Nyiragongo (RDC) : Mise au point // The real situation

Dans une note publiée le 19 octobre 2020, je posais la question « Le Nyiragongo (RDC) à nouveau une menace pour Goma ? » Je relayais en l’occurrence un article publié sur le site web Science. J’écrivais que « Dario Tedesco et ses collègues ont récemment observé le lac de lave et ont déclaré qu’il se remplissait à un rythme inquiétant. Le danger est que, comme en 2002, la lave éventre les parois du cratère et dévale les pentes du volcan. La dernière analyse des données indique que le risque maximal se situera dans 4 ans, même si l’on pense qu’un séisme est susceptible de déclencher une crise éruptive avant cette date. » J’ajoutais que « le réseau de surveillance autour du volcan montre une activité sismique élevée et plusieurs essaims profonds. Cependant, on ne sait pas si ce type d’activité est normal ou inhabituel car on manque de données de comparaison avec l’activité antérieure du volcan. Il convient de noter qu’une période de tremor intense a été enregistrée des mois avant l’éruption de 2002, mais que rien de tel n’est détecté pour le moment. » Donc pas de panique pour le moment.

Comme d’habitude, certains organes de presse se sont empressés de faire du catastrophisme, une tendance très à la mode que l’on a pu observer dans le documentaire « Planète volcans » il y a quelques jours. On a pu lire qu’une éruption du Nyiragongo était « imminente ». Ce n’est pas le cas. Contacté par l’AFP, l’un des scientifiques cités dans l’article a indiqué qu’il faut « être vigilant et surveiller attentivement le volcan à tout moment », mais « il n’y a pas d’éruption imminente« .Que les habitants de Goma se rassurent ; même si le risque éruptif est permanent dans la région où s’agite également le Nyiamuragira, aucune éruption ne semble « imminente » à l’heure actuelle.

—————————————–

In a post published on October 19th 2020, I asked the question « Nyiragongo (DRC) again a threat to Goma? » « I was relaying an article published on the Science website. I wrote that “Dario Tedesco and his colleagues recently observed the lava lake and said it was filling up at an alarming rate. The danger is that, as in 2002, the lava might burst through the walls of the crater and travel down the slopes of the volcano. The latest data analysis indicates that peak hazard will be in 4 years, although it is believed that an earthquake might trigger an eruptive crisis before that date. » I added that « the surveillance network around the volcano shows high seismic activity and several deep swarms. However, one does not know whether this type of activity is normal or unusual because one lacks comparable, older data. It should be noted that sustained tremor activity was recorded months before the 2002 eruption, but nothing like that is detected for the moment. »   So there is no need to panic for the moment.
As usual, some media outlets rushed to do catastrophism, a very fashionable trend that we saw in the documentary « Planète volcans » a few days agoThey reported that an eruption of Nyiragongo was « imminent ». This is not the case. Contacted by AFP, one of the scientists quoted in the article said that one must « be vigilant and carefully monitor the volcano at all times », but « there is no imminent eruption« . The inhabitants of Goma should be reassured; although the risk of an eruption is permanent in the region where Nyiamuragira is another active volcano. No eruption seems « imminent » these days.

Crédit photo: Wikipedia

Failles et sismicité sur le Kilauea (Hawaii) // Faults and seismicity on Kilauea Volcano (Hawaii)

Outre l’activité volcanique, la sismicité est présente sur la Grande Ile d’Hawaï. En particulier, le flanc sud du Kilauea est l’une des régions les plus sismiquement actives des États-Unis. Chaque année, le HVO enregistre des milliers de secousses dans cette partie de l’île.

Le réseau de failles de Koa’e relie les zones de Rift Est et de Rift Sud-ouest du Kilauea au sud de la caldeira. Cette zone de faille recoupe le Rift Est près du cratère Pauahi et s’étire sur près de 12 km dans une direction est-nord-est vers l’ouest, jusque près du Mauna Iki et la zone de Rift Sud-Ouest (voir carte ci-dessous).
Les failles apparaissent sous forme de petites falaises ou d’escarpements le long de Hilina Pali Road dans le Parc des volcans d’Hawaï. Ces falaises le long des failles glissent lors de séismes majeurs, comme celui du 4 mai 2018, avant le début de l’éruption du Kilauea.
Les mouvements des failles de Koa’e ont fait se déplacer de 1,50 mètre d’anciennes coulées de lave sur une période de plusieurs siècles. Cette zone fournit de bonnes indications sur les mouvements de failles sur le long terme car les coulées de lave ne l’ont pas recouverte, ce qui permet une bonne lisibilité du mouvement du flanc sud du Kilauea. Plus récemment, des failles ont décalé des routes ainsi que sentiers utilisés par les premiers Hawaïens. Il était donc intéressant de savoir si les failles avaient bougé pendant et après l’éruption de 2018.
La géodésie est encore utilisée pour étudier la morphologie des volcans hawaïens, même si les géologues ont souvent recours à des technologies plus modernes, telles que l’interférométrie par satellite et le GPS.
Une approche plus ancienne, le «nivellement», reste une méthode géodésique précieuse quelque 170 ans après son invention. Les scientifiques du HVO l’utilisent depuis des décennies pour étudier les volcans, avec des résultats intéressants.
Depuis l’éruption de 2018, le département de géologie de l’Université d’Hawaï à Hilo a collaboré avec des scientifiques du HVO pour effectuer des opérations de nivellement là où cette technique est la plus adaptée. Le nivellement utilise des théodolites pour mesurer avec précision les différences d’élévation entre des stations marquées par des repères ancrés dans le substrat rocheux. Si les altitudes et les distances entre les stations de mesure ont changé pendant le temps écoulé depuis les mesures précédentes, une répétition du nivellement détecte le changement jusqu’à l’échelle millimétrique. Le nivellement nécessite des équipes de personnes travaillant le long d’une grille établie sur le terrain, ce qui demande beaucoup de temps. Les stations de mesure sont généralement espacées d’environ 90 mètres.
Les scientifiques de l’USGS ont commencé le nivellement le long des failles de Koa’e dans les années 1960, ce qui a permis d’obtenir des mesures sur le long terme. Dans les années 1960, la bande de terre d’environ trois kilomètres au coeur du système de failles de Koa’e s’est élargie d’environ 1,5 cm chaque année. Les failles individuelles ne jouent en général que de quelques millimètres chacune. En revanche, lors des séismes de 2018, on a enregistré le plus important mouvement vertical le long d’une seule faille, avec un déplacement de plus de 40 cm.
Lorsque les failles de Koa’e bougent, elles glissent verticalement ou s’ouvrent en créant de profondes fissures. Un exemple spectaculaire de ce phénomène a été observé au niveau d’Hilina Pali Road en 2018 quand la faille a coupé la route en deux. Peu de temps après la fin de l’éruption de 2018, le nivellement a révélé que les mouvements le long des failles de Koa’e avaient retrouvé leur rythme normal, beaucoup plus lent.
La campagne de nivellement actuelle sur le réseau de failles de Koa’e a révélé que la majeure partie du relief le long de ces falaises est modelée par des événements majeurs. Très peu de nouvelles fissures se sont formées à la suite des grands événements géologiques de 2018. Au lieu de cela, le mouvement a tendance à se poursuivre de manière répétitive le long des fissures existantes ; elles s’ouvrent plus largement et augmentent leurs escarpements avec le temps. Le comportement du réseau de failles de Koa’e est également étroitement lié à ce qui se passe ailleurs sur le volcan, comme les séismes de 2018 sous le flanc sud du Kilauea et l’effondrement à répétition de la caldeira sommitale.
Source: USGS / HVO.

———————————————-

Beside volcanic activity, seismicity is present on Hawaii Big Island. In particular, Kilauea’s south flank is one of the most seismically active regions in the United States. Each year, HVO records thousands of earthquakes occurring beneath the flank.

The Koa‘e fault system connects Kilauea’s East and Southwest Rift Zones south of the caldera. The fault zone intersects the East Rift near the Pauahi Crater and extends nearly 12 km in an east-northeast direction towards the westernmost boundary near Mauna Iki and the Southwest Rift Zone (see map below).

Faults here appear as low cliffs, or “scarps” along Hilina Pali Road in Hawai‘i Volcanoes National Park. These fault-cliffs slip during major earthquakes, such as those of May 4th, 2018, before the beginning of Kilauea’s 2018 eruption.

Koa‘e fault movements have offset ancient lava flows by as much as 1.50 metres over a period of centuries. This area provides an important long-term record of motion due to the lack of recent lava flows covering the faults, which makes it an ideal location to study the motion of Kilauea’s south flank. More recently, faults have offset roads and footpaths used by early Hawaiians. So, it is interesting to know how much fresh offset took place during and after the 2018 eruption.

Geodesy is still used to measure the shape of Hawaiian volcanoes. New technologies, such as satellite interferometry and the Global Positioning System (GPS), depend on satellites to make geodetic measurements.

One older approach, “levelling,” remains a valuable geodetic method some 170 years after it was invented. HVO scientists have used it for decades to study volcanoes, with significant results.

Since the 2018 eruption, the Geology Department at the University of Hawaii at Hilo has collaborated with HVO scientists to perform levelling where it is the best approach available. Levelling uses theodolites to precisely measure elevation differences between stations marked by stainless steel bolts cemented into bedrock. If elevations and distances have changed during the time since the previous measurements, repeat levelling will detect it even down to the millimetre scale. Levelling requires teams of people working along an established grid in the field, and this work demands quite a lot of time. Field stations are commonly set around 90 metres apart.

USGS scientists first began levelling along the Koa‘e faults in the 1960s, providing a long-standing record of data and field stations already in place. In the 1960s, the roughly three-kilometre land strip encompassed by the Koa‘e fault system widened by about 1.5 cm each year. Individual faults move only a few millimetres each.. In contrast, the largest vertical movement recorded during the 2018 earthquakes along a single fault was over 40 cm.

When the Koa‘e faults move, they either slide vertically or open to create a deep crack. A dramatic example of opening occurred at the Hilina Pali Road 2018 faulting which split the road. Shortly after the end of the 2018 eruption, levelling revealed that the rates of change along the Koa‘e faults quickly returned to the much slower normal pace.

The current Koa‘e levelling campaign has revealed that most of the relief along these cliffs is created by large events. Very few new cracks formed as a result of the large geologic events of 2018. Instead, motion tends to continue repeatedly along existing cracks, opening them wider and making their scarps taller over time. The motions along the Koa‘e faults are also sensitively tied to what happens elsewhere on the volcano, such as the 2018 earthquakes underneath Kilauea’s south flank and the repeated collapse of the summit caldera.

Source : USGS / HVO.

Carte géologique de la zone sommitale du Kilauea, avec le système de failles de Koa’e (Source : USGS)

Le protoxyde d’azote, un puissant gaz à effet de serre // N2O, a powerful greenhouse gas

Parmi les gaz à effet de serre qui contribuent à l’accélération actuelle du réchauffement climatique, les plus connus sont le dioxyde ce carbone (CO2) et le méthane (CH4). Un autre gaz, le protoxyde d’azote (N2O), est surtout connu pour être un gaz hilarant de plus en plus utilisé par les jeunes dans notre société, avec des risques d’asphyxie par manque d’oxygène, perte de connaissance, brûlure par le froid du gaz expulsé, désorientation, vertiges, chutes… En cas de consommation excessive, de sévères troubles neurologiques, hématologiques, psychiatriques ou cardiaques peuvent survenir. La consommation associée à d’autres produits (alcool, drogues) majore les risques.

En plus d’être un gaz hilarant, le protoxyde d’azote est le troisième plus important gaz à effet de serre après le CO2 et le CH4 ; il contribue environ à 6 % au forçage radiatif direct induit par les gaz à effet de serre. Ses émissions connaissent une augmentation bien plus forte que prévue.

Un rapport publié en 2013, mettait en garde sur les risques du NO2 pour la couche d’ozone. Jusqu’à présent, la destruction de la couche d’ozone était principalement due aux chlorofluorocarbones et autres produits chimiques halogénés. Or depuis le protocole de Montréal ; ces produits chimiques ont été largement encadrés. Le N2O, lui, ne figure pas dans ce protocole. D’après les estimations, ses émissions pourraient doubler d’ici 2050, avec des conséquences désastreuses pour la couche d’ozone et une contribution réelle à l’accélération  du changement climatique.

Les sources d’émission de N2O sont à la fois naturelles (océans, sols) et anthropiques : agriculture intensive (décomposition des engrais, déjections), combustion de la biomasse (feux de savane par exemple en Afrique), combustibles fossiles, procédés industriels chimiques (production d’acide nitrique et d’acide adipique), combustion des carburants pour l’aviation et aérosols.

Selon plusieurs institutions à travers l’Europe et les Etats-Unis, les pratiques agricoles ont fortement augmenté les émissions de protoxyde d’azote dans l’atmosphère depuis le début des années 2000 et plus particulièrement 2009. Ainsi, la production d’engrais azoté a été multipliée par 10 entre 1961 et 2017 passant de 11 millions de tonnes à 119 millions de tonnes, alors que la population mondiale n’a été multipliée que par 2,5. L’apport humain d’azote dans le sol, sous forme d’engrais, renforce l’effet de serre. Environ 60 % du protoxyde d’azote est émis via les champs fertilisés, fumiers et autres sources agricoles.

Dans un article publié dans Nature Climate Change, des scientifiques expliquent que les émissions de N2O ont augmenté plus rapidement au cours de la dernière décennie que ne l’estimait le GIEC. A côté de l’utilisation de plus en plus massive des engrais azotés, l’exploitation des combustibles fossiles et des agrocarburants (maintenant généralisés à la pompe) sont également des sources d’émissions de N2O.
L’étude publiée dans Nature Climate Change propose que les régions déjà excédentaires en azote limitent l’utilisation d’engrais azotés. C’est le cas de l’Asie de l’Est, où l’engrais azoté pourrait être utilisé plus efficacement sans réduire les rendements des cultures. En effet, quelque 60 % de l’azote contenu dans les engrais ne s’incorpore jamais aux plantes et est éliminé des racines pour ensuite contaminer les cours d’eau, les lacs, les nappes aquifères et les régions côtières par le processus d’eutrophisation.

Source : Presse scientifique internationale.

————————————————

Among the greenhouse gases that contribute to the current acceleration of global warming, the best known are carbon dioxide (CO2) and methane (CH4). Another gas, nitrous oxide (N2O), is best known for being a laughing gas more and more used by young people in our society, with the risk of suffocation from lack of oxygen, loss of consciousness, burns by the cold of the expelled gas, disorientation, dizziness, falls … In case of excessive consumption, severe neurological, hematological, psychiatric or cardiac disorders can occur. Consumption associated with other products (alcohol, drugs) increases the risks.
Besides being a laughing gas, nitrous oxide is the third most important greenhouse gas after CO2 and CH4; it contributes about 6% to the direct radiative forcing induced by greenhouse gases. Its emissions are increasing much faster than expected.
A report published in 2013 warned of the risks of NO2 for the ozone layer. Until now, the destruction of the ozone layer has been mainly due to chlorofluorocarbons and other halogenated chemicals. Now since the Montreal Protocol; these chemicals have been largely regulated. N2O is not included in this protocol. Its emissions are estimated to double by 2050, with disastrous consequences for the ozone layer and a real contribution to accelerating climate change.
The sources of N2O emissions are both natural (oceans, soils) and anthropogenic: intensive agriculture (decomposition of fertilizers, animal droppings), combustion of biomass (savannah fires for example in Africa), fossil fuels, chemical industrial processes (production of nitric acid and adipic acid), combustion of aviation fuels and aerosols.
According to several institutions across Europe and the United States, agricultural practices have sharply increased emissions of nitrous oxide into the atmosphere since the early 2000s and more particularly 2009. Thus, the production of nitrogen fertilizers increased tenfold between 1961 and 2017 from 11 million tonnes to 119 million tonnes, while the world’s population only increased by 2.5. The human input of nitrogen into the soil, in the form of fertilizer, enhances the greenhouse effect. About 60% of nitrous oxide is emitted via fertilized fields, manure and other agricultural sources.
In an article published in Nature Climate Change, scientists explain that N2O emissions have increased faster in the past decade than estimated by the IPCC. Along with the increasingly massive use of nitrogen fertilizers, the exploitation of fossil fuels and agrofuels (now widespread at the pump) are also sources of N2O emissions.
The study published in Nature Climate Change suggests that areas that already have nitrogen surpluses limit the use of nitrogen fertilizers. This is the case in East Asia, where nitrogen fertilizer could be used more efficiently without reducing crop yields. In fact, some 60% of the nitrogen contained in fertilizers never becomes incorporated into plants and is eliminated from the roots to later contaminate rivers, lakes, aquifers and coastal regions through the process of eutrophication.
Source: International scientific press.

Structure du protoxyde d’azote (Source : Wikipedia)

Dans la vie courante, le protoxyde d’azote est souvent utilisé comme gaz propulseur, notamment dans les bonbonnes de crème chantilly.

Le Nyiragongo (RDC) à nouveau une menace pour Goma? // Nyiragongo (DRC) again a threat to Goma?

Selon un article publié sur le site Science le 13 octobre 2020, le niveau du lac de lave au fond du cratère du volcan Nyiragongo (République Démocratique du Congo) s’élève dangereusement, avec une menace possible pour la ville de Goma.
En 2002, lors de la dernière éruption du Nyiragongo (3470 m), la lave a dévalé les flancs du volcan et est entrée dans la ville de Goma (599 000 habitants), à la frontière entre le Congo et le Rwanda. Environ 250 personnes sont mortes, 20% de la ville a été détruite et des centaines de milliers d’habitants ont fui. Le lac de lave dans le cratère s’est vidangé en quelques heures en donnant naissance à des rivières de lave fluide dont la vitesse atteignait parfois 60 kilomètres à l’heure. Les coulées de lave se sont empilées en couches jusqu’à 2 mètres d’épaisseur à Goma ; elles ont également édifié un nouveau delta de 800 mètres de large dans le lac Kivu.
Dario Tedesco, volcanologue à l’Université Luigi Vanvitelli de Campanie, explique que les conditions sont réunies pour que se produise une autre catastrophe. Il a commencé à observer le volcan au milieu des années 1990, au moment où les réfugiés qui fuyaient le génocide au Rwanda venaient gonfler la population de Goma. Les Nations Unies ont alors sollicité son avis sur les risques posés par le volcan.
Tedesco et ses collègues ont récemment observé le lac de lave et ont déclaré qu’il se remplissait à un rythme inquiétant. Le danger est que, comme en 2002, la lave éventre les parois du cratère et dévale les pentes du volcan. La dernière analyse des données indique que le risque maximal se situera dans 4 ans, même si l’on pense qu’un séisme est susceptible de déclencher une crise éruptive avant cette date.
Venant s’ajouter à ces inquiétudes, l’Observatoire Volcanologique de Goma (GVO), la seule station de surveillance de la région, vient de perdre son soutien financier de la Banque Mondiale. Depuis 2015, cette dernière a octroyé 2,3 millions de dollars à l’observatoire, dans le cadre d’un programme d’aide principalement destiné à reconstruire et protéger l’aéroport de la ville qui a été gravement endommagé lors de l’éruption de 2002. Mais cet apport financier est terminé.
Les volcanologues pensent que le système d’alimentation sous le Nyiragongo est peut-être en passe d’atteindre un point critique, comme il l’a fait avant l’éruption de 2002 et en 1977 auparavant. Dans les deux cas, le niveau du lac de lave s’est stabilisé plusieurs années avant l’éruption, avec la masse de la lave du lac qui  pesait sur le magma en dessous. Les éruptions ne se déclanchent pas tout de suite car le magma prend du temps pour forcer les fractures qui existent dans les parois du cratère. En supposant que le lac de lave cesse bientôt de monter, la période de danger maximal pour Goma pourrait être entre 2024 et 2027, sauf si un événement sismique majeur se produit d’ici là.
Le réseau de surveillance autour du volcan montre une activité sismique élevée et plusieurs essaims profonds. Cependant, on ne sait pas si ce type d’activité est normal ou inhabituel car on manque de données de comparaison avec l’activité antérieure du volcan. Il convient de noter qu’une période de tremor intense a été enregistrée des mois avant l’éruption de 2002, mais que rien de tel n’est détecté pour le moment.
Un problème avec la surveillance du Nyiragongo est le vandalisme, le vol et les dégâts causés par la foudre. Plusieurs sismomètres sont actuellement hors service. Les conflits qui agitent la région rendent les réparations de maintenance dangereuses. Au début de cette année, 13 gardes ont été tués dans une embuscade dans le Parc national des Virunga.
Source: Science.

————————————————————-

According to an article published on the website Science on October 13th, 2020, the lava lake within the crater of Nyiragongo volcano (Democratic Republic of Congo) is rising dangerously, with a possible threat to the city of Goma.

In 2002, the last time Nyiragongo (3470 m) erupted, lava rushed down its flanks and entered the city of Goma (pop. 599,000), on the border between Congo and Rwanda. About 250 people died, 20% of the city was destroyed, and hundreds of thousands fled. The lava lake within the crater drained in a matter of hours, releasing rivers of fluid lava that flowed as fast as 60 kilometres per hour. The lava piled up in layers up to 2 metres thick in Goma and created a new 800-metre-wide delta in nearby Lake Kivu.

Dario Tedesco, a volcanologist at the Luigi Vanvitelli University of Campania, explains that conditions are ripe for another disaster. He began to watch the volcano in the mid-1990s, when refugees, fleeing the genocide in nearby Rwanda, swelled Goma’s population. The United Nations sought his advice on the dangers of the volcano.

Tedesco and his colleagues have recently observed the lava lake and declared it is filling at an alarming rate. The danger is that, like in 2020, lava might burst through the crater walls and travel down the slopes of the volcano. The last analysis suggests peak hazard will arrive in 4 years, although it is believed an earthquake could trigger a crisis earlier.

Adding to the worries, the Goma Volcano Observatory (GVO), the only monitoring station in the region, is losing its financial support from the World Bank. Since 2015, the World Bank has given the observatory $2.3 million, as part of an aid package primarily intended to rebuild and protect the city airport, which was seriously damaged in the 2002 eruption. But that project has ended.

Volcanologists believe the feeding system beneath Nyiragongo may be reaching a critical point, as it did before the 2002 eruption and an earlier one in 1977. In both cases lava lake levels stabilized several years before the eruption as the mass of boiling lava weighed down on the magma below. The eruptions lagged because magma takes time to force open existing fractures. Supposing the lava lake stops rising soon, the period of peak danger for Goma might be from 2024 to 2027, unless a major seismic event occurs before..

The seismic network around the volcano shows high earthquake activity and several deep swarms. However, one does not know how unusual the activity is because one lacks comparable, older data. It should be noted that sustained tremor activity was recorded months before the 2002 eruption, but nothing like that is detected for the moment..

A problem with the monitoring of Nyiragongo is vandalism, theft, and lightning damage. Several seismometers are currently out of action. The civil unrest in the region makes repairs dangerous. Earlier this year 13 park rangers were killed in an ambush in the surrounding Virunga National Volcano Park.

Source: Science.

Crédit photo : Wikipedia