Lombok (Indonésie) : Une tectonique complexe// Complex tectonics

Plusieurs puissants séismes ont secoué l’île indonésienne de Lombok au cours des dernières semaines. Un premier séisme d’une magnitude de M,6,4 a été enregistré le 29 juillet 2018 ; il a tué 13 personnes et en a blessé une centaine d’autres. Le séisme suivant – M 6,9 sur l’échelle de Richter le 5 août 2018 – a fait au moins 98 morts et des centaines de blessés. Des milliers de bâtiments ont été endommagés et les opérations de secours ont été compliquées par des pannes de courant, un manque de réception téléphonique dans certaines zones et des options d’évacuation limitées.
Les séismes sont fréquents en Indonésie car le pays est situé sur la Ceinture de Feu du Pacifique, bien connue pour son activité sismique et volcanique. La majorité des grands séismes se produisent sur ou près des limites entre les plaques tectoniques qui composent la surface de la Terre, et les exemples récents ne font pas exception. Cependant, il existe des conditions tectoniques particulières autour de l’île de Lombok.
Les derniers séismes ont été observés le long d’une zone assez spéciale où la plaque tectonique australienne commence à passer par-dessus la plaque où se trouve l’île de Lombok. Elle ne glisse pas en dessous de sa voisine – processus de subduction très fréquent – comme cela se produit plus au sud de Lombok. (voir carte ci-dessous)
Certains des séismes qui secouent l’Indonésie peuvent être très violents, comme le séisme de M 9,1 sur la côte ouest de Sumatra qui a déclenché le tsunami de 2004 dans l’Océan Indien. Ce séisme s’est produit le long de la zone de subduction Java-Sumatra, là où la plaque australienne plonge sous la plaque de la Sonde.
À l’est de Java, la zone de subduction se trouve « bloquée » par la croûte continentale australienne, beaucoup plus épaisse que la croûte océanique qui glisse sous Java et Sumatra. Comme la croûte continentale australienne ne parvient pas à passer sous la plaque de la Sonde, elle lui passe par-dessus. Ce processus est connu sous le nom de poussée d’arrière-arc.
Les données des récents séismes de Lombok suggèrent qu’ils sont liés à cette zone d’arrière-arc qui s’étend au nord des îles s’étendant de l’est de Java à l’île de Wetar, juste au nord du Timor. Historiquement, de puissants séismes se sont également produits le long de cette poussée d’arrière-arc près de Lombok, en particulier au 19ème siècle, mais aussi plus récemment.
Les épicentres des derniers tremblements de terre à Lombok ont été localisés dans le nord de l’île, sous terre, et à faible profondeur. Les séismes terrestres peuvent parfois provoquer des glissements de terrain sous-marins et un tsunami. Lorsque des séismes peu profonds rompent le plancher océanique, ils peuvent déclencher des tsunamis meurtriers.
La région autour de Lombok a une histoire de tsunamis. En 1992, un séisme de magnitude 7,9 s’est produit au nord de l’île de Flores ; il a provoqué un tsunami qui a englouti plus de 2 000 villages côtiers. Les séismes du 19ème siècle dans cette région ont également causé de puissants tsunamis qui ont tué de nombreuses personnes.
Malheureusement, on ne sait pas prévoir les séismes. Une compréhension des dangers et une éducation des populations sont donc essentielles pour se préparer aux événements futurs.
Source: The Conversation, USGS.

Le bilan du dernier séisme est de 131 morts (164 selon les dernières chiffres de la presse indonésienne), 1477 blessés et 156 000 personnes déplacées.

————————————————-

Several large earthquakes have struck the Indonesian island of Lombok in the past weeks. A first quake with a magnitude of M 6.4 was recorded on July 29th, 2018, killing13 people and injuring a hundred more. The largest event – M 6.9 on the Richter scale on August 5th, 2018 – killed at least 98 people and injured hundreds. Thousands of buildings were damaged and rescue efforts were hampered by power outages, a lack of phone reception in some areas and limited evacuation options.

Earthquakes are frequent in Indonesia as the country is located on the Pacific Ring of Fire, well known for its seismic and volcanic activity. The majority of large earthquakes occur on or near Earth’s tectonic plate boundaries, and the recent examples are no exception. However, there are some special tectonic conditions around Lombok.

The recent earthquakes have occurred along a specific zone where the Australian tectonic plate is starting to move over the Indonesian island plate; it does not slide underneath it, as occurs further to the south of Lombok. (see map below)

Some of the earthquakes that shake Indonesia can be very powerful, such as the M 9.1 quake off the west coast of Sumatra that generated the 2004 Indian Ocean tsunami. This earthquake occurred along the Java-Sumatra subduction zone, where the Australian tectonic plate plunges underneath Indonesia’s Sunda plate.

To the east of Java, the subduction zone has become “jammed” by the Australian continental crust, which is much thicker than the oceanic crust that moves beneath Java and Sumatra. The Australian continental crust can’t be pushed under the Sunda plate, so instead it is starting to ride over the top of it. This process is known as back-arc thrusting.

The data from the recent Lombok earthquakes suggest they are associated with this back-arc zone which extends north of islands stretching from eastern Java to the island of Wetar, just north of Timor. Historically, large earthquakes have also occurred along this back-arc thrust near Lombok, particularly in the 19th century but also more recently.

Lombok’s recent earthquakes occurred in northern Lombok under land, and were quite shallow. Earthquakes on land can sometimes cause undersea landslides and generate a tsunami wave. But when shallow earthquakes rupture the sea floor, much larger and more dangerous tsunamis can occur.

The region around Lombok has a history of tsunamis. In 1992, an M 7.9 earthquake occurred just north of the island of Flores and generated a tsunami that swept away coastal villages, killing more than 2,000. 19th century earthquakes in this region also caused large tsunamis that killed many people.

Unfortunately, earthquakes cannot be predicted, so an understanding of the hazards and an education of the populations are vital to be prepared for future events.

Source: The Conversation, USGS.

According to the latest figures, 131 persons were killed (164 according to the latest figures in the Indonesian newspapers), 1477 injured and 156,000 displaced by the last earthquake.

Source: The Conversation

Le point chaud hawaiien s’est-il déplacé dans le passé ? // Did the Hawaiian hotspot move in the past ?

De nos jours, Hawaï est considéré comme un exemple parfait de « point chaud ». Cette expression fait référence à l’ascension du magma en provenance du manteau profond qui, tel un chalumeau, perce la croûte terrestre et donne naissance à des volcans. On pense que ces « hotspots » sont immobiles. Au fur et à mesure que la plaque tectonique se déplace, un chapelet de volcans se forme, avec le plus jeune à une extrémité et le plus ancien à l’autre, comme on peut le voir à Hawaii aujourd’hui : Le plus jeune volcan – Lo’ihi – se trouve encore sous la surface de l’océan au SE de Big Island, tandis que les anciens volcans sont devenus des atolls au nord-ouest de l’archipel.
Cette même théorie a été proposée dès le début de l’étude des îles hawaïennes. Les scientifiques pensaient qu’elles étaient l’extrémité la plus jeune de la chaîne sous-marine Hawaii-Empereur qui se trouve sous le Pacifique Nord-Ouest. Les chercheurs ont ensuite eu un doute et se sont demandés si les points chauds étaient vraiment immobiles. La cause de ce doute était un virage d’environ 60 degrés amorcé par cette chaîne volcanique née il y a 47 millions d’années. Cette courbe de trajectoire pouvait s’expliquer par un changement brusque du mouvement de la plaque Pacifique, mais cela supposait que cette plaque ait pris une direction sensiblement différente par rapport aux plaques tectoniques adjacentes. Les chercheurs n’ont trouvé aucune preuve de ce phénomène.

Des études récentes ont suggéré que deux processus ont pu entrer en jeu: D’une part, la plaque Pacifique avait changé de direction. D’autre part, le point chaud hawaïen s’était déplacé relativement rapidement vers le sud au cours de la période de 60 à environ 50 millions d’années, puis il s’était arrêté. Si on prend en compte ce mouvement rapide du point chaud, cela signifie qu’une toute petite variation de déplacement de la plaque du Pacifique est suffisante pour expliquer la chaîne volcanique.
Cette hypothèse est maintenant étayée par les travaux de chercheurs de l’Oregon State University qui ont procédé à une nouvelle datation des volcans de la chaîne volcanique de Rurutu, y compris les îles volcaniques de Tuvalu dans le Pacifique occidental. En outre, ils ont incorporé des données similaires de la chaîne Hawaii-Empereur et de la chaîne Louisville dans le Pacifique Sud. En se basant sur la géographie et l’âge des volcans présents dans ces trois chaînes, les chercheurs ont pu étudier le passé géologique et observer comment les trois points chauds se sont déplacés les uns par rapport aux autres pendant des millions d’années.
Les résultats, publiées dans la revue Nature Communications, montrent que le mouvement relatif des points chauds sous Rurutu et Louisville est peu important, alors que le point chaud Hawaii-Empereur affiche un mouvement important entre 60 et 48 millions d’années par rapport aux deux autres points chauds. La modélisation géodynamique montre que le point chaud hawaiien s’est déplacé sur plusieurs dizaines de kilomètres par million d’années, et les données paléomagnétiques confirment cette interprétation. Les chercheurs admettent que les modèles définissant le mouvement de la plaque Pacifique et les points chauds qui s’y trouvent présentent encore quelques inexactitudes. Avec davantage de données de terrain et d’informations sur les processus profonds dans le manteau, ils espèrent expliquer plus en détail l’évolution de la courbe amorcée par la chaîne Hawaii-Empereur.
Sources: GFZ GeoForschungsZentrum Potsdam, Centre Helmholtz; Science Daily.

—————————————

Today, Hawaii is considered as the perfect example of a hotspot. The word refers to the ascent of magma from the deep mantle to the surface. Like a blowpipe, this magma burns through the Earth’s crust and forms volcanoes. For a long time, it was assumed that these hotspots were stationary. If the tectonic plate moves across it, a chain of volcanoes evolves, with the youngest volcano at one end, the oldest at the other, as can be seen in Hawaii today, with the youngest volcano – Lo’ihi – still underwater to the SE of Big Island and the ancient volcanoes now turned into atolls to the NW of the archipelago.

This concept had initially ben proposed for the Hawaiian Islands. They are the youngest end of the Hawaiian-Emperor chain that lies beneath the Northwest Pacific. But soon there was doubt over whether hotspots are truly stationary. The biggest contradiction was a striking bend of about 60 degrees in this volcanic chain, which originated 47 million years ago. If the bend was explained with just a sudden change in the movement of the Pacific Plate, this would suppose a significantly different direction of motion at that time relative to adjacent tectonic plates. However, researchers have not found any evidence for that.

Recent studies have suggested that apparently two processes were effective: On the one hand, the Pacific Plate has changed its direction of motion. On the other hand, the Hawaiian hotspot moved relatively quickly southward in the period from 60 to about 50 million years ago, and then stopped. If this hotspot motion is considered, only a smaller change of Pacific plate motions is needed to explain the volcano chain.

This hypothesis is now supported by work of researchers from Oregon State University who have evaluated new rock dating of volcanoes in the Rurutu volcanic chain, including, for example, the Tuvalu volcanic islands in the Western Pacific. Furthermore, they added similar data from the Hawaiian-Emperor chain and the Louisville chain in the Southern Pacific. Based on the geography and the age of volcanoes in these three chains, researchers could look into the geological past and see how the three hotspots moved relative to each other over millions of years.

The new data published in the journal Nature Communications shows that the relative motion of hotspots under the Rurutu and Louisville is small while the Hawaiian-Emperor hotspot displays strong motion between 60 and 48 million years ago relative to the other two hotspots. The geodynamic modelling shows that the Hawaiian hotspot moved at a rate of several tens of kilometres per million years, and paleomagnetic data support this interpretation. The researchers admit that models for the motion of the Pacific Plate and the hotspots therein still have some inaccuracies. With more field data and information about the processes deep in the mantle, they hope to explain in more detail how the bend in the Hawaiian-Emperor chain has evolved.

Sources: GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre ; Science Daily.

(Source: Wikipedia)

(Photos: C. Grandpey)

 

Découverte d’une nouvelle microplaque au large de l’Equateur // Discovery of a new microplate off Ecuador

Des scientifiques de l’Université Rice (Texas) viennent de découvrir une nouvelle microplaque tectonique au large des côtes de l’Equateur. Elle vient s’ajouter à ses compagnes qui forment un puzzle à la surface de la Terre.

Les chercheurs ont découvert la microplaque, qu’ils ont baptisée «Malpelo», en analysant le point de convergence de trois autres plaques dans l’Océan Pacifique oriental. La plaque de Malpelo est la 57ème plaque découverte et la première depuis près d’une décennie. Les chercheurs sont certains qu’il en existe d’autres.
L’étude, publiée dans la revue Geophysical Research Letters, explique comment les géologues ont découvert cette nouvelle plaque. Ils ont observé attentivement les mouvements d’autres plaques et leur évolution les unes par rapport aux autres, en sachant que les plaques se déplacent à une vitesse de quelques millimètres ou quelques centimètres par an.
La plaque lithosphérique du Pacifique – qui définit grosso modo la Ceinture de Feu du Pacifique – est l’une des 10 plaques tectoniques majeures qui se déplacent au-dessus du manteau terrestre. Il y a beaucoup de petites plaques qui viennent combler les vides entre les plus grandes, et la plaque Pacifique entre en contact avec deux de ces plus petites plaques, celle des Cocos et celle de Nazca, à l’ouest des îles Galapagos.
Pour comprendre le mode de déplacement des plaques, on étudie leurs circuits de mouvements, ce qui permet de quantifier comment la vitesse de rotation de chaque objet dans un groupe (sa vitesse angulaire) affecte tous les autres. La vitesse d’expansion des fonds océaniques, déterminée à partir des anomalies magnétiques marines, combinée avec les angles auxquels les plaques glissent les unes contre les autres au fil du temps, indique aux scientifiques la vitesse de rotation des plaques. Lorsque l’on additionne les vitesses angulaires de ces trois plaques, elles doivent être égales à zéro. Dans le cas présent, la vitesse n’est pas égale à zéro. Elle équivaut à 15 millimètres par an, ce qui est énorme.
Cela signifie que le circuit tectonique Pacific-Cocos-Nazca présente une anomalie et qu’au moins une autre plaque à proximité doit compenser la différence. Les chercheurs se sont appuyés sur une base de données de la Columbia University, réalisée précédemment avec des sonars à faisceaux multiples à l’ouest de l’Équateur et de la Colombie, pour identifier une limite de plaque alors inconnue entre les îles Galapagos et la côte. Les chercheurs qui avaient effectué cette étude avaient supposé que la majeure partie de la région située à l’est de la faille transformante de Panama faisait partie de la plaque de Nazca, mais leurs homologues de la Rice University ont conclu qu’elle se déplace de manière indépendante.
Les preuves de la présence de la plaque de Malpelo ont été confirmées par l’identification par les chercheurs d’une limite de plaque diffuse entre la faille transformante de Panama et l’endroit où la limite de la plaque diffuse coupe une profonde fosse océanique au large de l’Équateur et de la Colombie. (Une limite diffuse consiste en une série de nombreuses petites failles au lieu d’une dorsale ou d’une faille transformante qui définit nettement la limite entre deux plaques.)
Malgré tout, même en prenant en compte la microplaque de Malpelo, le nouveau circuit ne se referme toujours pas à zéro mais seulement à 10 ou 11 millimètres par an, et le rétrécissement de la plaque Pacifique ne suffit pas à expliquer la différence. Les chercheurs pensent qu’il y a une autre plaque – la Plaque 58 – qui manque à l’appel. Affaire à suivre.
Source: Rice University (Texas).

————————————

A microplate discovered off the west coast of Ecuador by Rice University scientists adds another piece to Earth’s tectonic puzzle. The researchers discovered the microplate, which they have named “Malpelo,” while analyzing the junction of three other plates in the eastern Pacific Ocean. The Malpelo Plate is the 57th plate to be discovered and the first in nearly a decade. The researchers are sure there are more to be found.

The research, published in Geophysical Research Letters, explains how the geologist discovered the new plate. They carefully studied the movements of other plates and their evolving relationships to one another as the plates move at a rate of millimetres to centimetres per year.

The Pacific lithospheric plate that roughly defines the volcanic Ring of Fire is one of about 10 major rigid tectonic plates that move atop Earth’s mantle. There are many small plates that fill the gaps between the big ones, and the Pacific Plate meets two of those smaller plates, the Cocos and Nazca, west of the Galapagos Islands.

One way to judge how plates move is to study plate-motion circuits, which quantify how the rotation speed of each object in a group (its angular velocity) affects all the others. Rates of seafloor spreading determined from marine magnetic anomalies combined with the angles at which the plates slide by each other over time tells scientists how fast the plates are turning. When you add up the angular velocities of these three plates, they ought to sum to zero. In this case, the velocity doesn’t sum to zero at all. It sums to 15 millimetres a year, which is huge.

That made the Pacific-Cocos-Nazca circuit a misfit, which meant at least one other plate in the vicinity had to make up the difference.  Knowing the numbers were amiss, the researchers drew upon a Columbia University database of extensive multibeam sonar soundings west of Ecuador and Colombia to identify a previously unknown plate boundary between the Galapagos Islands and the coast. Previous researchers had assumed most of the region east of the known Panama transform fault was part of the Nazca plate, but the Rice researchers determined it moves independently.

Evidence for the Malpelo plate came with the researchers’ identification of a diffuse plate boundary that runs from the Panama Transform Fault eastward to where the diffuse plate boundary intersects a deep oceanic trench just offshore of Ecuador and Colombia. A diffuse boundary is best described as a series of many small, hard-to-spot faults rather than a ridge or transform fault that sharply defines the boundary of two plates.

With the Malpelo accounted for, the new circuit still doesn’t close to zero and the shrinking Pacific Plate is not enough to account for the difference. The nonclosure around this triple junction does not go down to zero, but only to 10 or 11 millimetres a year. The researchers need to understand where the rest of that velocity is going. They think there is another plate – Plate 58 – they are missing.

Source : Rice University (Texas).

Source: Rice University

La tectonique italienne et le dernier séisme // Italian tectonics and the latest earthquake

drapeau-francaisDans la région du centre de l’Italie qui vient d’être secouée puissant séisme, les secousses sismiques sont relativement fréquentes. L’Italie dans son ensemble connaît de nombreux séismes peu profonds, répartis principalement le long de la chaîne des Apennins qui longe la côte nord-est du pays. Généralement, ces séismes ne sont pas très forts, avec une magnitude maximale de M 5, mais neuf événements de M 6 ou plus ont été enregistrés au cours du siècle écoulé. Cette activité sismique est le résultat de la situation de l’Italie qui se trouve au cœur même de la lente collision entre les plaques eurasienne et africaine qui a, entre autres, contribué au soulèvement des Alpes.
Il est donc assez surprenant de constater que le mécanisme qui régit les tremblements de terre dans le centre de l’Italie présente les caractéristiques des séismes d’extension – produits par un étirement de la croûte terrestre – et non de compression, comme on pourrait s’y attendre. L’extension se fait dans la direction nord-ouest / sud-est, en angle droit par rapport à la chaîne des Apennins.
Le phénomène s’explique en étudiant l’histoire tectonique de la Méditerranée occidentale. Plutôt que de faire partie des derniers vestiges d’un grand océan qui aurait été en grande partie détruit par la subduction entre la plaque africaine et la plaque eurasienne, la croûte océanique de la région s’est formée par une accrétion d’arrière-arc au cours des 40 derniers millions d’années, alors que la zone de collision migrait vers le sud et s’éloignait de l’Europe, provoquant un étirement la croûte dans la plaque supérieure.

Ainsi, bien que dans un vaste contexte régional on ait une collision entre deux plaques, à un niveau plus local, l’accrétion d’arrière-arc actuelle dans la mer Tyrrhénienne au sud-ouest semble être un important moteur de la tectonique en Italie, dans la mesure où les failles de chevauchement qui ont façonné les Apennins se trouvent maintenant réactivées sous forme de failles extensives normales. Malheureusement, cette évolution tectonique ne rend pas les séismes moins dévastateurs quand ils se produisent.

————————————-

drapeau-anglaisEarthquakes in the region where the latest deadly event occurred are not unusual. Italy experiences frequent shallow earthquakes, mainly distributed along the Apennine mountain range that runs along the northeast coast. Typically these earthquakes are smaller, with an M 5 at most, but nine with a magnitude 6 or greater have occurred in the last hundred years or so. All this activity is the result of Italy being right in the thick of the slow collision between the African and Eurasian plates that has, amongst others, resulted in the uplift of the Alps.

It is therefore quite surprising to see that the focal mechanism for the earthquakes in central Italy is characteristic of an extensional earthquake, due to stretching of the earth’s crust, not a compressional one. The extension is oriented in a northeast-southwest direction, at right angles to the Apennine range:

This can be explained by looking at the tectonic history of the western Mediterranean. Rather than being the last remnants of a large ocean that has been mostly destroyed by subduction as Africa and Europe move together, the oceanic crust here has actually all been created by back-arc spreading in the last 40 million years or so, as the collision zone has migrated south and east away from Europe, stretching out the crust in the over-riding plate as it does so.

So although at a broad regional scale two plates are colliding, at a more local level the current back-arc spreading in the Tyrrhenian Sea to the southwest appears to be a major driver of tectonics in Italy, to the extent that thrust faults that built up the Apennines are now being reactivated as extensional normal faults. Unfortunately, this switch doesn’t make the earthquakes themselves any less damaging when they do occur.

Seismes italie

Source: IPG.

Un puissant séisme à court terme dans les Caraïbes ? // Powerful earthquake soon in the Caribbean ?

drapeau-francaisLe Centre de Recherche Sismique (SRC) de l’Université des Indes Occidentales (UWI), basé à Trinidad, a demandé aux pays des Caraïbes de se préparer à l’éventualité d’un séisme majeur
Le SRC a enregistré 8 séismes de magnitude 4 ou supérieure depuis le 9 juin 2016. Le plus fort a atteint M 4,8 au nord-ouest d’Antigua le 8 août 2016.
L’année dernière, le SRC a déclaré que le séisme de janvier 2010  à Haïti (avec plus de 230 00 morts) aurait dû faire prendre conscience de la nécessité d’un changement fondamental dans les structures régionales pour faire face aux risques sismiques. Les recherches ont montré que la région peut être secouée par un séisme de magnitude 6.0 ou plus tous les 3 à 5 ans, et elle est « en retard » pour un séisme de M 8.0.
En conséquence, le SRC prévient qu’il est grand temps que la région se prépare rapidement à faire face à de tels événements. Il faudrait légiférer et faire respecter les normes de construction parasismiques en utilisant des cartes à risques mises à jour à partir des dernières données scientifiques disponibles.
Bien que les séismes à Porto Rico et dans la République Dominicaine soient relativement fréquents, il faut noter que 141 événements avec des magnitudes entre M 2,5 et 4,6 ont été enregistrés par l’USGS au cours des 30 derniers jours ; ils viennent s’ajouter aux 8 événements de M 4 ou plus enregistrés par le SRC depuis le 9 juin 2016.
La Fosse de Porto Rico va de pair avec la plus forte anomalie de gravité enregistrée sur Terre, signe de la présence d’une force active vers les profondeurs. C’est la partie la plus profonde de l’Océan Atlantique, avec plus de 8400 mètres.

Dans l’Océan Pacifique, les fosses se trouvent dans les zones de subduction. Par contre, la fosse de Porto Rico se situe à la frontière entre deux plaques tectoniques qui glissent l’une contre l’autre, avec seulement une petite composante de subduction. Porto Rico, les îles Vierges, et l’est de Hispaniola sont situés sur une zone limite de plaques actives, entre la plaque nord-américaine et le coin nord-est de la plaque des Caraïbes. La plaque des Caraïbes est à peu près rectangulaire, et elle glisse vers l’est à raison d’environ 2 cm / an par rapport à la plaque nord-américaine. La région connaît une forte sismicité et de puissants séismes qui peuvent générer des tsunamis dévastateurs.
Forte sismicité et tsunamis sont confirmés par les exemples du passé : un séisme de M 7,5 avec son épicentre au nord-ouest de Porto Rico en 1943 ; des séismes de M 8,1 et M 6,9 au nord de Hispaniola en 1946 et 1953. Immédiatement après le séisme de 1946, un tsunami a frappé le nord-est de Hispaniola et est entré à l’intérieur des terres sur plusieurs kilomètres. D’après certains rapports, près de 1800 personnes se sont noyées. Un séisme de M 7,5 en 1918 a généré un tsunami qui a tué au moins 91 personnes dans le nord-ouest de Porto Rico. En raison de sa forte densité de population et du développement rapide des zones urbaines près de la côte, Porto Rico court un risque important an cas de séisme et les tsunami.
Lez contexte tectonique de la Fosse de Porto Rico est parfois comparé à celui de la zone de subduction de Sumatra, site du séisme qui a provoqué le tsunami dévastateur dans l’Océan Indien en décembre 2004. Cette similitude a provoqué un grand intérêt quant à l’évaluation des risques de tsunamis auxquels seraient exposés la côte est des États-Unis côte et le nord-est des Caraïbes dans l’éventualité d’un séisme qui se déclencherait le long de la zone de subduction de la Fosse de Porto Rico.
Source: The Jamaica Observer.

——————————————

drapeau-anglaisThe Trinidad-based Seismic Research Centre (SRC) of the University of the West Indies (UWI) has warned the Caribbean countries to be prepared for a major quake

The Centre has recorded a total of 8 M4+ earthquakes since June 9, 2016, the strongest of which was an M 4.8 earthquake that occurred northwest of Antigua on August 8th, 2016.

Last year, SRC said the January 2010 Haitian earthquake (with more than 230,000 deaths) should have been the wake-up call for a fundamental shift in regional mechanisms for coping with seismic hazards. Research suggests the region is capable of generating an earthquake of magnitude 6.0 or larger every 3 to 5 years, and is overdue for an M 8.0 earthquake.

As a consequence, SRC warns that it is imperative for the region to move expeditiously towards building resilience to such events. It should develop, legislate and enforce Building Codes using up-to-date seismic hazard maps based on the latest available science.

Although earthquakes around Puerto Rico and the Dominican Republic are fairly common, 141 M2.5 – 4.6 earthquakes recorded by the USGS over the past 30 days should be added to the 8 M4+ earthquakes recorded by the SRC since June 9th, 2016.

The Puerto Rico Trench is associated with the most negative gravity anomaly on Earth which indicates the presence of an active downward force. It is the deepest part of the Atlantic Ocean, with water depths exceeding 8.4 km.

Trenches in the Pacific are located in places where one tectonic plate subducts under another one. The Puerto Rico Trench, in contrast, is located at a boundary between two plates that slide past each other with only a small component of subduction. Puerto Rico, the Virgin Islands, and eastern Hispaniola are located on an active plate boundary zone between the North American plate and the northeast corner of the Caribbean plate. The Caribbean plate is roughly rectangular, and it slides eastward at about 2 cm/year relative to the North American plate. The region has high seismicity and large earthquakes that can generate devastating tsunamis.

Past examples include an M 7.5 earthquake centered northwest of Puerto Rico in 1943, and M 8.1 and 6.9 earthquakes north of Hispaniola in 1946 and 1953. Immediately after the 1946 earthquake, a tsunami struck northeastern Hispaniola and moved inland for several kilometres. Some reports indicate that nearly 1,800 people drowned. A 1918 M 7.5 earthquake resulted in a tsunami that killed at least 91 people in northwestern Puerto Rico. Because of its high population density and extensive development near the coast, Puerto Rico has a significant risk for earthquakes and tsunamis.

The tectonic setting of the Puerto Rico Trench is sometimes compared to that of the Sumatra subduction zone, the site of the earthquake that triggered the devastating Indian Ocean tsunami of December 2004. This similarity has caused great interest in the assessment of potential tsunami hazard to the United States east coast and the northeastern Caribbean from a large subduction-zone earthquake along the Puerto Rico Trench.

Source : The Jamaica Observer.

Porto Rico

Contexte tectonique de Porto Rico (Source : USGS)

Quelques réflexions après les séismes au Japon et en Equateur // A few thoughts after the earthquakes in Japan and Ecuador

drapeau-francaisCes jours-ci, suite aux puissants séismes qui ont secoué le Japon, l’Equateur et les Tonga, on me pose beaucoup de questions sur la relation éventuelle entre ces différents événements ainsi que sur la prévision des tremblements de terre.

Avant tout, je tiens à dire que je ne suis pas sismologue et que mes connaissances dans ce domaine restent relativement superficielles. Comme beaucoup, j’ai remarqué que les derniers séismes se sont produits le long de la Ceinture de Feu du Pacifique, région du monde où l’on observe fréquemment des séismes et des éruptions volcaniques. Toutefois, rien ne permet de dire que les derniers séismes sont liés.

Une première constatation me pousse à dire que les séismes au Japon et en Equateur sont différents par leur géographie et leur tectonique. En Equateur, on a affaire à un séisme de subduction, avec la plaque tectonique de Nazca (sous l’océan Pacifique) qui plonge progressivement sous la plaque sud-américaine. Pour le Japon, le séisme s’est produit à l’intérieur même d’une plaque, à la jonction de deux lignes de failles ; il s’agit donc d’une déformation locale.

Si l’on compare les magnitudes, le séisme qui s’est produit en Equateur était beaucoup plus fort (M 7,8), que ceux qui ont secoué le Japon (M 6, 4 et M 7). La différence peut paraître minime, mais elle est en réalité très importante. Le séisme en Equateur a été environ quinze fois plus puissant que celui du Japon.

Un point commun entre le Japon et l’Equateur est que les deux séismes ont été superficiels, entre 10 et 25 km de profondeur seulement, ce qui a provoqué les dégâts humains et matériels que l’on sait : des centaines de morts en Equateur, des dizaines au Japon et des villes à reconstruire.

Tout comme pour les éruptions volcaniques, les gens sont souvent l’impression que la fréquence des séismes est en augmentation. En fait, ce n’est qu’une illusion et cette impression est probablement due au fait que les informations se répandent de nos jours à la vitesse de la lumière grâce aux innovations technologiques, Internet en particulier. Les séismes se produisent de manière parfaitement aléatoire ; il n’y a donc pas de périodicité. On ne peut donc pas mesurer d’augmentation ou de diminution. Par contre, le caractère aléatoire des séismes donne parfois naissance à des séries, comme entre 2004 et 2011 à Sumatra. Il en va de même pour leur intensité. Ils ne sont pas plus forts ou moins forts qu’autrefois mais, à un siècle d’intervalle dans une même zone, ils peuvent causer plus de dégâts si l’habitat s’est beaucoup développé et si la population a augmenté.

S’agissant de la prévision des séismes, elle reste au niveau zéro. Certes, les répliques qui suivent les puissants séismes sont monnaie courante, mais les annoncer ne fait pas, à mes yeux, partie de la prévision sismique. Il est impossible de dire à quelle date, à quelle heure et à quel endroit précis la Terre va trembler. En revanche, on sait que certaines régions du globe, comme le Japon ou l’Equateur sont particulièrement exposées, à cause de la tectonique de ces régions. De la même façon, on peut affirmer sans trop se tromper que la Californie ou l’Alaska connaîtront d’autres puissants séismes dans les années ou les décennies à venir.

Qu’en est-il de la France ? Notre pays peut-il être victime d’un séisme aussi destructeur qu’en Equateur ? A priori non car le contexte tectonique est différent, mais certaines régions ne sont pas à l’abri de tremblements de terre pouvant occasionner de sérieux dégâts. Le séisme très destructeur d’Arette (M 5,8) le 13 août 1967 est là pour rappeler que le risque existe dans des régions comme les Pyrénées ou l’arc alpin. Pour plus de détails, je conseille vivement de consulter le site Azurséisme (http://www.azurseisme.com/) piloté de main de maître par l’ami André Laurenti.

————————————-

drapeau-anglaisThese days, after  the powerful earthquake that rocked Japan, Ecuador and Tonga I am asked many questions about the possible relationship between these events and about the prediction of earthquakes.
First of all, I want to say that I am not a seismologist and my knowledge in this area is relatively superficial. Like many, I noticed that the last earthquakes occurred along the Pacific Ring of Fire, a region that is frequently the seat of earthquakes and volcanic eruptions. However, there is nothing to say that the latest earthquakes are linked.
A first observation leads me to say that the earthquakes in Japan and Ecuador differ by their geography and tectonics. In Ecuador, it was a subduction earthquake, with the Nazca tectonic plate (under the Pacific Ocean) that gradually plunges under the South American plate. For Japan, the earthquake occurred within a plate at the junction of two fault lines; it is therefore a local deformation.
Comparing the magnitude of the earthquakes, the event in Ecuador was much stronger (M 7.8), than those that shook Japan (M 6.4 and M 7). The difference may seem small, but it is really great. The earthquake in Ecuador was approximately fifteen times more powerful than that of Japan.
A common point between Japan and Ecuador is that the two quakes were shallow, between 10 and 25 km deep only, which caused human and material damage: hundreds of casualties in Ecuador,dozens in Japan and cities to rebuild.
As with volcanic eruptions, people often feel that the frequency of earthquakes is increasing. Actually, this is an illusion probably due to the fact that information is spreading today to the speed of light thanks to technological innovations, the Internet in particular. Earthquakes occur in a perfectly random manner; there is no periodicity. Their number neither increased nor decreased. However, the random nature of earthquakes sometimes gives birth to series, as between 2004 and 2011 in Sumatra. It’s the same with their intensity. They are not stronger or weaker than before, but should they occur a century latert in one area, they can cause more damage if urban areas have developed a lot and if the population has increased.
Regarding earthquake prediction, it is non existant. Aftershocks after powerful earthquakes are quite common, but I don’t think that announcing them is part of earthquake prediction. It is impossible to say when, at what time and where exactly the land will tremble. However, we know that some regions, such as Japan and Ecuador are particularly vulnerable because of the tectonics of these regions. Similarly, we can affirm that California or Alaska will have to face more powerful earthquakes in the years or decades to come.
What about France? Can our country be the victim of an earthquake as destructive in Ecuador? Maybe not, because the tectonic context is different, but some areas are not immune to earthquakes that could cause serious damage. The very destructive earthquake in Arette (M 5.8) on August 13, 1967 is a reminder that there is a risk in areas such as the Pyrenees or the Alps. For more details, I advise you to visit Azurséisme (http://www.azurseisme.com/) remarkably managed by my friend André Laurenti.

ecuador

Sismogramme du séisme de M 7,8 en Equateur le 16 avril 2016 (Source: USGS)