La dernière éruption de Yellowstone // Yellowstone Volcano’s last eruption

La plupart des scientifiques s’accordent pour dire que la dernière grande éruption du super volcan de Yellowstone s’est produite il y a environ 630 000 ans. Plus récemment, des géologues ont découvert trois phases éruptives distinctes remontant à 2,1 millions d’années, 1,3 million d’années et 630 000 ans.
L’éruption la plus récente, il y a 630 000 ans, a déposé une épaisse couche de cendre qui a recouvert une grande partie du centre-ouest des États-Unis. On estime qu’elle atteint par endroits 200 mètres d’épaisseur. Étant donné que cette couche de cendre s’est tassée sous le poids des sédiments, on peut raisonnablement penser qu’elle serait suffisamment épaisse pour recouvrir aujourd’hui la plupart de nos gratte-ciels.
Il ne fait aucun doute que l’éruption a envoyé une énorme quantité de cendre dans l’atmosphère et que cette cendre a recouvert une grande partie des États-Unis. Elle a également eu d’importantes conséquences sur le climat et la vie sur Terre. Chaque éruption a eu un impact mortel immédiat à cause des retombées de cendre. Il y a aussi eu un impact à plus long terme à cause de la faible capacité des plantes à opérer la photosynthèse et des animaux à respirer dans une atmosphère envahie par la cendre et les gaz nocifs.
Une étude récente par une équipe scientifique de l’Université de Californie à Santa Barbara a abouti à la conclusion que la dernière éruption de Yellowstone a connu deux phases successives. Les chercheurs ont en effet découvert deux couches de cendre volcanique dans les sédiments océaniques du Bassin de Santa Barbara. Ils ont prélevé des empreintes chimiques des couches de cendre et constaté qu’elles provenaient d’une double éruption du super volcan de Yellowstone.
Pour étayer une telle affirmation, deux conditions devaient être présentes dans le Bassin de Santa Barbara. Tout d’abord, pour s’assurer que les couches de cendre volcanique étaient intactes dans l’océan côtier et non modifiées par les vers et autres mollusques, l’équipe scientifique a choisi une zone où les eaux des fonds marins étaient anoxiques. Cela signifie qu’il n’y avait pas assez d’oxygène pour que les animaux puissent venir gratter et endommager les couches de cendre. Au vu des résultats, les scientifiques furent convaincus qu’il y a eu deux événements éruptifs distincts à Yellowstone.
Le point suivant à éclaircir était la distinction dans le temps entre les deux événements volcaniques. La présence simultanée de sédiments terrigènes et de coquilles de foraminifères pélagiques dans le bassin de Santa Barbara a permis à l’équipe scientifique d’identifier distinctement les deux couches de cendre. De plus, les coquilles des foraminifères ont été utilisées pour déterminer la température de l’eau de mer en surface au moment où elles étaient encore vivantes.
Une fois obtenue la certitude que les couches de cendre appartenaient à des événements distincts et provenaient du super volcan de Yellowstone, les scientifiques ont pu compiler d’autres informations sur les événements. La datation a montré que les éruptions se sont produites à environ 170 ans d’intervalle. Cela signifie que deux générations successives d’animaux ont probablement été témoins d’une éruption du super volcan de Yellowstone au cours de leur vie.
En outre, les chercheurs ont constaté que les éruptions ont eu de vastes répercussions à l’échelle mondiale. Ils ont acquis la certitude que chaque éruption a causé le refroidissement d’environ 3 degrés Celsius de l’océan. Ils l’ont prouvé en mesurant les isotopes dans la coquille de foraminifères. Les foraminifères sont de petits organismes photosynthétiques qui flottent près de la surface de l’océan. Ils absorbent différents rapports d’isotopes d’oxygène lors de la fabrication de leur carapace à base de carbonate, en fonction de la température de l’eau océanique environnante. En mesurant avec précision le rapport de ces isotopes et en les comparant aux normes sur la planète dans son ensemble, les scientifiques ont été en mesure de déterminer la température de surface de l’océan  pendant la courte période où ces foraminifères étaient vivants. En effectuant ces mesures sur une carotte de sédiments, ils ont pu établir une courbe de la température de la surface de la mer à travers le temps.
C’est ainsi que l’équipe géologique de Santa Barbara est arrivée à la conclusion que chacune des deux éruptions du super volcan de Yellowstone a provoqué une baisse de la température de l’océan d’environ 3 degrés Celsius. Cela contraste avec la tendance générale au réchauffement de la planète à l’époque. Les deux éruptions ont refroidi temporairement la planète et inversé la tendance au réchauffement.
La double éruption a certainement provoqué des hivers volcaniques dans le monde car les cendres et les gaz émis dans l’atmosphère ont bloqué temporairement le soleil. Une chose est certaine, le super volcan de Yellowstone entrera de nouveau en éruption à l’avenir. La date exacte de cet événement est bien sûr inconnue, de même que son ampleur. A l’heure actuelle, nous ne savons pas comment nous pourrons réagir pour tenter d’atténuer son impact et nous protéger.
Source: Forbes.

———————————-

Most scientists agree on the fact that the last major eruption of Yellowstone super volcano occurred about 630,000 years ago. More recently, geologists have deduced three separate eruption events dating back 2.1 million years ago, 1.3 million years ago, and 630,000 years ago.

The most recent volcanic eruption 630,000 years ago produced a massive volcanic ash bed which covered much of western central United States. It is estimated that the maximum thickness the volcanic ash is up to 200 metres. Given the ash has since compacted due to the weight of overlying sediment, the ash bed deposited would have been thick enough to cover most of our modern skyscrapers.

There is little doubt that the eruption released a catastrophic amount of ash into the atmosphere and blanketed a large portion of the United States. It also had a significant impact on both climate and life. During one of these eruptions, there was an immediate deadly impact of widespread ash fallout. However, there was also a more prolonged deadly impact of reduced ability for plants to photosynthesize and animals to respire under a sky filled with ash and harmful gases.

Recent research by a U.C. Santa Barbara scientific team has found that the latest eruption from the Yellowstone caldera was, in fact, two eruptions that occurred back to back. The research team deduced this after finding two layers of volcanic ash in ocean sediments at the Santa Barbara Basin. The team was able to chemically fingerprint the ash layers to identify that they were both sourced from the Yellowstone supervolcano.

However, to do this, two ideal conditions had to line up in the Santa Barbara Basin.

First, to ensure the volcanic ash beds were preserved in the coastal ocean and not reworked by worms or mollusks, the team selected a region where the ocean bottom waters were anoxic. This means there was no oxygen for critters to churn and damage ash bed layers. Given that, scientists are convinced there were two separate events.

The next concern is the distinction in time between the two volcanic events. The combination of terrigenous sediment and pelagic foraminifera shells in the Santa Barbara Basin allowed the scientific team to distinctly identify the two ash beds. In addition, the foraminifera shells were used to deduce the surface sea water temperature at the time when they were alive.

Once the team was able to determine that both ash beds were separate events and sourced from the Yellowstone supervolcano, they were able to compile some information about the events. Based on age dating, the eruption events are approximately 170 years apart from each other. This means potentially two successive generations of animals witnessed a Yellowstone supervolcano eruption in their lifetime.

In addition, researchers found that there were broad global impacts from the eruptions. The team found that each eruption caused the ocean to cool by about 3 degrees Celsius. They determined this by measuring the isotopes within foraminifera shell. Foraminifera are small photosynthetic organisms that float near the surface of the ocean. They absorb different ratios of oxygen isotopes when making their carbonate shell, dependent on the temperature of the surrounding ocean water. By precisely measuring the ratio of these isotopes and comparing them with standards around the world, scientists can determine the surface ocean temperature during the short time when these foraminifera were alive. By making these measurements throughout a sediment core, scientists can develop a curve of sea surface temperature through time.

This was how the U.C. Santa Barbara geology team concluded that each of the two Yellowstone supervolcano eruptions caused an approximately 3 degrees Celsius drop in ocean temperature. This was in contrast to the general trend toward a warming planet at the time. Both eruptions halted and cooled the planet temporarily, reversing the warming trend.

This sent the world into volcanic winters, whereby ash and gasses emitted into the atmosphere temporarily block out the sun and cool the planet. One thing is certain, that Yellowstone volcano will erupt again in the future. However, the exact timing is still unknown. As is the magnitude of the next eruption and what humans can do to try to mitigate it or protect themselves.

Source : Forbes.

Photo: C. Grandpey

Publicités

Les mystères du vieux Fidèle (Parc de Yellowstone) // The mysteries of Old Faithful (Yellowstone National Park)

Le Vieux Fidèle est l’une des principales attractions du Parc National de Yellowstone. Chaque année, des millions de visiteurs viennent voir le geyser se manifester toutes les 44 à 125 minutes. Cependant, on connaît mal l’anatomie géologique du geyser ainsi que le fonctionnement des fluides de son système d’alimentation en profondeur.
Les scientifiques de l’Université de l’Utah ont essayé de combler cette lacune et ont cartographié la géologie du Vieux Fidèle proche de la surface (soir schéma ci-dessous). L’étude montre la morphologie du réservoir d’eau à haute température qui alimente le geyser ainsi que les mouvements du sol entre les éruptions. La cartographie a été rendue possible par l’implantation d’un important réseau de sismographes portables et par de nouvelles techniques d’analyse sismique. Les résultats de l’étude ont été  publiés dans les Geophysical Research Letters.
Le Vieux Fidèle – Old Faithful – est un exemple typique de l’activité hydrothermale du Parc National de Yellowstone qui repose sur deux réservoirs magmatiques actifs à des profondeurs de 5 à 40 km. Ce sont eux qui fournissent la chaleur aux eaux de surface. Dans certains endroits de Yellowstone, l’eau chaude se manifeste sous la forme de mares ou de sources. Dans d’autres, elle prend la forme de geysers qui entrent en éruption.
La géologie du sous-sol peu profond du Parc est longtemps restée un mystère. En effet, la cartographie nécessite d’enregistrer tous les jours les moindres mouvements du sol et l’énergie sismique émise à très faible échelle. Afin de détecter cette sismicité, l’Université de l’Utah a placé 30 sismomètres permanents dans le parc pour enregistrer la sismicité et l’activité volcanique. Le coût de ces sismomètres peut facilement dépasser 10 000 dollars. C’est pourquoi les scientifiques utilisent maintenant des petits sismomètres mis au point par Fairfield Nodal pour l’industrie pétrolière et gazière ; ils réduisent le coût à moins de 2 000 dollars par unité. Ce sont de petits boîtiers d’environ 15 cm de hauteur qui sont totalement autonomes. En 2015, les scientifiques de l’Université de l’Utah ont installé 133 de ces nouveaux sismomètres dans les secteurs du Vieux Fidèle et de Geyser Hill lors d’une campagne d’observations de deux semaines.
Les capteurs ont enregistré les pics d’activité sismique autour du Vieux Fidèle. Ils ont une durée d’environ 60 minutes et sont séparés par environ 30 minutes de calme. L’une des premières conclusions est que, étrangement, les éruptions du Vieux Fidèle ne se produisent pas au moment où la sismicité est la plus forte, mais vers la fin, juste avant que tout se calme.
Après une éruption, le réservoir du geyser se remplit à nouveau d’eau chaude. Au fur et à mesure que cette cavité se remplit, il y a beaucoup de bulles sous pression à haute température. Quand elles remontent vers la surface, elles se refroidissent très rapidement, puis s’effondrent et implosent. L’énergie libérée par ces implosions provoque les séismes qui précèdent une éruption.
Lors de l’analyse des données fournies par les capteurs, les chercheurs ont remarqué que les signaux sismiques du Vieux Fidèle n’arrivaient pas jusqu’au sentier en caillebotis situé à l’ouest du geyser. Les ondes sismiques en provenance d’une autre source hydrothermale plus au nord ralentissaient et se dispersaient de manière significative dans quasiment le même secteur. Cela laissait supposer qu’à l’ouest du Vieux Fidèle se trouvait une activité souterraine qui affectait les ondes sismiques du geyser d’une manière anormale. Grâce au réseau dense de sismomètres installés à cet endroit, l’équipe scientifique a pu déterminer la forme, la taille et l’emplacement de cette activité hydrothermale qui, selon toute probabilité, provient du réservoir du Vieux Fidèle. On estime que ce réservoir, qui consiste en un réseau de fissures et de fractures au travers duquel s’écoule l’eau, a un diamètre d’environ 200 mètres et peut contenir environ 300 000 mètres cubes d’eau. En comparaison, chaque éruption du Vieux Fidèle libère environ 30 m3 d’eau.
Source: Université de l’Utah.

——————————————

Old Faithful is Yellowstone National Park’s most famous landmark. Millions of visitors come to the park every year to see the geyser erupt every 44-125 minutes. However, little is known about the geologic anatomy of the structure and the fluid pathways that fuel the geyser below the surface.

University of Utah scientists have tried to fill this gap and mapped the near-surface geology around Old Faithful. It reveals the reservoir of heated water that feeds the geyser’s surface vent and how the ground shaking behaves in between eruptions. The map was made possible by a dense network of portable seismographs and by new seismic analysis techniques. The results are published in Geophysical Research Letters.

Old Faithful is an iconic example of a hydrothermal feature, and particularly of the features in Yellowstone National Park, which is underlain by two active magma reservoirs at depths of 5 to 40 km depth that provide heat to the overlying near-surface groundwater. In some places within Yellowstone, the hot water manifests itself in pools and springs. In others, it takes the form of explosive geysers.

The shallow subsurface geology of the park has remained a mystery, because mapping it out required capturing everyday miniature ground movement and seismic energy on a much smaller scale. In order to detect this seismicity, the University of Utah has placed 30 permanent seismometers around the park to record ground shaking and monitor for earthquakes and volcanic events. The cost of these seismometers, however, can easily exceed $10,000. Small seismometers, developed by Fairfield Nodal for the oil and gas industry, reduce the cost to less than $2,000 per unit. They’re small white canisters about six inches high and are totally autonomous and self-contained. In 2015, with the new instruments, the Utah team deployed 133 seismometers in the Old Faithful and Geyser Hill areas for a two-week campaign.

The sensors picked up bursts of intense seismic tremors around Old Faithful, about 60 minutes long, separated by about 30 minutes of quiet. One of the first conclusions was that, surprisingly, the peaks of shaking during the Old Faithful eruptions do not occur at the end, but just before everything goes quiet again.

After an eruption, the geyser’s reservoir fills again with hot water. As that cavity fills up, there are a lot of hot pressurized bubbles. When they come up, they cool off really rapidly and they collapse and implode. The energy released by those implosions causes the tremors leading up to an eruption.

When analyzing data from the seismic sensors, the researchers noticed that tremor signals from Old Faithful were not reaching the western boardwalk. Seismic waves extracted from another hydrothermal feature in the north slowed down and scattered significantly in nearly the same area suggesting somewhere west of Old Faithful was an underground feature that affects the seismic waves in an anomalous way. With a dense network of seismometers, the team could determine the shape, size, and location of the feature, which they believe is Old Faithful’s hydrothermal reservoir. It is estimated that the reservoir, a network of cracks and fractures through which water flows, has a diameter of around 200 metres and can hold approximately 300,000 cubic metres of water. By comparison, each eruption of Old Faithful releases around 30 m3 of water.

Source : University of Utah.

Ce schéma montre bien le décalage entre le réservoir du Vieux Fidèle et sa bouche éruptive (Source: University of Utah)

Eruption du Vieux Fidèle (Photo: C. Grandpey)

Sismicité à Yellowstone: Retour à la normale // Back to normal

Comme je l’ai écrit à plusieurs reprises, l’essaim sismique qui a affecté le Parc National de Yellowstone au cours de l’été dernier n’avait rien d’inquiétant. Il n’y avait aucun risque d’éruption, comme cela a été envisagé par certains journaux à sensations. Une éruption ne se produit pas seulement parce que l’on enregistre une hausse de la sismicité. D’autres paramètres doivent être pris en compte, tels que la déformation du sol, l’augmentation des températures ou des modifications chimiques des gaz. Selon l’Observatoire Volcanologique de Yellowstone, l’activité sismique a retrouvé un niveau normal dans le Parc.
Au cours du mois de septembre 2017, 115 secousses ont été localisées dans la région du Parc National de Yellowstone. L’événement le plus significatif a été un séisme mineur de M 3.2 le 17 septembre, à environ 17,7 km du Vieux Fidèle.
L’essaim mentionné ci-dessus a diminué en septembre avec 78 séismes, contre 894 en août, 475 en juillet et 1 028 en juin. L’événement le plus significatif de cet essaim en septembre a été de M 2.3 le 5 septembre, à 16 km au nord de West Yellowstone.
Plusieurs autres secousses étaient visibles sur les enregistreurs, mais elles n’ont pas pu être localisées car elles étaient trop faibles ou se chevauchaient avec d’autres événements et ne sont donc pas incluses dans ces chiffres.
L’Observatoire Volcanologique de Yellowstone indique que ces événements sont fréquents et représentent environ 50% de la sismicité totale dans la région.
En ce qui concerne la déformation au sol, elle n’a guère évolué au cours des derniers mois. Le soulèvement au nord de la caldeira, près du Norris Geyser Basin, que l’on observe depuis la fin de l’année 2015, se poursuit à raison de quelques millimètres par mois. Le soulèvement à l’intérieur même de la caldeira se produit à un rythme semblable depuis la fin de 2016. Globalement, la déformation actuelle à Yellowstone reste dans les normes historiques.

————————————-

As I put it several times, there was no need to worry about the seismic swarm that affected Yellowstone National park during the past summer. Above all, there was no risk of the eruption predicted by some tabloids. An eruption does not occur only because seismicity is increasing. Other parameters must be taken into account, such as ground deformation, increasing temperatures or chemical modifications of the gases. According to the Yellowstone Volcano Observatory, seismic activity has returned to normal levels in the Park.

During September 2017,115 earthquakes were located in the Yellowstone National Park region. The largest event was a minor earthquake of M 3.2 on September 17th, located about 17.7 km of Old Faithful.

Activity in the above-mentioned swarm waned in September, with 78 earthquakes compared to the 894 in August, 475 in July, and 1 028 in June. The largest event of the swarm in September was M 2.3 on September 5th, 16 km north of West Yellowstone.

There are several additional earthquakes visible on the webicorders that cannot be located because they are too small or overlap another event and are not included in these numbers.

The Yellowstone Volcano Observatory indicates that such events are common and account for roughly 50% of the total seismicity in the Yellowstone region.

As far as ground deformation is concerned, trends in ground displacement have remained consistent over the past several months. Uplift north of the caldera, centered near the Norris Geyser Basin and persistent since late 2015, continues at a rate of a few millimetres per month. Subsidence within the caldera is occurring at a similar rate and has been ongoing since late 2016. Current deformation patterns at Yellowstone remain within historical norms.

Photo: C. Grandpey

 

Essaim sismique à Yellowstone: Pas de quoi s’inquiéter! // Seismic swarm at Yellowstone: Nothing to worry about!

L’essaim sismique observé à Yellowstone depuis le mois de juin est maintenant l’un des plus longs jamais enregistrés dans le Parc, avec plus de 2 300 événements. Le 30 août, 2 357 séismes avaient été enregistrés. Le plus significatif au cours des dernières semaines a été un événement de M 3,3 le 21 août. Le plus important dans l’essaim actuel avait une magnitude de M 4,4 le 15 juin. La plupart des secousses se situaient dans la fourchette M 0 ou M 1, avec 181 autres événements de M 2 et 11 de M 3. 53 autres étaient inférieurs à M 0, ce qui signifie qu’ils ne pouvaient être détectés qu’avec des instruments ultra sensibles.
Beaucoup de gens s’inquiètent et pensent que cet essaim sismique pourrait annoncer une éruption volcanique à court terme. L’Observatoire Volcanologique de Yellowstone se veut rassurant et affirme qu’aucune éruption ne se produira, à court ou à long terme. En effet, la sismicité a toujours été présente à Yellowstone, la plupart du temps causée par l’activité hydrothermale dans le Parc. Les géologues de l’Observatoire insistent sur le fait que l’essaim n’a «rien d’extraordinaire» et qu’il a «ralenti de manière significative ; toutefois, de petits épisodes d’activité peuvent durer quelques heures».
Bien qu’il ne semble pas dangereux, l’essaim sismique actuel est maintenant l’un des plus longs et les plus importants jamais enregistrés. Le plus spectaculaire avait eu lieu en octobre 1985; il a duré trois mois, avec plus de 3 000 événements. Il y a eu un autre essaim digne d’intérêt en 2010, avec plus de 2 000 événements enregistrés en un seul mois.
L’USGS – qui gère les observatoires volcanologiques dans l’ouest des Etats-Unis – indique que le niveau d’alerte actuel à Yellowstone est « Normal » et que la couleur de l’alerte aérienne est « Verte ».
Jacob Lowenstern, l’un des scientifiques responsables de l’Observatoire de Yellowstone (et que je salue ici!) rappelle que «la dernière éruption volcanique dans la caldeira s’est produite il y a 70 000 ans. […] Pour que le magma atteigne la surface, il faut qu’une nouvelle bouche s’ouvre, ce qui se traduit par une activité géologique intense. […] On observerait alors de plus en plus de séismes, associés à une déformation du sol, des explosions de vapeur et des changements dans la composition des gaz et dans la température des émissions hydrothermales, ce qui entraînerait une modification du niveau d’alerte. Rien de tout cela n’a encore eu lieu. »
Source: Observatoire Volcanologique de Yellowstone.

——————————————

The ongoing earthquake swarm at Yellowstone is now one of the longest ever recorded, with over 2,300 tremors since it began in June. As of August 30th, 2,357 earthquakes had been recorded. The most powerful in recent weeks was an M 3.3 event on August 21st. The most significant in the current swarm had a magnitude of M 4.4 on June 15th. Most of the earthquakes were in the M 0 or  M 1 range, with a further 181 recorded at M 2 and 11 at M 3. Another 53 were less than M 0, meaning they were very small events that could be detected only with sensitive earthquake-monitoring instruments.

Many people have worried about this seismic swarm and thought it might announce a volcanic eruption in the short term. The Yellowstone Volcano Observatory is reassuring and said no eruption will occur, either in the short or long term. Indeed, seismicity has always been present at Yellowstone, most of the time caused by the hydrothermal activity within the Park. Geologists at the Observatory have insisted that the swarm was “nothing out of the ordinary” and that it had “slowed down significantly but does occasionally have little bursts of activity that lasts for a few hours.”

Although it does not look dangerous, the current swarm is now one of the longest and largest on record. The largest swarm ever recorded was in October 1985; it lasted for three months and included more than 3,000 earthquakes. There was another large swarm in 2010, when more than 2,000 events were recorded over a month.

USGS that manages the volcanic observatories in Western U.S.A. currently lists the volcano alert level at Yellowstone as normal, and the aviation color code is green.

Jacob Lowenstern, one of the scientists in charge of the Yellowstone Volcano Observatory (Hello Jake!) reminds us that “the last volcanic eruption within the caldera was 70,000 years ago. […] For magma to reach the surface, a new vent needs to be created, which requires a lot of intense geological activity. […] We would need to see considerably more and larger earthquakes, combined with contemporaneous ground deformation, steam explosions and changes in gas and heat discharge, prior to moving the alert level. None of that has occurred.”

Source: Yellowstone Volcano Observatory.

N’hésitez pas à vous rendre à Yellowstone en septembre. Il fait moins chaud et  il y a moins de monde… (Photos: C. Grandpey)

 

La NASA peut-elle empêcher les super éruptions ? // Can NASA prevent super eruptions ?

On a recensé une vingtaine de super volcans sur terre, avec des éruptions majeures qui se produisent en moyenne une fois tous les 100 000 ans. Si une telle éruption se produisait aujourd’hui, l’une des plus grandes conséquences serait la famine, avec un long hiver volcanique qui pourrait empêcher notre civilisation d’avoir suffisamment de vivres pour nourrir la population actuelle. En 2012, les Nations Unies ont estimé à 74 jours les réserves alimentaires dans le monde.
Lorsque les scientifiques de la NASA ont étudié le problème, ils ont conclu que la solution la plus logique serait simplement de « refroidir » un super volcan. Un volcan de la taille de Yellowstone est avant tout un gigantesque générateur de chaleur, l’équivalent de six centrales industrielles. Yellowstone laisse échapper actuellement dans l’atmosphère environ 60 à 70% de la chaleur stockée dans les profondeurs, via l’eau qui s’infiltre dans la chambre magmatique par des fissures. Le reste s’accumule à l’intérieur du magma, ce qui lui permet de dissoudre de plus en plus de gaz volatils et de roches environnantes. Une fois que cette chaleur atteint un certain seuil, une éruption explosive est inévitable.
Les scientifiques de la NASA pensent que si une grande partie de cette chaleur pouvait être extraite, le super volcan n’entrerait jamais en éruption. Ils estiment que si une augmentation de 35% du transfert de chaleur pouvait être obtenue à partir de sa chambre magmatique, Yellowstone ne constituerait plus une menace. La seule question est de savoir quelle est la solution pour y parvenir.

Une solution serait d’augmenter la quantité d’eau à l’intérieur du super volcan, mais il sera probablement impossible de convaincre les hommes politiques de cautionner une telle initiative. Construire un grand aqueduc dans une région montagneuse serait à la fois coûteux et difficile et la population n’accepterait pas que l’eau soit utilisée de cette façon. On manque d’eau potable partout dans le monde et un tel projet consistant à utiliser de l’eau pour refroidir un super volcan serait forcément très controversé.
Au lieu de cela, la NASA a imaginé un plan très différent. La solution la plus envisageable serait de forer jusqu’à 10 km de profondeur à l’intérieur du super volcan et d’injecter de l’eau à haute pression. En circulant, l’eau remonterait à une température d’environ 350°C, tout en extrayant lentement, jour après jour, la chaleur du volcan. Un tel projet, dont le coût atteindrait environ 3,46 milliards de dollars, pourrait décider les hommes politiques à risquer un tel investissement. Yellowstone laisse échapper actuellement environ 6GW sous forme de chaleur. Avec un tel forage, cette chaleur pourrait être utilisée dans une centrale géothermique qui génèrerait de l’énergie électrique à un prix extrêmement compétitifs estimé à environ 0,10 dollars par kWh. Au final, en forant un peu plus profondément, on aurait rapidement un retour sur investissement et une électricité qui pourrait alimenter la région autour du super volcan pendant une période de plusieurs dizaines de milliers d’années. L’avantage sur le long terme est que l’on empêche une éruption du super volcan qui serait un désastre pour l’humanité. Toutefois, le forage à l’intérieur d’un super volcan n’est pas sans risques et pourrait déclencher l’éruption que l’on veut éviter à tout prix !
Une autre solution serait de démarrer le forage en dehors des limites du Parc National de Yellowstone et d’extraire la chaleur de la partie inférieure de la chambre magmatique. De cette façon, on empêche la chaleur qui vient d’en bas d’atteindre le haut de la chambre, là même où se trouve la véritable menace. Cependant, ceux qui défendent un tel projet ne verront jamais si c’est une réussite au cours de leur vie. Le refroidissement de Yellowstone de cette manière interviendrait à raison d’un mètre par an et il faudrait donc des dizaines de milliers d’années pour que la roche soit refroidie.
Même si ce dernier projet semble peu réaliste, il mérite réflexion et pourrait faire partie des solutions pour éviter une catastrophe. Un tel plan pourrait être appliqué à tous les super volcans actifs de la planète et les scientifiques de la NASA espèrent que leurs idées encourageront une discussion scientifique et un débat pour s’attaquer à cette menace.
Source: La BBC.

——————————————-

There are around 20 known supervolcanoes on Earth, with major eruptions occurring on average once every 100,000 years. One of the greatest threats an eruption may pose is thought to be starvation, with a prolonged volcanic winter potentially prohibiting civilisation from having enough food for the current population. In 2012, the United Nations estimated that food reserves worldwide would last 74 days.

When NASA scientists came to consider the problem, they found that the most logical solution could simply be to cool a supervolcano down. A volcano the size of Yellowstone is essentially a gigantic heat generator, equivalent to six industrial power plants. Yellowstone currently leaks about 60-70% of the heat coming up from below into the atmosphere, via water which seeps into the magma chamber through cracks. The remainder builds up inside the magma, enabling it to dissolve more and more volatile gases and surrounding rocks. Once this heat reaches a certain threshold, then an explosive eruption is inevitable.

But if more of the heat could be extracted, then the supervolcano would never erupt. NASA estimates that if a 35% increase in heat transfer could be achieved from its magma chamber, Yellowstone would no longer pose a threat. The only question is how to proceed.

One possibility is to simply increase the amount of water in the supervolcano. But from a practical perspective, it would likely be impossible to convince politicians to sanction such an initiative. Building a big aqueduct uphill into a mountainous region would be both costly and difficult, and people do not want their water spent that way. People are desperate for water all over the world and so a major infrastructure project, where the only way the water is used is to cool down a supervolcano, would be very controversial.

Instead NASA have conceived a very different plan. They believe the most viable solution could be to drill up to 10 km down into the super volcano, and pump down water at high pressure. The circulating water would return at a temperature of around 350°C, thus slowly day by day extracting heat from the volcano. And while such a project would come at an estimated cost of around 3.46 billion dollars, it could convince politicians to make the investment. Yellowstone currently leaks around 6GW in heat. Through drilling in this way, it could be used to create a geothermal plant which generates electric power at extremely competitive prices of around $0.10/kWh. In the end, by drilling somewhat deeper, you would pay back your initial investment and get electricity which can power the surrounding area for a period of potentially tens of thousands of years. And the long-term benefit is that you prevent a future supervolcano eruption which would devastate humanity. But drilling into a supervolcano does not come without certain risks. Namely triggering the eruption you are intending to prevent.

Instead, the idea is to drill in starting outside the boundaries of Yellowstone National Park, and extracting the heat from the underside of the magma chamber. This way you are preventing the heat coming up from below from ever reaching the top of the chamber which is where the real threat arises. However those who instigate such a project will never see it to completion, or even have an idea whether it might be successful within their lifetime. Cooling Yellowstone in this manner would happen at a rate of one metre a year, taking of the order of tens of thousands of years until just cold rock was left.

But to prevent a catastrophe, such long-term thinking and planning may be the only choice. Such a plan could be potentially applied to every active supervolcano on the planet, and NASA’s scientists are hoping that their blueprints will encourage more practical scientific discussion and debate for tackling the threat.

Source : The BBC.

Cette coupe sud-ouest / nord-est sous Yellowstone a été obtenue grâce à l’imagerie sismique. (Source: University of Utah)

Un forage à Yellowstone, n’est-ce pas jouer avec le feu et risquer de saccager un site d’une beauté exceptionnelle? (Photo: C. Grandpey)

 

 

Yellowstone : Sismicité élevée mais pas d’inquiétude // Elevated seismicity but nothing to worry about

L’activité sismique à Yellowstone au cours du mois de juillet est restée élevée par rapport à l’activité de base observée dans le Parc.
L’Observatoire Volcanologique de Yellowsone (YVO) indique que 528 séismes ont été enregistrés dans la région du Parc National de Yellowstone. L’événement le plus significatif a atteignait M 3,6 le 18 juillet, à environ 14,5 km au nord-est de West Yellowstone. Ce séisme fait partie de l’essaim sismique observé dans cette même région depuis le 12 juin 2017.
La sismicité de juillet à Yellowstone est restée concentrée à environ 9,6 km au nord de West Yellowstone, secteur où un essaim a ajouté 475 séismes supplémentaires en juillet aux 1028 événements observés en juin.
Les séquences sismiques comme celles de juin et de juillet sont fréquentes et représentent environ 50% de la sismicité totale dans la région de Yellowstone. Il n’y a donc pas lieu de s’inquiéter comme le font certains organes de presse.
Les instruments installés dans la caldeira de Yellowstone montrent une très faible variation de la déformation du sol ce mois-ci. Le soulèvement au nord de la caldeira, près du bassin Norris Geyser Basin, se poursuit lentement. La situation n’a pas évolué par rapport aux derniers mois. Les modèles de déformation actuels à Yellowstone restent dans le cadre des normes historiques.
Source: Yellowstone Volcano Observatory.

——————————————

Seismic activity at Yellowstone during the month of July has still been elevated levels compared with typical background activity.

The Yellowsone Volcano Observatory (YVO) indicates 528 earthquakes were located in the Yellowstone National Park region. The largest event was an M 3.6 event on July 18th, located about 14.5 km north northeast of West Yellowstone. This earthquake is part of a continued energetic swarm in the same area that began on June 12th, 2017.

July seismicity in Yellowstone was marked by the ongoing seismicity about 9.6 km north of West Yellowstone where an energetic swarm added an additional 475 earthquakes in July to the 1028 earthquakes in June.

Earthquake sequences like those of June and July are common and account for roughly 50% of the total seismicity in the Yellowstone region.

Monitored locations within the Yellowstone Caldera show minimal ground deformation change this month. Uplift north of the caldera, centered near the Norris Geyser Basin continues at a low rate. Behaviour is similar to the past several months. Current deformation patterns at Yellowstone remain within historical norms.

Source: Yellowstone Volcano Observatory.

Photo: C. Grandpey

Yellowstone: Pas de quoi s’inquiéter // Yellowstone: Nothing to worry about!

Dans un rapport publié le 1er juillet 2017, l’Observatoire Volcanologique de Yellowstone donne plus de détails sur la dernière sismicité enregistrée dans le Parc.
En juin 2017, 1171 séismes ont été localisés dans la région du Parc National de Yellowstone. L’événement le plus significatif avait une magnitude de M 4.4 le 16 juin, à environ 14 kilomètres au nord-nord-ouest de West Yellowstone. Comme je l’ai déjà signalé, la secousse a été ressentie dans les villes de Gardiner et West Yellowstone. Ce séisme fait partie d’une séquence qui a débuté le 12 juin dans cette même région.
La sismicité du mois de juin à Yellowstone a été marquée par quatre épisodes bien distincts :

1) Un essaim de 1027 séismes, à 10 km au nord de West Yellowstone, a débuté le 12 juin et continue actuellement, avec un événement de M 4.4 le 16 juin. Cet essaim se compose également de cinq secousses autour de M 3 et 72 autres autour de M 2.
2) 41 événements ont fait partie d’un petit essaim à environ 22 km à l’est-nord-est de West Yellowstone les 14 et 15 juin. L’événement le plus significatif (M 2.3) a été enregistré le 14 juin à 22 km à l’est-nord-est de West Yellowstone. Cet essaim comprend deux séismes autour de M 2.
3) Un petit essaim de 22 séismes, à environ 22 km au sud-sud-ouest de Mammoth, a eu lieu les 1er et 2 juin, avec un événement de M 2.6 le 1er juin. Cet essaim comprend 3 séismes autour de M 2.
4) Un petit essaim de 13 séismes, à 25 km à l’est-nord-est de West Yellowstone, a été enregistré le 13 juin avec un événement de M 1,7.
Le rapport conclut en indiquant que les séquences sismiques comme celles qui viennent d’être décrites sont fréquentes et représentent environ 50% de la sismicité totale dans la région de Yellowstone. Cependant, l’activité sismique de Yellowstone est actuellement à des niveaux élevés par rapport à la normale.

En ce qui concerne la déformation du sol, les instruments installés dans la caldeira de Yellowstone continuent d’enregistrer un lent affaissement de cette dernière. Le soulèvement du sol au nord de la caldeira, près du Norris Geyser Basin, se poursuit très lentement. La situation n’a pas évolué au cours des derniers mois. Les modèles de déformation actuels à Yellowstone restent dans les normes historiques.

Source : Yellowstone Volcano Observatory.

————————————

In a report released on July 1st 2017, the Yellowstone Volcano Observatory gives more details about the latest seismicity in the Park.

During June 2017, 1171 earthquakes were located in the Yellowstone National Park region. The largest event was a light earthquake of M 4.4 on June 16th, located about 14 kilometres north-northwest of West Yellowstone. As I put it before, the earthquake was felt in the towns of Gardiner and West Yellowstone, MT. This earthquake is part of a sequence in the same area that began on June 12th.
June seismicity in Yellowstone was marked by four distinct clusters of episodic earthquakes:
1) An energetic swarm of 1027 earthquakes, 10 km north of West Yellowstone, began on June 12th and is ongoing, including the largest event (M 4.4) of the month on June 16th. This swarm also consists of five earthquakes in the M 3 range and 72 earthquakes in the M 2 range.
2) 41 events occurred in a small swarm about 22 km east-northeast of West Yellowstone on June 14th and 15th. The largest earthquake of the swarm (M 2.3) occurred on June 14th 22 km east-northeast of West Yellowstone. This swarm includes two earthquakes in the M 2 range.

3) A small swarm of 22 earthquakes, about 22 km south-southwest of Mammoth, took place on June 1st and 2nd, with the largest event (M 2.6) occurring on June 1st. This swarm includes 3 earthquakes in the M 2 range.
4) A small swarm of 13 earthquakes, 25 km east-northeast of West Yellowstone, occurred on June 13th with the largest earthquake at M 1.7.
The report concludes by saying that earthquake sequences like these are common and account for roughly 50% of the total seismicity in the Yellowstone region. However, Yellowstone earthquake activity is currently at elevated levels compared with typical background activity.

As far as ground deformation is concerned, instruments within the Yellowstone caldera continue to record a slow subsidence. Uplift north of the caldera, centered near the Norris Geyser Basin continues at a low rate. Behaviour is similar to the past several months. Current deformation patterns at Yellowstone remain within historical norms.
Source : Yellowstone Volcano Observatory.

Photo: C. Grandpey