Le réchauffement pendant les mois d’été en Europe est beaucoup plus rapide que la moyenne mondiale. Une étude menée par des chercheurs de l’Université de Stockholm suggère qu’en plus des émissions de gaz à effet de serre, une part substantielle de la hausse des températures est liée à la diminution des aérosols en Europe centrale et orientale.
La température moyenne à la surface du globe sur la période 2011-2020 est supérieure de 1,1 °C environ par rapport à 1850-1900, avec des augmentations plus importantes à la surface des terres (1,59 °C) que des océans (0,88 °C). Cette augmentation est principalement due aux gaz à effet de serre. Une partie du réchauffement a cependant été masquée par les aérosols. Les particules d’aérosols affectent le rayonnement solaire entrant, c’est-à-dire qu’elles dispersent une partie de la lumière du soleil vers l’espace, provoquant un effet de refroidissement. Lors des éruptions volcaniques majeures, on a observé que les aérosols contenus dans les gaz émis par un volcan pouvaient faire s’abaisser de quelques dixièmes de degré, voire quelques degrés, la température de la partie du globe concernée. Les particules d’aérosols ont en moyenne une durée de vie d’environ une semaine, ce qui signifie qu’elles refroidissent principalement le climat localement ou régionalement et à court terme.
Les gaz à effet de serre ont une longue durée de vie dans l’atmosphère. Le cumul des émissions anthropiques de dioxyde de carbone peut affecter le climat pendant des centaines d’années. Les gaz à effet de serre se propagent uniformément sur toute la planète.
Les aérosols anthropiques sur de grandes parties de l’Europe ont temporairement masqué, jusque vers 1980, une partie du réchauffement dû à l’augmentation des gaz à effet de serre. Un renversement de tendance, avec diminution des aérosols au cours de la période 1979-2020, a entraîné une augmentation du rayonnement solaire atteignant la surface du continent européen.
Parallèlement à la diminution des aérosols, la température en Europe s’est élevée considérablement au cours de la période 1991-2021, à raison d’environ +0,5 °C par décennie. Cela représente deux fois la moyenne mondiale et il s’agit du réchauffement le plus rapide de toutes les régions de l’OMM. Seules certaines régions polaires connaissent un réchauffement plus rapide.
Le réchauffement rapide en Europe centrale et orientale est d’abord et avant tout une conséquence des émissions humaines de gaz à effet de serre. Mais comme les émissions de particules d’aérosol, notamment celles des centrales au charbon, ont considérablement diminué au cours des quatre dernières décennies, l’effet combiné a conduit à une augmentation extrême de la température de plus de 2°C au lieu d’environ 1,1°C pour la moyenne mondiale.
La diminution des aérosols a moins joué en revanche dans le sud de l’Europe et notamment la péninsule ibérique où le réchauffement est amplifié en raison d’un sol plus sec et d’une diminution de l’évaporation. La couverture nuageuse a été réduite sur de grandes parties de l’Europe, probablement en raison de la moindre vapeur d’eau dans l’air.
Si les concentrations d’aérosols diminuent à l’avenir, d’autres régions de la Terre où la charge d’aérosols anthropiques est actuellement élevée connaîtront probablement un réchauffement accéléré quand le forçage des aérosols diminuera. La situation en Europe pourrait être un signe avant-coureur du réchauffement attendu dans les zones où les émissions d’aérosols sont aujourd’hui élevées. L’Inde était en 2019 le premier émetteur de SO2 anthropique de la planète avec 15% du total.
Source: global-climat.
———————————————–
Warming during the summer months in Europe is much faster than the global average. A study by researchers at Stockholm University suggests that in addition to greenhouse gas emissions, a substantial part of the rise in temperatures is linked to the decrease in aerosols in central and eastern Europe.
The average temperature on the surface of the globe over the period 2011-2020 was approximately 1.1°C higher than in 1850-1900, with greater increases on the surface of the land (1.59°C) than in the oceans (0.88°C). This increase is mainly due to greenhouse gases. Some of the warming, however, was masked by aerosols. Aerosol particles affect incoming solar radiation, i.e. they scatter some of the sunlight out to space, causing a cooling effect. During major volcanic eruptions, it has been observed that the aerosols contained in the gases emitted by a volcano could lower the temperature by a few tenths of a degree, or even a few degrees. Aerosol particles have an average lifespan of a bout a week, which means that they mainly cool the climate locally or regionally and in the short term.
Greenhouse gases have a long lifetime in the atmosphere. The cumulative anthropogenic emissions of carbon dioxide can affect the climate for hundreds of years. Greenhouse gases spread evenly across the planet.
Anthropogenic aerosols over large parts of Europe temporarily masked, until around 1980, part of the warming due to the increase in greenhouse gases. A reversal of the trend, with a decrease in aerosols during the period 1979-2020, led to an increase in solar radiation reaching the surface of the European continent.
In parallel with the decrease in aerosols, the temperature in Europe has risen considerably over the period 1991-2021, at an average rate of about +0.5°C per decade. This is twice the global average and is the fastest warming of any WMO region. Only some polar regions are experiencing faster warming.
Rapid warming in Central and Eastern Europe is first and foremost a consequence of human greenhouse gas emissions. But as aerosol particulate emissions, especially from coal-fired power plants, have declined dramatically over the past four decades, the combined effect has led to an extreme temperature increase of more than 2°C instead of about 1.1°C for the world average.
The decrease in aerosols, on the other hand, played less of a role in southern Europe and in particular the Iberian Peninsula, where the warming is amplified due to drier soil and a decrease in evaporation. Cloud cover has been reduced over large parts of Europe, likely due to less water vapour in the air.
If aerosol concentrations decline in the future, other regions of the Earth where anthropogenic aerosol loading is currently high will likely experience accelerated warming as aerosol forcing declines. The situation in Europe could be a harbinger of expected warming in areas where aerosol emissions are now high. India was in 2019 the first anthropogenic SO2 emitter on the planet with 15% of the total.
Source: global-climat.
Graphique montrant l’évolution des émissions de SO2 anthropiques par région. (Source : Smith et Al. (2011)