Le lac de lave au sommet du Kilauea (Hawaii) // Kilauea’s summit lava lake (Hawaii)

L’éruption du Kilauea se poursuit. La lave continue d’être émise par une bouche dans la partie ouest du cratère de l’Halema’uma’u. Les émissions de SO2 restent importantes, à environ 1 900 tonnes par jour. La sismicité est élevée mais stable, avec peu de séismes et la présence du tremor volcanique.
L’éruption n’a pas fait la Une des journaux récemment, mais cela ne signifie pas que l’activité n’est pas intéressante. Elle se poursuit sans fluctuations importantes.
Le modèle d’activité qui a caractérisé le comportement du sommet du Kilauea pendant des siècles, se résume à un cycle d’effondrement et de remplissage. Le plancher de la caldeira s’effondre et/ou s’affaisse – souvent en raison d’une éruption sur la zone de rift – et les éruptions qui surviennent par la suite au sommet remplissent d’une nouvelle lave la dépression ainsi formée. Destruction et reconstruction se succèdent de manière répétitive.
De nombreux cycles d’effondrement et de remplissage du cratère sommital se sont produits au cours des années 1800 et au début des années 1900. Dans chaque cas, la lave a fini par revenir au sommet et a rempli une grande partie ou la totalité de la dépression.
L’effondrement du fond du cratère en 2018 a été l’un des plus grands événements de ce type au cours des 200 dernières années. Au cours des 18 derniers mois, la lave a fait sa réapparition dans le cratère de l’Halemaʻumaʻu et a lentement rempli la nouvelle dépression. Depuis son retour en décembre 2020, la lave a rempli environ 17% du volume de la dépression creusée par l’éruption de de 2018.
Ce qui est intéressant dans l’activité actuelle, c’est la manière dont la lave remplit le cratère. Dans le scénario le plus simple, on pourrait imaginer que la lave se déverse simplement dans l’Halema’ma’u et recouvre les coulées précédentes, pour finalement remplir le cratère. Si une partie du remplissage se fait de cette manière, une grande partie est «endogène». En d’autres termes, la lave émise par la bouche éruptive arrive sous la croûte de surface, de manière invisible, et elle soulève le fond du cratère. C’est un peu comme si on gonflait un matelas pneumatique géant
Cette évolution de l’éruption peut être suivie à l’aide d’outils modernes. Un télémètre laser mesure en continu la surface de la lave toutes les secondes, avec une précision centimétrique. Les webcams installées sur la lèvre de l’Halemaʻumaʻu montrent parfaitement comment se produit le soulèvement du fond du cratère. Le processus de croissance endogène est bien illustré par la webcam postée sur la lèvre est de l’Halemaʻumaʻu. Les images en accéléré fournies par cette webcam montrent que la partie centrale du fond du cratère est soulevée comme un piston, sans pratiquement se fracturer.
Le lac de lave actif qui occupe une partie relativement réduite du fond du cratère, se soulève progressivement avec le reste du fond du cratère. Le télémètre laser montre des fluctuations du niveau de la lave active dans le lac, qui vient se superposer à une tendance à la hausse progressive du fond du cratère sous l’effet de ce soulèvement lent.
De grandes fissures se sont développées autour de cette partie centrale du fond du cratère. Au-delà des fissures, le long des parois, le comportement de la lave est plus complexe. Cette région externe est souvent déformée par la croissance endogène en dessous.
Ce type de croissance endogène du fond du cratère a déjà été observé dans les années 1800 et au début des années 1900, mais on ne l’a pas vraiment observé au cours du dernier siècle sur le Kilauea.
On peut observer le comportement du sommet du Kilauea grâce aux webcams accessibles sur le site Web du HVO (www.usgs.gov/hvo).
Source : USGS, HVO

—————————————–

The eruption of Kilauea continues. Lava keeps erupting from the western vent within Halemaʻumaʻu crater. SO2 emission rates remain elevated at about 1,900 tonnes per day. Seismicity is elevated but stable, with few earthquakes and ongoing volcanic tremor.

The eruption has not made the news recently, but that does not mean activity is not noteworthy. It is continuing with no significant fluctuations.

The pattern of activity has typified Kilauea’s summit behaviour for centuries, with a cycle of collapse and refilling. The caldera floor collapses and/or subsides – often due to an eruption on the rift zone – and subsequent summit eruptions fill the depression with new lava. Destruction and reconstruction follow each other in a retetitive way.

Numerous cycles of collapse and refilling occurred during the 1800s and early 1900s. In each instance, lava eventually returned to the summit and filled much or all of the depression.

The collapse of the crater floor in 2018 was one of the largest such events in the past 200 years. Over the past year and a half, lava has been erupting in Halemaʻumaʻu crater and slowly refilling the new depression. Since its return to Halemaʻumaʻu in December 2020, lava has refilled about 17% of the volume of the 2018 collapse.

What is also interesting about the current activity is the manner in which the lava is refilling the crater. In the simplest scenario, we might imagine the lava in Halemaʻumaʻu simply pouring in over earlier flows, stacking up and filling the crater. While a portion of the refilling is being done in this manner, a major amount of the refilling is “endogenous.” In other words, lava from the eruptive vent is supplied beneath the solidified surface crust, out of view, lifting the crater floor. It’sa bit like inflating a giant air mattress

This growth can be tracked using modern tools. A continuous laser rangefinder measures the lava surface every second, with centimeter precision. Webcams operating on the rim of Halemaʻumaʻu show the nature of uplift clearly. The process of endogenous growth is well illustrated with the webcam on the east rim of Halemaʻumaʻu. Timelapse images from this webcam show the central portion of the crater floor is being lifted like a piston, largely without fracturing.

The active lava lake which forms a relatively small portion of the crater floor, has essentially been lifted up gradually with the remainder of the crater floor. The laser rangefinder shows short-term fluctuations in the level of the active lava in the lake, superimposed on a gradual upward trend of the crater floor due to this slow uplift.

Around the perimeter of this central portion of the crater floor, a series of large cracks have developed. Beyond the cracks, along the margins of the crater floor, the behaviour is more complex. This outer region is often tilted and deformed from the endogenous growth below.

This type of endogenous growth was already observed in the 1800s and early 1900s. But it has not been observed so much in the past hundred years on Kilauea.

The behaviour of the Kilauea summit can be observed through the webcams on the HVO website (www.usgs.gov/hvo).

Source: USGS, HVO.

 

Cette photo est prise depuis la lèvre Ouest. On peut voir que la surface du lac est composée de grandes plaques crustales séparées par des zones d’accrétion incandescentes. On aperçoit aussi des projections de lave le long de la bordure Est. Le lac et le fond du cratère tout autour, formés de lave solidifiée, sont progressivement soulevés par l’apport endogène de lave sous la surface. (Crédit photo : USGS)

Mesures du dioxyde de soufre (SO2) sur le Kilauea (Hawaii) // SO2 measurements on Kilauea Volcano (Hawaii)

Dans un nouvel article, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) expliquent comment ils analysent les panaches de dioxyde de soufre (SO2) émis par le Kilauea
Les analyses des panaches de SO2 sont essentielles pour surveiller et comprendre l’activité éruptive. Le HVO s’appuie aussi sur les mesures d’émission de SO2 pour les prévisions concernant le vog (brouillard volcanique) et pour évaluer les émissions de lave.
Le HVO utilise des caméras – aussi bien visuelles que thermiques – pour décrire l’activité volcanique. Un troisième type de caméra, la caméra ultraviolet (UV), permet aux volcanologues de visualiser des panaches de SO2. Le SO2 absorbe la lumière ultraviolette, ce qui la fait apparaître dans les images UV alors qu’elle n’est pas visible avec les caméras classiques.
Des caméras UV sont utilisées sur le Kilauea depuis 2010. En 2013, une collaboration entre le Cascades Volcano Observatory (CVO) et le HVO a permis l’installation d’un système de caméra UV automatisé au sommet du Kilauea. Ce réseau de caméras a été retiré en 2018 lorsqu’il a été menacé par l’ouverture de fractures au sol au cours de l’effondrement de la caldeira sommitale.
Avec le retour de la lave et d’un fort dégazage de SO2 au sommet du Kilauea fin 2020, le HVO et le CVO ont fait équipe avec des collègues de l’Université de Sheffield au Royaume-Uni. Les scientifiques britanniques ont mis au point une nouvelle génération de petites caméras UV qui utilisent la technologie Raspberry Pi. Le Raspberry Pi est un nano-ordinateur monocarte à processeur ARM de la taille d’une carte de crédit conçu par des professeurs du département informatique de l’université de Cambridge dans le cadre de la fondation Raspberry Pi. Le HVO a déjà utilisé la technologie Raspberry Pi dans d’autres applications.
Les nouvelles caméras – PiCams – seront testées fin juillet 2022 et pourront être utilisées comme outils de terrain portables ou installées comme stations permanentes dans le réseau de surveillance du HVO. En attendant le résultat des premiers tests, le HVO prévoit d’installer au moins une PiCam en permanence au sommet du Kilauea. Une deuxième PiCam sera soit portable, soit installée en permanence près du sommet du Mauna Loa.
Les mesures des émissions de SO2 peuvent également être dérivés des images des caméras UV. Les mesures traditionnelles des émissions de SO2 sont effectuées en se plaçant sous le panache avec un spectromètre UV monté sur une voiture. Il faut compter une dizaine de minutes, voire davantage, pour effectuer chaque mesure, et seulement 6 à 10 de ces mesures peuvent être réalisées chaque jour. À partir de 2012, le HVO a installé un réseau de spectromètres continus pour mesurer les émissions de SO2 du Kilauea avec une meilleure résolution temporelle que les mesures à partir de véhicules, mais le réseau ne fournit pas d’informations spatiales sur le panache de SO2.
Une fois que les PiCams seront prêtes à l’emploi,elles fourniront une vue bidimensionnelle du panache de SO2 du Kilauea, mais aussi une résolution temporelle élevée et une série temporelle continue de mesures du taux d’émission de SO2.
Les données continues fournies à propos des émissions de SO2 faciliteront l’étude du dégazage en relation avec d’autres ensembles de données continues, comme l’activité sismique et la déformation du sol. Cela donnera une meilleure idée du rôle du dégazage dans des événements éruptifs spécifiques, ce qui n’a pas toujours été facile à réaliser dans le passé. Des travaux semblables ont été effectués au cours de la dernière décennie sur de nombreux volcans à travers le monde, y compris sur le Kilauea où il a été démontré que l’activité sismique et les émissions de SO2 étaient liées au cours des variations de niveau du lac de lave en 2010. Le lac de lave actuel dans le cratère de l’Halema’uma’ u a une configuration et un comportement différents de ceux du lac de lave de 2008-2018. Le HVO est impatient de voir ce que les nouvelles PiCams révéleront sur le dégazage du nouveau lac.
Source : USGS, HVO.

———————————————-

In a new article, scientists at the Hawaiian Volcano Observatory (HVO) explain how they analyse the sulphur dioxide (SO2) plumes emittes by Kilauea

Observations of SO2 are essential to both monitoring and understanding eruptive activity. HVO relies heavily on measurements of SO2 emission rate which are critical for vog (volcanic air pollution) forecasts and can be used for calculating lava eruption rates.

HVO also relies heavily on cameras to document activity, including both visual and thermal cameras. A third type of camera—an ultraviolet (UV) camera—allows volcanologists to visualize otherwise invisible, SO2 plumes. SO2 absorbs ultraviolet light, which makes it visible in UV imagery even when it cannot be seen by standard cameras.

UV cameras have been used at Kilauea since 2010. Later, in 2013, a combined effort between the Cascades Volcano Observatory (CVO) and HVO resulted in the installation of an automated UV camera system at the summit of Kilauea. That camera station was removed in 2018 when it was threatened by ground cracking associated with summit caldera collapse events.

With lava and strong SO2 degassing having returned to Kilauea summit in late 2020, HVO and CVO are teaming up with colleagues at the University of Sheffield in the United Kingdom. The UK scientists have developed a new generation of small UV cameras that use Raspberry Pi technology. A Raspberry Pi is a small, low-cost computer, about the size of a credit card, and HVO has used them in other applications before.

The new cameras—PiCams—will be tested later this month and can be used as portable field tools or installed as permanent stations in HVO’s monitoring network. Pending the outcome of the initial tests, HVO plans to install at least one PiCam permanently at Kilauea’s summit. A second PiCam will either be kept portable or will eventually be permanently installed near Mauna Loa’s summit.

SO2 emission rates can also be derived from UV camera images. Traditional SO2 emission rate measurements are made by traversing beneath the plume with a UV spectrometer mounted on a car, so that each measurement takes ten or more minutes, with only 6–10 of those measurements made per day. Beginning in 2012, HVO pioneered a network of continuous spectrometers to measure Kilauea’s SO2 emission rate at a much higher temporal resolution than possible with vehicle-based measurements, but the network did not provide spatial information about the SO2 plume.

Once the PiCams are ready for use, they will provide both a 2-dimensional view of Kilauea’s SO2 degassing as well as a high-temporal resolution, continuous timeseries of SO2 emission rate measurements.

The continuous SO2 emission rate data will make it easier to study degassing in conjunction with other continuous datasets, like earthquake activity and ground deformation. This will give greater insight into the role of degassing in specific eruptive events, something that has not always been easy to do in the past. Similar work has been done over the past decade at many volcanoes around the world, including at Kilauea, where earthquake activity and SO2 emissions were shown to be linked during lava lake rise-fall events in 2010. The current lava lake in Halema‘uma‘u has a different configuration and set of behaviours from the 2008–18 lava lake, and HVO is eager to see what the new PiCams will reveal about the degassing of the new lake.

Source: USGS, HVO.

Panache émis par le lac de lave du Kilauea avant l’éruption de 2018 (Photos: C. Grandpey)

L’éruption du Kilauea (Hawaii) : une aubaine pour l’économie // The Kilauea eruption (Hawaii) : a godsend for the economy

Dans ses dernières mises à jour, l’Observatoire des Volcans d’Hawaii (HVO) indique que l’éruption sommitale du Kilauea se poursuit dans le cratère de l’Halema’uma’u. L’activité reste confinée au cratère, et ce scénario devrait se poursuivre dans les prochains jours.
Le lac actif a reçu environ 93 millions de mètres cubes de lave depuis le début de l’éruption le 29 septembre 2021.
Aucune activité particulière n’est observée le long des zones de rift est et sud-ouest.
Vu depuis le sommet du Kilauea, tôt le matin, le soir ou pendant la nuit, le lac de lave et la lueur qu’il émet constituent un spectacle qui attire des milliers de visiteurs. Les autorités hawaïennes sont un peu désespérées lorsque l’éruption s’arrête pendant un certain temps car cela signifie un manque à gagner pour l’économie locale.
Selon le dernier rapport du National Park Service, les visiteurs du Parc national des volcans d’Hawaï ont injecté en 2021 près de 120 millions de dollars dans l’économie de la Grande Ile.
En 2021, le Parc national a accueilli 1,3 million de visiteurs qui ont dépensé environ 117 millions de dollars dans les localités de l’île. Cela a permis d’embaucher 1 220 personnes et a rapporté au total 154 millions de dollars à la Grande Île.
Aux États-Unis en 2021, les dépenses des visiteurs dans les localités proches des parcs nationaux ont généré 42,5 milliards de dollars pour l’économie nationale et permis 322 600 emplois, principalement locaux.

On comprend mieux l’empressement à remettre en état le Parc National de Yellowstone après sa fermeture suite aux récentes inondations.
Source : Big Island Now.

——————————————–

In its latest updates, the Hawaiian Volcano Observatory (HVO) indicates that the summit eruption of Kilauea continues within Halemaʻumaʻu crater. Lava activity is confined to the crater, and this scenario is likely to continue in the coming days.

Lava continues to feed the active lake which has received about 93 million cubic meters of lava since the beginning of the eruption on September 29th, 2021.

No unusual activity has been noted along the East and Southwest Rift Zones.

The lava lake seen from the summit of Kilauea, especially in the early morning, in the evenint and at night is as show that attracts thousands of vsitors. Hawaiian authorities are a little desperate when the eruption stops for some time because it means a lack of money for the local economy.

According to a new National Park Service report, visitors to Hawaiʻi Volcanoes National Park in 2021 pumped nearly 120 million dollars in to the Big Island’s economy.

In 2021, the National Park welcomed 1.3 million visitors who spent an estimated 117 million dollars in the island communities. That spending also supported 1,220 jobs and brought a total benefit of 154 million dollarsto the Big Island.

Throughout the United States in 2021, visitor spending in communities near national parks resulted in a total of 42.5 billion dollars going to the nation’s economy and supported 322,600 mostly local jobs.

One can easily understand the eagerness to rehabilitate Yellowstone National Park after its closure due to the recent flooding.

Source: Big Island Now.

Photos : C. Grandpey

La musique du Kilauea (Hawaii) // Kilauea’s music (Hawaii)

Différentes sortes de perturbations peuvent affecter le réservoir magmatique ou le lac de lave au sommet du Kilauea : arrivée de poches de gaz, effondrements des parois du cratère dans le lac de lave, etc. Lorsqu’un réservoir magmatique ou un lac de lave est perturbé, le fluide qu’il contient peut réagir de diverses manières. Dans un lac de lave, comme celui qui existait de 2008 à 2018 dans le cratère de l’Halema’uma’u, ces mouvements de fluides peuvent parfois être observés sous forme d’ondulations ou de clapotis à la surface du lac.
Il est possible de détecter des mouvements de magma en profondeur en utilisant des sismomètres pour mesurer les vibrations du sol. Toutefois, les signaux sismiques générés par le mouvement du magma sont souvent différents des autres types de signaux sismiques. Comparé aux séismes conventionnels, le magma en mouvement génère habituellement des vibrations relativement lentes au moment où le sol monte et descend pendant un laps de temps de plusieurs secondes ou dizaines de secondes.
Pendant des décennies, les scientifiques ont interprété ces signaux sismiques comme des preuves de migration ou d’accumulation du magma en profondeur, susceptibles d’annoncer une éruption imminente. Ces dernières années, toutefois, ils ont acquis de nouvelles méthodes pour interpréter ces signaux sismiques et pour résoudre les propriétés des systèmes magmatiques.
Un réservoir magmatique ou un lac de lave vibrent plus fortement à certaines fréquences – les fréquences de résonance – qui dépendent de la géométrie du réservoir magmatique ou du lac de lave, mais aussi des propriétés du magma ou de la lave qui s’y trouve, comme la température et la teneur en gaz. Ces vibrations ressemblent à la façon dont les notes de musique produites par un instrument comme une flûte de pan sont liées à la forme de l’instrument et aux propriétés de l’air qu’il contient.
Si un magma ou une lave est très fluide, une seule perturbation peut faire résonner le corps magmatique pendant des dizaines de minutes (voir figure ci-dessous).
Les variations dans les fréquences de résonance peuvent indiquer des changements dans la quantité de gaz contenue dans le magma ou la lave, facteur important pour comprendre son potentiel éruptif. De plus, des fluctuations dans la durée de résonance peuvent indiquer des changements dans la température du magma ou de la lave, ce qui indique aux scientifiques une possible arrivée de magma juvénile à haute température.
Une telle résonance a permis de déterminer la géométrie du système magmatique sommital peu profond du Kilauea. Les scientifiques ont constaté que le conduit reliant le réservoir sommital peu profond au lac de lave dans le cratère de l’Halema’uma’u de 2008 à 2018 mesurait plus de 15 mètres de large. Cette résonance a également révélé la dynamique complexe du magma au cours de la dernière décennie, ce qui explique le niveau d’activité élevé du volcan Kilauea.
Source : HVO.
L’article ne précise pas si le Kilauea vibre ces jours-ci, mais l’activité dans le cratère de l’Halena’uma’u est relativement faible. La lave alterne apparitions et disparitions sur le plancher du cratère.

—————————————-

Different types of disturbances may affect Kilauea’s summit magma reservoir or the lava lake : rising gas pockets, the fall of wall rocks into a lava lake, and so on. When a body of magma or lava is disturbed, the fluid in it can respond in a variety of ways. In a lava lake, such as the one that existed from 2008–2018 in Halema‘uma‘u crater, these fluid motions can sometimes be observed as ripples or sloshing of the surface.

One can also detect deeper magma motion by using seismometers to measure ground vibrations. The seismic signals generated by magma motion are often distinct from other types of seismic signals. Compared to normal earthquakes, magma motion usually produces relatively slow vibrations, where the ground rises and falls over several seconds or tens of seconds.

For decades scientists have been interpreting these seismic signals as evidence of underground magma migration or accumulation, which can be used to look for signs that might indicate an impending eruption. In recent years, scientists have been learning new methods to use these seismic signals to resolve properties of underground magma systems.

Magma or lava bodies vibrate most strongly at certain frequencies – resonant frequencies – that depend on the body’s geometry and the properties of the magma or lava it contains, such as temperature and gas content. This is similar to how the musical notes produced by an instrument like a pan flute depend on the instrument’s shape and the properties of the air in it.

If a magma or lava is very fluid, then a single perturbation can cause the magma body to resonate for tens of minutes (see figure below).

Changes in the resonance frequencies can indicate changes in the amount of gas contained within the magma or lava, which is important for understanding its eruptive potential. Additionally, changes in the resonance duration can indicate changes in the magma or lava temperature, which tells scientists if fresh hot magma is being brought up from deeper in the earth.

Such resonance has helped to reveal Kilauea’s shallow summit magma system geometry, for example suggesting that the conduit connecting its shallow summit magma reservoir with the overlying lava lake in Halema‘uma‘u from 2008–2018 was more than 15 meters wide. It has also revealed complex magma dynamics over the past decade which inform the restless nature of Kilauea Volcano.

Source : HVO.

The article does not specify whether Kilauea is vibrating these days, but activity within Halena’uma’u Crater is quite low, with lava appearing or disappearing on the crater floor.

Le graphique du haut montre le tracé d’un séisme classique peu profond, de magnitude M 2,0 enregistré en 2013 à quelques kilomètres au sud du sommet du Kilauea.

Le tracé du bas montre un enregistrement sismique, effectué en 2013, de la résonance du magma lors de l’impact produit par un rocher qui s’était détaché d’une paroi du cratère de l’Halema’uma’u. On notera les différentes échelles de temps; le séisme classique n’a duré qu’une vingtaine de secondes alors que chaque cycle d’oscillation du magma dans le graphique du bas a duré 40 secondes et les vibrations ont continué pendant plus de 20 minutes.