizzly population to as low as 136 in the 1970s, according to government figures. It has since officially rebounded to around 700, and federal biologists say the number could be as high as 1,000. Such progress prompted the Interior Department to delist that region’s bears in the summer 2017.

Lawsuits are now seeking to overturn the government’s action, citing the Yellowstone population’s genetic isolation and the spiritual importance of the species to Native American tribes. Some also point to the grizzlies’ growing footprint and contend that climate change has caused natural food sources to dwindle. TheYellowstone ecosystem has reached its carrying capacity, forcing male grizzlies, in particular, to seek more space. Their movement is creating new challenges.

Delisting could entail a new risk, given the possibility in all three states in the Yellowstone ecosystem – Montana, Wyoming and Idaho – of allowing grizzly trophy hunting at some point. While federal scientists say limited hunts would not necessarily harm the overall population, critics decry what they see as an unnecessary additional threat.

Source : The Washington Post.

Grizzlis dans le Parc de Yellowstone (Photos: C. Grandpey)

D’autres photos d’ours sont proposées dans le livre « Dans les Pas de l’Ours » (voir colonne de droite de ce blog)