Les effets du changement climatique dans les Alpes (3) : Gestion de l’eau et des risques naturels

Le réchauffement climatique et la fonte des glaciers impliqueront forcément une nouvelle gestion de l’eau qui ne se bornera plus à un simple ajustement aux modifications de l’environnement naturel. Elle devra aussi tenir compte des changements socio-économiques. Dans les régions où l’irrigation agricole est pratiquée, la demande en eau pourrait dépasser les ressources lors d’étés caniculaires et très secs. De nouvelles réglementations sur l’allocation de la ressource hydrique à différents usagers, l’installation de nouveaux réservoirs, et des améliorations techniques devront être mises en place.

Les grands barrages alpins seront affectés dès la deuxième moitié du 21èmesiècle, par le fort retrait attendu des glaciers, les eaux de fonte ne remplissant plus autant les lacs de retenue qu’actuellement. De ce fait, les capacités de stockage pourraient être réduites, avec pour conséquence une diminution de la production hydroélectrique. Il en résultera des difficultés à répondre à une demande en électricité qui se décalera progressivement depuis l’hiver vers l’été, en raison des besoins en climatisation. Cela nécessitera de mettre en place une gestion optimale de l’eau dans le réseau interconnecté des grands barrages, ainsi que des mécanismes économiques permettant d’influencer l’offre et la demande.

++++++++++

En termes de risques naturels dans les Alpes, l’effet cumulé de précipitations intenses dans les régions de basse et moyenne altitude conduirait à de forts taux d’érosion des pentes. L’augmentation attendue  de précipitations extrêmes devrait entraîner une augmentation de la fréquence et de la sévérité des crues. Ce genre de situation a prévalu dans un proche passé, par exemple en février 1995 lorsque la fonte précoce du manteau neigeux dans les Alpes, associée à des pluies abondantes en Allemagne, ont mené à des crues tout au long du parcours du Rhin.

Il faudra aussi prendre en compte le risque d’effondrements et de lahars provoqués par la fonte du permafrost rocheux en haute altitude. Plusieurs exemples ont récemment été observés en Suisse et en Italie.

Source : Encyclopédie de l’Environnement.

Barrage de Roselend (Savoie) [Crédit photo: Wikipedia]

Eboulement en Suisse (image YouTube)

Les effets du changement climatique dans les Alpes (2) : Neige et glaciers

La neige est une composante essentielle du système hydrologique de montagne. Tout changement dans la quantité, la durée et le caractère saisonnier du manteau neigeux peut avoir des conséquences durables au niveau environnemental et économique. Les régimes de température et d’humidité, fortement influencés par le climat, contrôlent le comportement de la neige et de la glace. En montagne, une hausse moyenne de 1°C s’accompagne d’une élévation de l’altitude limite moyenne de la neige d’environ 150 mètres. C’est pourquoi la durée de la saison d’enneigement a eu tendance à diminuer depuis les années 1970 dans beaucoup de stations alpines, avec cependant une grande variabilité d’année en année. Ceci est particulièrement vrai pour les stations se situant en dessous d’une altitude d’environ 1500 mètres. En revanche à des altitudes supérieures à 2500 mètres, une augmentation de la durée d’enneigement et de la profondeur du manteau neigeux a été constatée à certains endroits.

D’après les prévisions climatiques, des conditions hivernales moins froides associées à des précipitations plus importantes dans les Alpes contribueront à augmenter la quantité de neige à haute altitude. Par contre, on assistera à une forte diminution de l’enneigement dans les régions de basse et moyenne altitude, là où les précipitations auront tendance à tomber sous forme de pluie. Selon de nombreux modèles climatiques, dans le cas où les températures minimales de l’hiver augmenteraient de 4°C, on estime que la durée d’enneigement se réduirait de plus de 100 jours dans la tranche d’altitude entre 1500 et 2500 mètres d’altitude. À basse altitude, cette augmentation des températures aurait pour conséquence la quasi-disparition de la neige pendant la plupart des hivers, alors que les changements à très haute altitude seraient minimes.

La multiplication des hivers peu enneigés engendrera des problèmes économiques pour des stations de basse et de moyenne altitude (jusqu’aux alentours de 1 200-1 800 mètres d’altitude). Une diversification de l’offre touristique au-delà de l’industrie du ski s’avérera nécessaire pour la plupart des stations de montagne alpines.

+++++++++++

Je ne m’attarderai pas sur les effets du réchauffement climatique sur les glaciers. L’essentiel a été dit dans les notes précédentes. Il est bien évident cet impact est considérable. Le volume d’un glacier, qui se traduit par sa surface et son épaisseur, est déterminé par l’équilibre entre l’accumulation de neige et la fonte du glacier. Si le climat change, cet équilibre sera modifié. La plupart des glaciers alpins à l’exception de ceux de très haute altitude (plus de 3500-4000 m) présentent des températures de surface et internes très proches du point de congélation. La moindre augmentation de la température au-dessus de ce seuil de 0°C peut donc entraîner une réponse très marquée des glaciers. Entre 1850 et 2000, les glaciers des Alpes européennes ont ainsi perdu entre 30 et 40% de leur superficie et environ la moitié de leur volume. Une constatation similaire a été faite sur de nombreux glaciers de montagnes de la planète, tant aux latitudes moyennes que sous les tropiques. La plupart des études indiquent que 50 à 90% des glaciers de montagne existants pourraient disparaître d’ici à 2100 selon l’ampleur du réchauffement climatique à venir.

Source : Encyclopédie de l’Environnement.

Glacier d’Aletsch (Alpes suisses)

Glacier d’Argentière (Alpes françaises)

Mer de Glace (Alpes françaises)

Photos: C. Grandpey

Les effets du changement climatique dans les Alpes (1) : Fleuves et rivières

Comme je l’ai indiqué à maintes reprises, le réchauffement climatique a un effet considérable sur les glaciers. Ceux des Alpes se réduisent à vue d’œil. Les impacts de cette fonte seront considérables dans les décennies à venir.

De nombreuses rivières qui alimentent l’Europe occidentale et centrale prennent leur source dans les Alpes et en particulier en Suisse.  La région des Alpes Suisses Centrales comprise dans un rayon de 30 km autour du Col du Saint-Gothard irrigue à elle seule quatre bassins majeurs : la Mer du Nord  par le bassin du Rhin, la Méditerranée par le bassin du Rhône, l’Adriatique par le bassin du Po, et enfin la Mer Noire par le biais de l’Inn. Plus de 150 millions de personnes vivent dans ces différents bassins.

La fonte des glaciers aura des conséquences sur le débit des fleuves et rivières. Pour un fleuve comme le Rhône, les écoulements et leur variabilité interannuelle sont influencés par l’évaporation, les précipitations, le stockage d’eau en réservoirs artificiels et les eaux de fonte de la neige et de la glace.  Pour la période de référence 1961-1990, le débit du Rhône a été fortement influencé par la fonte du manteau neigeux entre le printemps et le milieu de l’été, alors qu’après cette fonte et pendant la période généralement la plus chaude et sèche de l’été, ce sont les écoulements liés à la fonte estivale des glaciers qui continuent à assurer des quantités d’eau conséquentes dans le Rhône.

D’ici à la fin du 21ème siècle, on s’attend à de profonds changements dans les débits de la partie alpine du Rhône. En effet, les projections des modèles climatiques laissent entrevoir pour les Alpes centrales un réchauffement atmosphérique en toutes saisons, avec un décalage saisonnier des régimes de précipitations. Les débits maximaux pourraient se manifester deux à trois mois plus tôt dans l’année, à cause d’une fonte plus précoce du manteau neigeux, alors que la quantité d’eau maximale serait réduite car le volume total du manteau neigeux serait fortement restreint d’ici à 2100.

Étant donné que les glaciers risquent d’avoir presque totalement disparu d’ici la fin du siècle, il n’y aura plus cette réserve d’eau indispensable qui, dans le climat actuel, sert à éviter les étiages sévères. En situation de forte canicule et de déficits hydriques importants, comme en 2003, il est même possible qu’une rivière comme le Rhône se tarisse pendant une partie de l’été et de l’automne.

Quelle que soit la nature du changement des caractéristiques hydrologiques de nombreux cours d’eau ayant leur source dans les Alpes suisses, les changements des régimes climatiques en montagne se répercuteront dans les régions peuplées de basse altitude. Celles-ci dépendent des ressources en eau provenant des Alpes pour leurs usages domestiques, agricoles, énergétiques et industriels.

Source : Encyclopédie de l’Environnement.

Glacier du Rhône et naissance du fleuve (Phoyos: C. Grandpey)

Kilauea (Hawaii): Quelques réflexions sur l’éruption // A few thoughts about the eruption

Même si le HVO ne cesse de répéter qu’il faut attendre plusieurs semaines pour être certain que l’éruption est effectivement terminée, on peut raisonnablement dire que la lave ne coulera plus dans la Lower East Rift Zone (LERZ) et le District de Puna.

Débutée le 3 mai 2018, cette dernière éruption a été l’une des plus spectaculaires jamais observées au cours des dernières décennies. Aucun mort n’est à déplorer et seules deux personnes ont été blessées par des bombes volcaniques projetées par la lave. En revanche, les dégâts matériels sont considérables car plus de 700 maisons ont été détruites.

Si je devais faire le bilan de cette éruption, j’insisterais sur plusieurs points :

Les informations ont été de grande qualité, qu’elles soient en provenance du HVO ou de la Protection Civile. Les bulletins – souvent relayés par la presse locale – étaient très complets et illustrés de nombreuses photos ou vidéos. Les autorités ont vraiment joué la transparence.

– Si les images étaient largement disponibles sur Internet, l’approche de l’éruption par les touristes et les personnes autres que les scientifiques et les membres de la Protection Civile a été une catastrophe. Ce fut vraiment « l’éruption interdite ». Il a souvent été question de la mise en place d’une ou plusieurs plateformes d’observation, mais elles n’ont jamais vu le jour. La seule solution pour les touristes était donc de mettre la main au portefeuille et d’acheter des survols en hélicoptère ou des approches des coulées par la mer. A se demander si la volonté des autorités n’était pas de faire travailler ces structures commerciales. Personnellement, je ne suis pas loin de le penser ! Vouloir mettre l’accent sur la sécurité comme le font en permanence les Américains dans les parcs nationaux et autres sites potentiellement ouverts aux touristes, c’est bien, mais il ne faut pas pousser le bouchon trop loin !

– D’un point de vue scientifique, on a eu la confirmation de notre incapacité à prévoir le déroulement d’une éruption. On sent d’ailleurs la gêne et la frustration des scientifiques locaux qui se sont faits surprendre par la fin relativement rapide de l’éruption alors qu’ils avaient misé sur un événement de longue durée.

Le démarrage de l’éruption était prévisible car il était évident que le réservoir magmatique sommital était à saturation avec des débordements des lacs de lave dans l’Halema’uma’u et le Pu’uO’o. De plus, cela faisait plusieurs mois que les tiltmètres montraient que le Kilauea traversait une longue phase d’inflation. La sortie de la lave était donc assez facile à pronostiquer, même si personne ne savait où l’événement allait avoir lieu. A aucun moment l’Observatoire n’a prévu son apparition dans les Leilani Estates. Les scientifiques n’ont pu que constater la sortie de la lave.

La suite et la fin de l’éruption ont fait l’objet de nombreux articles. Toutes les hypothèses ont été avancées, tant pour l’activité sommitale que le long de l’East Rift Zone. Comme je l’écrivais précédemment, beaucoup pensaient que l’éruption pourraient durer des mois, voire des années. D’autres s’attendaient à un regain d’activité quand la Fracture n° 8 a montré des signes de faiblesse et n’a plus envoyé la lave dans le chenal vers l’océan, mais Madame Pele a décidé de siffler la fin de la partie.

– Toujours d’un point de vue scientifique, l’éruption a montré que l’intrusion initiale dans la Lower East Rift Zone avait remobilisé une ancienne lave plus froide et plus « évoluée » que celle observée dans les lacs de lave de l’Halema’uma’u et du Pu’uO’o. La lave émise dans la LERZ au début de l’éruption dans les Leilani Estates était semblable à la première lave émise lors de l’éruption de 1955 dans la même région. Au cours des jours suivants, les analyses chimiques ont révélé une lave progressivement plus chaude et moins évoluée, jusqu’à ce qu’elle se stabilise à des températures de 1130-1140°C et débouche sur l’éruption spectaculaire de la Fracture n° 8. C’est la première fois qu’une telle évolution dans la nature de la lave a pu être observée et étudiée en direct sur le terrain.

– Autre point positif : Les scientifiques ont pu observer en direct l’affaissement simultané du cratère sommital qui accompagnait la vidange du réservoir magmatique peu profond et l’évacuation de la lave dans la Lower East Rift Zone. L’événement a été particulièrement spectaculaire, avec de gros effondrements qui ont généré une forte sismicité dans toute la zone sommitale.

– Comme je l’ai indiqué plus haut, le bilan matériel est lourd avec des centaines de structures avalées par la lave. Beaucoup se demandent pourquoi des lotissements ont été autorisés dans une zone de fractures (Rift Zone) déjà envahie par la lave dans les décennies précédentes. La réponse est facile : parce que le terrain est beaucoup moins cher qu’ailleurs sur la Grande Ile, en particulier dans le secteur de Kailua-Kona. Dans le District de Puna, on se trouve près de la mer, dans de très beaux paysages et les terrains ne coûtent pas trop cher. S’y établir est un peu jouer à la roulette russe car la lave peut surgir sans prévenir.

Si votre habitation est détruite, va se poser le problème de l’assurance et des dédommagements. Il faut savoir que les polices d’assurances liées aux risques naturels comme les séismes et les éruptions sont très, très chères aux Etats-Unis et beaucoup d’habitations ne sont pas assurées contre ces sinistres. Vous allez me dire : On peut faire jouer la garantie incendie, étant donné que la maison a flambé ! Eh bien non ! Pour que la garantie incendie soit acceptée par les assureurs, il faut que les fondations de la maison soit apparentes après le sinistre, ce qui n’est pas le cas si une coulée de lave est passée par là.

Seules des aides locales et fédérales peuvent venir en aide aux sinistrés, mais elles seront loin de couvrir le montant des dommages subis. Certains ont essayé de négocier des aides à l’amiable avec leurs compagnies d’assurances alors que d’autres préfèrent passer par des actions en justice.

—————————————————

Even though HVO keeps repeating that we need to wait several weeks to be certain that the eruption is actually over, it is reasonable to say that lava will no longer flow in the Lower East Rift Zone (LERZ) and the Puna District. .
Started on May 3rd, 2018, this eruption was one of the most dramatic ever observed in recent decades. No deaths were reported and only two people were injured by volcanic bombs. However, the material damages are considerable because more than 700 houses were destroyed.
If I had to analyse this eruption, I would insist on several points:

The information was of a high quality, whether from HVO or the Civil Defense. The reports – often relayed by the local press – were very complete and illustrated with many photos or videos. The authorities really played transparency.

– If the images were widely available on the Internet, the approach of the eruption by tourists and people other than scientists and members of the Civil Defense was a disaster. It was really « the forbidden eruption« . There has often been talk of setting up one or more observation platforms, but they have never existed. The only solution for the tourists was therefore to buy helicopter overflights or approach the eruption from the sea. One may wonder wonder if the authorities’ aim was not to bring work to these commercial structures. Personally, I’m not far from thinking it! It is a good idea to focus on safety, as Americans are always doing in national parks and other sites that are potentially open to tourists, but the safety measures are often exaggerated!

– From a scientific point of view, there was the confirmation of our inability to predict the course of an eruption. We can feel the embarrassment and frustration of local scientists who were surprised by the relatively rapid end of the eruption while they had bet on a long-term event.
The onset of the eruption was predictable as it was obvious that the shallow magma reservoir was saturated. The lava lakes in Halema’uma’u and Pu’uO’o often overflowed. In addition, the tiltmeters had shown for several months that Kilauea was going through a long period of inflation. The breakout of lava was easy enough to predict, although no one knew where it was going to take place. At no time has the Observatory anticipated its appearance in the Leilani Estates. Scientists could only observe the event.
The continuation and the end of the eruption have been the subject of many articles. All the hypotheses have been suggested, both for activity at the summit and along the East Rift Zone. As I put it earlier, many scientists thought the eruption could last for months or even years. Others were expecting a renewal of activity when Fracture # 8 showed signs of weakness and no longer sent lava in the channel to the ocean, but Madame Pele decided to blow the whistle.

– Still from a scientific point of view, the eruption has shown that the initial intrusion into the Lower East Rift Zone remobilized an older, colder and more « evolved » lava than the one observed in the Halema’uma’u and Pu’uO’olava lakes. The lava emitted in the LERZ at the beginning of the eruption in the Leilani Estates was similar to the first lava emitted during the 1955 eruption in the same region. Over the following days, the chemical analyzes revealed a progressively warmer and less evolved lava until it stabilized at temperatures of 1130-1140°C and resulted in the dramatic eruption of Fracture no. 8. This was the first time such an evolution in the nature of lava could be observed and studied live on the field.

– Another positive point was that scientists were able to observe live the simultaneous collapse of the summit crater that accompanied the emptying of the shallow magma reservoir and the evacuation of the lava in the Lower East Rift Zone. The event was particularly spectacular, with large collapses that generated strong seismicity throughout the summit area.

– As I indicated above, the material outcome is severe with hundreds of structures swallowed by lava. Many people are wondering why building houses was allowed in a Rift Zone already invaded by lava in previous decades. The answer is easy: because the land is much cheaper than elsewhere on the Big Island, especially in the ​​Kailua-Kona area. In the District of Puna, houses are near the sea, in beautiful landscapes and the land is not too expensive. However, settling there is a little Russian roulette because the lava can come out any time, without warning.
If your home is destroyed, there will be the problem of insurance and compensation. You should know that insurance policies related to natural hazards such as earthquakes and eruptions are very, very expensive in the United States and many homes are not insured against these damages. You might be inclined to use fire warranty, since the house has been burnt! You would be wrong ! For the fire insurance to be accepted by insurers, the foundations of the house must be apparent after the disaster, which is not the case if a lava flow has passed through.
Only local and federal funds can help the victims, but they will not be enough to finance the damage suffered during the eruption. Some owners have tried to negotiate out-of-court assistance with their insurance companies, while others prefer to go to court.

Crédit photo: USGS / HVO