La Vallée du Grand Rift // The Great Rift Valley

Après une période de fortes pluies en mars 2018, une énorme fracture de plusieurs kilomètres de long est apparue dans le sol dans une région à l’ouest de Nairobi au Kenya. Elle mesure une quinzaine de mètres de profondeur et une vingtaine de mètres de largeur à certains endroits. La fracture est probablement là depuis longtemps, mais il y a de fortes chances pour que les récentes précipitations aient lessivé la cendre volcanique qui la dissimulait. Cette cendre provenait du Mont Longonot, un volcan situé à proximité.
La fracture fait partie de la Vallée du Grand Rift, appellation qui désigne une région de fracture terrestre s’étendant du Moyen-Orient au Mozambique. Contrairement à ce que ce nom laisse supposer, la Vallée englobe un grand nombre de rifts qui appartiennent tous au même système.
C’est chose acquise : la lithosphère terrestre – qui est formée par la croûte et la partie supérieure du manteau – est morcelée en un certain nombre de plaques tectoniques. Ces plaques ne sont pas statiques ; elles se déplacent les unes par rapport aux autres à des vitesses variables. Ces déplacements sont probablement causés par des courants de convection dans l’asthénosphère et les forces générées aux limites entre les plaques.
Ces forces n’entraînent pas seulement le déplacement des plaques, elles peuvent également provoquer leur rupture, avec la formation d’un rift, et conduire à la création de nouvelles limites de plaques. Ce processus s’accompagne de manifestations de surface le long de la vallée du rift sous forme de volcanisme et d’activité sismique.

Géologiquement parlant, une vallée de rift est une région de plaine où deux plaques tectoniques s’écartent l’une de l’autre. La grande fracture qui est apparue récemment au Kenya fait partie du Rift est-africain. Ce dernier, qui a une longueur de 6000 kilomètres, comporte deux systèmes secondaires, le Gregory Rift et le Western Rift (vallée du rift occidental), qui sont parsemés de volcans.
Ces rifts s’élargissent eu fur et à mesure que les deux plaques tectoniques – la plaque somalienne à l’est et la plaque nubienne à l’ouest – s’éloignent l’une de l’autre. La région a livré des trésors archéologiques parmi les plus importants de l’histoire et a été surnommée le «berceau de l’humanité». Elle a révélé des squelettes extrêmement vieux comme le «Garçon de Turkana», un hominidé de 1,5 million d’années.
Les deux plaques tectoniques s’éloignant l’une de l’autre, la plaque somalienne finira probablement par se détacher de la plaque nubienne et former une terre distincte comparable à Madagascar ou à la Nouvelle-Zélande. Cependant, cette séparation ne se produira pas avant 50 millions d’années. Même s’il faut attendre aussi longtemps, les effets physiques de cette probable séparation continueront d’être vus et ressentis dans la région.
Par exemple, les mouvements du rift doivent être pris en compte lors de la construction d’infrastructures ou d’une nouvelle voie ferrée dans la région. Selon des articles presse, la nouvelle fracture observée au Kenya a été comblée à l’aide d’un mélange de béton et de roches et permet à nouveau le passage d’une route après l’effondrement d’une portion entre Nairobi et Narok.
Le Rift est-africain est fascinant car il nous permet d’observer différentes étapes de formation d’un rift sur toute sa longueur. Au sud, là où le rift est le plus jeune, la vitesse d’accrétion est faible et des fractures s’ouvrent sur une vaste zone. Le volcanisme et la sismicité sont limités.
En revanche, du côté de la région Afar, le fond de la vallée du Rift est tapissé de roches volcaniques. Cela laisse supposer que, dans cette zone, la lithosphère s’est amincie, presque au point de se déchirer complètement. Lorsque la rupture se produira, un nouvel océan commencera à se former grâce à la solidification du magma dans l’espace laissé par la séparation des plaques. Finalement, sur une période de dizaines de millions d’années, l’extension du plancher océanique  progressera sur toute la longueur du rift. L’océan finira par s’engouffrer dans cette fracture et la superficie du continent africain se réduira. Une nouvelle grande île apparaîtra dans l’Océan Indien composée de parties de l’Éthiopie et de la Somalie, y compris la Corne de l’Afrique.
Source: National Geographic, The Conversation.

——————————————-

After a period of heavy rainfall in March 2018, a huge crack several kilometres long appeared in the ground in a region just west of Nairobi, Kenya. it measures about 15 metres deep and 20 metres wide in some places. The crack has probably been here for a long time, but the recent eain probably wash away the volcanic ash that had erupted from nearby Mt. Longonot.

This crack is part of the Great Rift Valley, a name often used to refer to a region extending from the Middle East to Mozambique. Contrary to what the name may suggest, it is made of multiple rifts all running through the same system.

The Earth’s lithosphere (formed by the crust and the upper part of the mantle) is broken up into a number of tectonic plates. These plates are not static, but move relative to each other at varying speeds. These movements are likely caused by convection currents within the asthenosphere and the forces generated at the boundaries between plates.

These forces do not simply move the plates around, they can also cause plates to rupture, forming a rift and potentially leading to the creation of new plate boundaries. This process is accompanied by surface manifestations along the rift valley in the form of volcanism and seismic activity. The East African Rift system is an example of where this is currently happening.

Geologically speaking, a rift valley refers to a lowland region where tectonic plates rift, or move apart. The large crack that recently exposed itself in Kenya is from the East African Rift. In the 6,000-kilometre-long East African Rift, there are two smaller systems called the Gregory Rift and the Western Rift, and each is speckled with volcanoes.
The rifts are growing larger as two tectonic plates, the Somali plate in the east and the Nubian plate in the west, move away from each other. The region has yielded some of history’s most important archaeological treasures and has been nicknamed the “cradle of humanity.” It revealed extremely old skeletons like the “Turkana boy,” a 1.5-million-year-old hominin.

As the two tectonic plates are moving away from each other, the Somali plate may completely separate from the Nubian plate and form a separate land mass comparable to Madagascar or New Zealand. However, that separation is not expected to happen for another 50 million years. Even so, the physical effects of that separation will continue to be seen and felt.

For instance, the rift movements must be taken into account when building infrastructures or a new railway in the region. There are newspaper reports saying that the new Kenyan crack has been filled in with a mix of concrete and rocks and is being used as a road once again, after it caused part of the Nairobi-Narok highway to collapse.

The East African Rift is unique in that it allows us to observe different stages of rifting along its length. To the south, where the rift is young, extension rates are low and faulting occurs over a wide area. Volcanism and seismicity are limited.

Towards the Afar region, however, the entire rift valley floor is covered with volcanic rocks. This suggests that, in this area, the lithosphere has thinned almost to the point of complete break up. When this happens, a new ocean will begin forming by the solidification of magma in the space created by the broken-up plates. Eventually, over a period of tens of millions of years, seafloor spreading will progress along the entire length of the rift. The ocean will flood in and, as a result, the African continent will become smaller and there will be a large island in the Indian Ocean composed of parts of Ethiopia and Somalia, including the Horn of Africa.

Source : National Geographic, The Conversation.

Source : Wikipedia

Le Grand Rift vu depuis le sommet de l’Ol Doinyo Lengai

Au coeur du Grand Rift

(Photos : C. Grandpey)

 

Volcanisme et tectonique dans la Mer Tyrrhénienne // Volcanism and tectonics in the Tyrrhenian Sea

L’article paru sur le site Live Science le 27 septembre 2019 n’est pas vraiment une surprise, car on sait depuis pas mal de temps que des activités tectoniques et volcaniques se sont déjà produites au fond de la mer Tyrrhénienne, au large des côtes siciliennes.
Le fond de la mer Tyrrhénienne près du sud-ouest de l’Italie, est parsemé de cheminées hydrothermales et de volcans sous-marins aux sommets plats datant d’environ 780 000 ans. Le volcanisme dans la région n’est pas vraiment surprenant puisque des volcans actifs comme le Vésuve et l’Etna se trouvent à une courte distance. Cependant, ce complexe est très particulier car il a été édifié par un système de failles très particulier.
La Méditerranée occidentale est très active d’un point de vue sismique suite à la collision entre les plaques tectoniques africaine, eurasienne et anatolienne. La situation est rendue encore plus complexe par un petit morceau de croûte, la microplaque Adriatico-Ionienne, qui s’est détachée de la plaque africaine il y a plus de 65 millions d’années. Elle est maintenant poussée sous la plaque eurasienne dans un processus de subduction.
Comme je l’ai écrit dans une note précédente, les scientifiques ont découvert une série d’arcs volcaniques sous-marins créés par cette situation tectonique ; ces arcs commencent près de la côte sarde et deviennent de plus en plus jeunes en allant vers le sud et l’est. Ces arcs ont l’aspect d’une flèche qui pointe toujours plus vers l’est.

Au large de la Calabre, les chercheurs ont découvert une région de coulées de lave, de volcans et de cheminées hydrothermales d’une superficie de 2 000 kilomètres carrés. Les bouches qui percent les fonds marins permettent l’évacuation de minéraux à haute température et la formation de structures semblables à des cheminées. Ils ont baptisé cette nouvelle zone Complexe Intrusif Volcanique Diamante-Enotrio-Ovidio, par référence à trois volcans sous-marins au sommet plat qui dominent le fond de la mer.
Des fractures ont permis au magma de remonter à la surface au niveau du Complexe Diamonte-Enotrio-Ovidio, créant ainsi un paysage sous-marin fait de coulées de lave et de volcans. Ces derniers sont maintenant des plateaux car ils dépassaient de la surface lorsque le niveau de la mer était plus bas. Ils se sont ensuite érodés pour prendre leur forme actuelle, avec le sommet plat. Le Complexe volcanique est inactif, mais il y a de petites intrusions de lave dans certaines parties du plancher marin. Les chercheurs pensent que la région pourrait redevenir active dans le futur, et un volcanisme actif se poursuit dans la partie orientale de la Mer Tyrrhénienne. Les chercheurs travaillent à l’élaboration d’une carte des risques volcaniques du Complexe afin de mieux comprendre s’il pourrait mettre en danger les zones habitées qui se trouvent à proximité. Ils étudient également la possibilité d’utiliser le Complexe pour produire de l’énergie géothermique.
Adapté d’un article publié sur le site Web Live Science.

—————————————————-

The article released on September 27th, 2019 in Live Science does not really come as a surprise as we have known for quite a long time that tectonic and volcanic activity once occurred on the seafloor off the coasts of Sicily.

The bottom of the Tyrrhenian Sea, near southwestern Italy, is dotted with geothermal chimneys and flat-topped seamounts which are about 780,000 years old. Volcanism in the region is not really a surprise as active volcanoes like Mount Vesuvius and Mount Etna are standing at a short distance. However, this complex is unusual because it was created by a rare kind of fault system.

The western Mediterranean is seismically restless because of the collision between the African, Eurasian and Anatolian tectonic plates. The situation is made all the more complex by a small chunk of crust – the Adriatic-Ionian microplate, which broke off from the African Plate more than 65 million years ago. It is now being pushed under the larger Eurasian Plate in a subduction process.

As I put it in a previous post, scientists discovered a series of undersea volcanic arcs created by this tectonic situation, starting near the Sardinian coast, with increasingly younger arcs southward and eastward. These arcs were like an arrow pointing ever farther eastward.

Off the coast of Calabria, the researchers found a 2,000-square-kilemetre region of lava flows, volcanic mountains and hydrothermal chimneys. Vents in the seafloor allow hot minerals to spew out and form chimney-like structures. They called the new area the Diamante-Enotrio-Ovidio Volcanic Intrusive Complex, after three flat-topped seamounts that dominate the seafloor.

Fractures are allowed magma to rise to the surface at the Diamonte-Enotrio-Ovidio Complex, creating an undersea landscape of lava flows and mountainous volcanoes. These volcanic seamounts are now plateaus because they protruded from the ocean when the sea level was lower, and they eroded into their present, flat-topped shape. The volcanic complex is inactive, but there are small intrusions of lava in some parts of the seafloor. The researchers think the area could become active in the future, and active volcanism is ongoing on the eastern side of the Tyrrhenian Sea. The researchers are working to build a volcanic risk map of the Complex to better understand if it could endanger human life or property.  They are also investigating the possibility of tapping the Complex to produce geothermal energy.

Adapted from an article published on the Live Science website.

Mer Tyrrhénienne (Source: Google Maps)

Volcanisme et tectonique sur l’Etna // Volcanism and tectonics on Mt Etna

Une étude intitulée “Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics” publiée le 20 août 2019 dans les Scientific Reports nous explique l’ascension du magma à l’intérieur de l’Etna.

Le travail, effectué par des scientifiques de l’INGV et de l’Institut National d’Océanographie et de Géophysique Expérimentale (OGS) a permis de déterminer les conditions qui permettent au magma de remonter vers la surface.
L’Etna se trouve dans une zone de failles transformantes. Grâce aux données sismiques, gravimétriques et magnétiques les chercheurs ont pu obtenir des images permettant de »voir » les secteurs où se situent les failles et comment elles sont organisées. Il y a au moins 500 000 ans, l’activité tectonique dans une vaste zone de failles de la partie sud du volcan (entre Acireale et les environs d’Adrano) a entraîné la formation de zones « d’ouverture »de la croûte terrestre qui ont été les voies préférentielles choisies par le magma pour sortir par des fissures éruptives disséminées le long de la ligne de faille. Ces fissures, identifiées entre Aci Trezza et Adrano, ont caractérisé les premières phases d’activité de l’Etna.
La déformation continue le long de la même zone de faille et même plus au nord, ainsi que leur interaction mutuelle, « ont entraîné la migration des zones d’éruption du magma et la fermeture soudaine de conduits éruptifs précédemment actifs ». C’est ce qui explique le processus de migration du volcanisme du versant sud (actif d’au moins 500 000 à environ 200 000 ans) vers la région de la Valle del Bove (entre 100 000 et 70 000 ans) et vers les centres éruptifs actuels (d’il y a 60 000 ans à aujourd’hui). La déformation induite par les failles sur le substrat sur lequel repose le volcan a également influencé le glissement du flanc E de l’Etna, qui se caractérise par une forte sismicité, comme en témoigne le séisme de décembre 2018.

Vous trouverez l’intégralité de l’étude (en anglais ) à cette adresse :

 https://www.nature.com/articles/s41598-019-48550-1

————————————————-

 A study entitled « Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics » published August 20th, 2019 in the Scientific Reports explains the ascent of magma inside Mt Etna.
The work, carried out by scientists from INGV and the National Institute of Oceanography and Experimental Geophysics (OGS) has determined the conditions that allow magma to reach the surface.
Mt Etna is in a zone of strike-slip faults. Thanks to the seismic, gravimetric and magnetic data, the researchers were able to obtain images allowing to « see » the areas where the faults are located and how they are organized. At least 500,000 years ago, tectonic activity in a large fault zone in the southern part of the volcano (between Acireale and the Adrano area) resulted in the formation of « open » areas in the Earth’s crust which were the preferred pathways chosen by magma to exit through eruptive fissures scattered along the fault line. These fissures, identified between Aci Trezza and Adrano, characterized the first phases of activity of Mt Etna.
The continuous deformation along the same fault zone and even further north, as well as their mutual interaction, « have resulted in the migration of magma eruptive zones and the sudden closure of previously active eruptive ducts ». This accounts for the migration process of the southern slope volcanism (active from at least 500 000 to about 200 000 years ago) to the Valle del Bove region (between 100 000 and 70 000 years) and to the current eruptive centres (from 60,000 years ago to today). The deformation induced by the faults on the substrate on which the volcano rests has also influenced the sliding of the eastern flank of Mt Etna, which is characterized by a high seismicity, as evidenced by the earthquake of December 2018.
You will find the entire study at:
https://www.nature.com/articles/s41598-019-48550-1

Schémas illustrant l’évolution du volcanisme de l’Etna dans l’espace et dans le temps, en relation avec les systèmes de failles (Source : Scientific Reports)

Lombok (Indonésie) : Une tectonique complexe// Complex tectonics

Plusieurs puissants séismes ont secoué l’île indonésienne de Lombok au cours des dernières semaines. Un premier séisme d’une magnitude de M,6,4 a été enregistré le 29 juillet 2018 ; il a tué 13 personnes et en a blessé une centaine d’autres. Le séisme suivant – M 6,9 sur l’échelle de Richter le 5 août 2018 – a fait au moins 98 morts et des centaines de blessés. Des milliers de bâtiments ont été endommagés et les opérations de secours ont été compliquées par des pannes de courant, un manque de réception téléphonique dans certaines zones et des options d’évacuation limitées.
Les séismes sont fréquents en Indonésie car le pays est situé sur la Ceinture de Feu du Pacifique, bien connue pour son activité sismique et volcanique. La majorité des grands séismes se produisent sur ou près des limites entre les plaques tectoniques qui composent la surface de la Terre, et les exemples récents ne font pas exception. Cependant, il existe des conditions tectoniques particulières autour de l’île de Lombok.
Les derniers séismes ont été observés le long d’une zone assez spéciale où la plaque tectonique australienne commence à passer par-dessus la plaque où se trouve l’île de Lombok. Elle ne glisse pas en dessous de sa voisine – processus de subduction très fréquent – comme cela se produit plus au sud de Lombok. (voir carte ci-dessous)
Certains des séismes qui secouent l’Indonésie peuvent être très violents, comme le séisme de M 9,1 sur la côte ouest de Sumatra qui a déclenché le tsunami de 2004 dans l’Océan Indien. Ce séisme s’est produit le long de la zone de subduction Java-Sumatra, là où la plaque australienne plonge sous la plaque de la Sonde.
À l’est de Java, la zone de subduction se trouve « bloquée » par la croûte continentale australienne, beaucoup plus épaisse que la croûte océanique qui glisse sous Java et Sumatra. Comme la croûte continentale australienne ne parvient pas à passer sous la plaque de la Sonde, elle lui passe par-dessus. Ce processus est connu sous le nom de poussée d’arrière-arc.
Les données des récents séismes de Lombok suggèrent qu’ils sont liés à cette zone d’arrière-arc qui s’étend au nord des îles s’étendant de l’est de Java à l’île de Wetar, juste au nord du Timor. Historiquement, de puissants séismes se sont également produits le long de cette poussée d’arrière-arc près de Lombok, en particulier au 19ème siècle, mais aussi plus récemment.
Les épicentres des derniers tremblements de terre à Lombok ont été localisés dans le nord de l’île, sous terre, et à faible profondeur. Les séismes terrestres peuvent parfois provoquer des glissements de terrain sous-marins et un tsunami. Lorsque des séismes peu profonds rompent le plancher océanique, ils peuvent déclencher des tsunamis meurtriers.
La région autour de Lombok a une histoire de tsunamis. En 1992, un séisme de magnitude 7,9 s’est produit au nord de l’île de Flores ; il a provoqué un tsunami qui a englouti plus de 2 000 villages côtiers. Les séismes du 19ème siècle dans cette région ont également causé de puissants tsunamis qui ont tué de nombreuses personnes.
Malheureusement, on ne sait pas prévoir les séismes. Une compréhension des dangers et une éducation des populations sont donc essentielles pour se préparer aux événements futurs.
Source: The Conversation, USGS.

Le bilan du dernier séisme est de 131 morts (164 selon les dernières chiffres de la presse indonésienne), 1477 blessés et 156 000 personnes déplacées.

————————————————-

Several large earthquakes have struck the Indonesian island of Lombok in the past weeks. A first quake with a magnitude of M 6.4 was recorded on July 29th, 2018, killing13 people and injuring a hundred more. The largest event – M 6.9 on the Richter scale on August 5th, 2018 – killed at least 98 people and injured hundreds. Thousands of buildings were damaged and rescue efforts were hampered by power outages, a lack of phone reception in some areas and limited evacuation options.

Earthquakes are frequent in Indonesia as the country is located on the Pacific Ring of Fire, well known for its seismic and volcanic activity. The majority of large earthquakes occur on or near Earth’s tectonic plate boundaries, and the recent examples are no exception. However, there are some special tectonic conditions around Lombok.

The recent earthquakes have occurred along a specific zone where the Australian tectonic plate is starting to move over the Indonesian island plate; it does not slide underneath it, as occurs further to the south of Lombok. (see map below)

Some of the earthquakes that shake Indonesia can be very powerful, such as the M 9.1 quake off the west coast of Sumatra that generated the 2004 Indian Ocean tsunami. This earthquake occurred along the Java-Sumatra subduction zone, where the Australian tectonic plate plunges underneath Indonesia’s Sunda plate.

To the east of Java, the subduction zone has become “jammed” by the Australian continental crust, which is much thicker than the oceanic crust that moves beneath Java and Sumatra. The Australian continental crust can’t be pushed under the Sunda plate, so instead it is starting to ride over the top of it. This process is known as back-arc thrusting.

The data from the recent Lombok earthquakes suggest they are associated with this back-arc zone which extends north of islands stretching from eastern Java to the island of Wetar, just north of Timor. Historically, large earthquakes have also occurred along this back-arc thrust near Lombok, particularly in the 19th century but also more recently.

Lombok’s recent earthquakes occurred in northern Lombok under land, and were quite shallow. Earthquakes on land can sometimes cause undersea landslides and generate a tsunami wave. But when shallow earthquakes rupture the sea floor, much larger and more dangerous tsunamis can occur.

The region around Lombok has a history of tsunamis. In 1992, an M 7.9 earthquake occurred just north of the island of Flores and generated a tsunami that swept away coastal villages, killing more than 2,000. 19th century earthquakes in this region also caused large tsunamis that killed many people.

Unfortunately, earthquakes cannot be predicted, so an understanding of the hazards and an education of the populations are vital to be prepared for future events.

Source: The Conversation, USGS.

According to the latest figures, 131 persons were killed (164 according to the latest figures in the Indonesian newspapers), 1477 injured and 156,000 displaced by the last earthquake.

Source: The Conversation

Le point chaud hawaiien s’est-il déplacé dans le passé ? // Did the Hawaiian hotspot move in the past ?

De nos jours, Hawaï est considéré comme un exemple parfait de « point chaud ». Cette expression fait référence à l’ascension du magma en provenance du manteau profond qui, tel un chalumeau, perce la croûte terrestre et donne naissance à des volcans. On pense que ces « hotspots » sont immobiles. Au fur et à mesure que la plaque tectonique se déplace, un chapelet de volcans se forme, avec le plus jeune à une extrémité et le plus ancien à l’autre, comme on peut le voir à Hawaii aujourd’hui : Le plus jeune volcan – Lo’ihi – se trouve encore sous la surface de l’océan au SE de Big Island, tandis que les anciens volcans sont devenus des atolls au nord-ouest de l’archipel.
Cette même théorie a été proposée dès le début de l’étude des îles hawaïennes. Les scientifiques pensaient qu’elles étaient l’extrémité la plus jeune de la chaîne sous-marine Hawaii-Empereur qui se trouve sous le Pacifique Nord-Ouest. Les chercheurs ont ensuite eu un doute et se sont demandés si les points chauds étaient vraiment immobiles. La cause de ce doute était un virage d’environ 60 degrés amorcé par cette chaîne volcanique née il y a 47 millions d’années. Cette courbe de trajectoire pouvait s’expliquer par un changement brusque du mouvement de la plaque Pacifique, mais cela supposait que cette plaque ait pris une direction sensiblement différente par rapport aux plaques tectoniques adjacentes. Les chercheurs n’ont trouvé aucune preuve de ce phénomène.

Des études récentes ont suggéré que deux processus ont pu entrer en jeu: D’une part, la plaque Pacifique avait changé de direction. D’autre part, le point chaud hawaïen s’était déplacé relativement rapidement vers le sud au cours de la période de 60 à environ 50 millions d’années, puis il s’était arrêté. Si on prend en compte ce mouvement rapide du point chaud, cela signifie qu’une toute petite variation de déplacement de la plaque du Pacifique est suffisante pour expliquer la chaîne volcanique.
Cette hypothèse est maintenant étayée par les travaux de chercheurs de l’Oregon State University qui ont procédé à une nouvelle datation des volcans de la chaîne volcanique de Rurutu, y compris les îles volcaniques de Tuvalu dans le Pacifique occidental. En outre, ils ont incorporé des données similaires de la chaîne Hawaii-Empereur et de la chaîne Louisville dans le Pacifique Sud. En se basant sur la géographie et l’âge des volcans présents dans ces trois chaînes, les chercheurs ont pu étudier le passé géologique et observer comment les trois points chauds se sont déplacés les uns par rapport aux autres pendant des millions d’années.
Les résultats, publiées dans la revue Nature Communications, montrent que le mouvement relatif des points chauds sous Rurutu et Louisville est peu important, alors que le point chaud Hawaii-Empereur affiche un mouvement important entre 60 et 48 millions d’années par rapport aux deux autres points chauds. La modélisation géodynamique montre que le point chaud hawaiien s’est déplacé sur plusieurs dizaines de kilomètres par million d’années, et les données paléomagnétiques confirment cette interprétation. Les chercheurs admettent que les modèles définissant le mouvement de la plaque Pacifique et les points chauds qui s’y trouvent présentent encore quelques inexactitudes. Avec davantage de données de terrain et d’informations sur les processus profonds dans le manteau, ils espèrent expliquer plus en détail l’évolution de la courbe amorcée par la chaîne Hawaii-Empereur.
Sources: GFZ GeoForschungsZentrum Potsdam, Centre Helmholtz; Science Daily.

—————————————

Today, Hawaii is considered as the perfect example of a hotspot. The word refers to the ascent of magma from the deep mantle to the surface. Like a blowpipe, this magma burns through the Earth’s crust and forms volcanoes. For a long time, it was assumed that these hotspots were stationary. If the tectonic plate moves across it, a chain of volcanoes evolves, with the youngest volcano at one end, the oldest at the other, as can be seen in Hawaii today, with the youngest volcano – Lo’ihi – still underwater to the SE of Big Island and the ancient volcanoes now turned into atolls to the NW of the archipelago.

This concept had initially ben proposed for the Hawaiian Islands. They are the youngest end of the Hawaiian-Emperor chain that lies beneath the Northwest Pacific. But soon there was doubt over whether hotspots are truly stationary. The biggest contradiction was a striking bend of about 60 degrees in this volcanic chain, which originated 47 million years ago. If the bend was explained with just a sudden change in the movement of the Pacific Plate, this would suppose a significantly different direction of motion at that time relative to adjacent tectonic plates. However, researchers have not found any evidence for that.

Recent studies have suggested that apparently two processes were effective: On the one hand, the Pacific Plate has changed its direction of motion. On the other hand, the Hawaiian hotspot moved relatively quickly southward in the period from 60 to about 50 million years ago, and then stopped. If this hotspot motion is considered, only a smaller change of Pacific plate motions is needed to explain the volcano chain.

This hypothesis is now supported by work of researchers from Oregon State University who have evaluated new rock dating of volcanoes in the Rurutu volcanic chain, including, for example, the Tuvalu volcanic islands in the Western Pacific. Furthermore, they added similar data from the Hawaiian-Emperor chain and the Louisville chain in the Southern Pacific. Based on the geography and the age of volcanoes in these three chains, researchers could look into the geological past and see how the three hotspots moved relative to each other over millions of years.

The new data published in the journal Nature Communications shows that the relative motion of hotspots under the Rurutu and Louisville is small while the Hawaiian-Emperor hotspot displays strong motion between 60 and 48 million years ago relative to the other two hotspots. The geodynamic modelling shows that the Hawaiian hotspot moved at a rate of several tens of kilometres per million years, and paleomagnetic data support this interpretation. The researchers admit that models for the motion of the Pacific Plate and the hotspots therein still have some inaccuracies. With more field data and information about the processes deep in the mantle, they hope to explain in more detail how the bend in the Hawaiian-Emperor chain has evolved.

Sources: GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre ; Science Daily.

(Source: Wikipedia)

(Photos: C. Grandpey)

 

Découverte d’une nouvelle microplaque au large de l’Equateur // Discovery of a new microplate off Ecuador

Des scientifiques de l’Université Rice (Texas) viennent de découvrir une nouvelle microplaque tectonique au large des côtes de l’Equateur. Elle vient s’ajouter à ses compagnes qui forment un puzzle à la surface de la Terre.

Les chercheurs ont découvert la microplaque, qu’ils ont baptisée «Malpelo», en analysant le point de convergence de trois autres plaques dans l’Océan Pacifique oriental. La plaque de Malpelo est la 57ème plaque découverte et la première depuis près d’une décennie. Les chercheurs sont certains qu’il en existe d’autres.
L’étude, publiée dans la revue Geophysical Research Letters, explique comment les géologues ont découvert cette nouvelle plaque. Ils ont observé attentivement les mouvements d’autres plaques et leur évolution les unes par rapport aux autres, en sachant que les plaques se déplacent à une vitesse de quelques millimètres ou quelques centimètres par an.
La plaque lithosphérique du Pacifique – qui définit grosso modo la Ceinture de Feu du Pacifique – est l’une des 10 plaques tectoniques majeures qui se déplacent au-dessus du manteau terrestre. Il y a beaucoup de petites plaques qui viennent combler les vides entre les plus grandes, et la plaque Pacifique entre en contact avec deux de ces plus petites plaques, celle des Cocos et celle de Nazca, à l’ouest des îles Galapagos.
Pour comprendre le mode de déplacement des plaques, on étudie leurs circuits de mouvements, ce qui permet de quantifier comment la vitesse de rotation de chaque objet dans un groupe (sa vitesse angulaire) affecte tous les autres. La vitesse d’expansion des fonds océaniques, déterminée à partir des anomalies magnétiques marines, combinée avec les angles auxquels les plaques glissent les unes contre les autres au fil du temps, indique aux scientifiques la vitesse de rotation des plaques. Lorsque l’on additionne les vitesses angulaires de ces trois plaques, elles doivent être égales à zéro. Dans le cas présent, la vitesse n’est pas égale à zéro. Elle équivaut à 15 millimètres par an, ce qui est énorme.
Cela signifie que le circuit tectonique Pacific-Cocos-Nazca présente une anomalie et qu’au moins une autre plaque à proximité doit compenser la différence. Les chercheurs se sont appuyés sur une base de données de la Columbia University, réalisée précédemment avec des sonars à faisceaux multiples à l’ouest de l’Équateur et de la Colombie, pour identifier une limite de plaque alors inconnue entre les îles Galapagos et la côte. Les chercheurs qui avaient effectué cette étude avaient supposé que la majeure partie de la région située à l’est de la faille transformante de Panama faisait partie de la plaque de Nazca, mais leurs homologues de la Rice University ont conclu qu’elle se déplace de manière indépendante.
Les preuves de la présence de la plaque de Malpelo ont été confirmées par l’identification par les chercheurs d’une limite de plaque diffuse entre la faille transformante de Panama et l’endroit où la limite de la plaque diffuse coupe une profonde fosse océanique au large de l’Équateur et de la Colombie. (Une limite diffuse consiste en une série de nombreuses petites failles au lieu d’une dorsale ou d’une faille transformante qui définit nettement la limite entre deux plaques.)
Malgré tout, même en prenant en compte la microplaque de Malpelo, le nouveau circuit ne se referme toujours pas à zéro mais seulement à 10 ou 11 millimètres par an, et le rétrécissement de la plaque Pacifique ne suffit pas à expliquer la différence. Les chercheurs pensent qu’il y a une autre plaque – la Plaque 58 – qui manque à l’appel. Affaire à suivre.
Source: Rice University (Texas).

————————————

A microplate discovered off the west coast of Ecuador by Rice University scientists adds another piece to Earth’s tectonic puzzle. The researchers discovered the microplate, which they have named “Malpelo,” while analyzing the junction of three other plates in the eastern Pacific Ocean. The Malpelo Plate is the 57th plate to be discovered and the first in nearly a decade. The researchers are sure there are more to be found.

The research, published in Geophysical Research Letters, explains how the geologist discovered the new plate. They carefully studied the movements of other plates and their evolving relationships to one another as the plates move at a rate of millimetres to centimetres per year.

The Pacific lithospheric plate that roughly defines the volcanic Ring of Fire is one of about 10 major rigid tectonic plates that move atop Earth’s mantle. There are many small plates that fill the gaps between the big ones, and the Pacific Plate meets two of those smaller plates, the Cocos and Nazca, west of the Galapagos Islands.

One way to judge how plates move is to study plate-motion circuits, which quantify how the rotation speed of each object in a group (its angular velocity) affects all the others. Rates of seafloor spreading determined from marine magnetic anomalies combined with the angles at which the plates slide by each other over time tells scientists how fast the plates are turning. When you add up the angular velocities of these three plates, they ought to sum to zero. In this case, the velocity doesn’t sum to zero at all. It sums to 15 millimetres a year, which is huge.

That made the Pacific-Cocos-Nazca circuit a misfit, which meant at least one other plate in the vicinity had to make up the difference.  Knowing the numbers were amiss, the researchers drew upon a Columbia University database of extensive multibeam sonar soundings west of Ecuador and Colombia to identify a previously unknown plate boundary between the Galapagos Islands and the coast. Previous researchers had assumed most of the region east of the known Panama transform fault was part of the Nazca plate, but the Rice researchers determined it moves independently.

Evidence for the Malpelo plate came with the researchers’ identification of a diffuse plate boundary that runs from the Panama Transform Fault eastward to where the diffuse plate boundary intersects a deep oceanic trench just offshore of Ecuador and Colombia. A diffuse boundary is best described as a series of many small, hard-to-spot faults rather than a ridge or transform fault that sharply defines the boundary of two plates.

With the Malpelo accounted for, the new circuit still doesn’t close to zero and the shrinking Pacific Plate is not enough to account for the difference. The nonclosure around this triple junction does not go down to zero, but only to 10 or 11 millimetres a year. The researchers need to understand where the rest of that velocity is going. They think there is another plate – Plate 58 – they are missing.

Source : Rice University (Texas).

Source: Rice University

La tectonique italienne et le dernier séisme // Italian tectonics and the latest earthquake

drapeau-francaisDans la région du centre de l’Italie qui vient d’être secouée puissant séisme, les secousses sismiques sont relativement fréquentes. L’Italie dans son ensemble connaît de nombreux séismes peu profonds, répartis principalement le long de la chaîne des Apennins qui longe la côte nord-est du pays. Généralement, ces séismes ne sont pas très forts, avec une magnitude maximale de M 5, mais neuf événements de M 6 ou plus ont été enregistrés au cours du siècle écoulé. Cette activité sismique est le résultat de la situation de l’Italie qui se trouve au cœur même de la lente collision entre les plaques eurasienne et africaine qui a, entre autres, contribué au soulèvement des Alpes.
Il est donc assez surprenant de constater que le mécanisme qui régit les tremblements de terre dans le centre de l’Italie présente les caractéristiques des séismes d’extension – produits par un étirement de la croûte terrestre – et non de compression, comme on pourrait s’y attendre. L’extension se fait dans la direction nord-ouest / sud-est, en angle droit par rapport à la chaîne des Apennins.
Le phénomène s’explique en étudiant l’histoire tectonique de la Méditerranée occidentale. Plutôt que de faire partie des derniers vestiges d’un grand océan qui aurait été en grande partie détruit par la subduction entre la plaque africaine et la plaque eurasienne, la croûte océanique de la région s’est formée par une accrétion d’arrière-arc au cours des 40 derniers millions d’années, alors que la zone de collision migrait vers le sud et s’éloignait de l’Europe, provoquant un étirement la croûte dans la plaque supérieure.

Ainsi, bien que dans un vaste contexte régional on ait une collision entre deux plaques, à un niveau plus local, l’accrétion d’arrière-arc actuelle dans la mer Tyrrhénienne au sud-ouest semble être un important moteur de la tectonique en Italie, dans la mesure où les failles de chevauchement qui ont façonné les Apennins se trouvent maintenant réactivées sous forme de failles extensives normales. Malheureusement, cette évolution tectonique ne rend pas les séismes moins dévastateurs quand ils se produisent.

————————————-

drapeau-anglaisEarthquakes in the region where the latest deadly event occurred are not unusual. Italy experiences frequent shallow earthquakes, mainly distributed along the Apennine mountain range that runs along the northeast coast. Typically these earthquakes are smaller, with an M 5 at most, but nine with a magnitude 6 or greater have occurred in the last hundred years or so. All this activity is the result of Italy being right in the thick of the slow collision between the African and Eurasian plates that has, amongst others, resulted in the uplift of the Alps.

It is therefore quite surprising to see that the focal mechanism for the earthquakes in central Italy is characteristic of an extensional earthquake, due to stretching of the earth’s crust, not a compressional one. The extension is oriented in a northeast-southwest direction, at right angles to the Apennine range:

This can be explained by looking at the tectonic history of the western Mediterranean. Rather than being the last remnants of a large ocean that has been mostly destroyed by subduction as Africa and Europe move together, the oceanic crust here has actually all been created by back-arc spreading in the last 40 million years or so, as the collision zone has migrated south and east away from Europe, stretching out the crust in the over-riding plate as it does so.

So although at a broad regional scale two plates are colliding, at a more local level the current back-arc spreading in the Tyrrhenian Sea to the southwest appears to be a major driver of tectonics in Italy, to the extent that thrust faults that built up the Apennines are now being reactivated as extensional normal faults. Unfortunately, this switch doesn’t make the earthquakes themselves any less damaging when they do occur.

Seismes italie

Source: IPG.