Etude de l’Orakei Basin à Auckland (Nouvelle Zélande) // Study of Orakei Basin in Auckland (New Zealand)

drapeau-francaisEn Nouvelle-Zélande, la ville d’Auckland a été construite sur un champ volcanique potentiellement actif. L’Orakei Basin (voir image satellite ci-dessous) est aujourd’hui un endroit très prisé des amateurs de sports nautiques dont beaucoup ignorent probablement qu’il s’agit de l’un des volcans de l’Auckland Volcanic Field. . Il présente un cratère d’explosion d’environ 700 mètres de diamètre, bordé d’un anneau de tuf. Après une éruption il y a environ 85 000 ans, le cratère s’est rempli d’un lac d’eau douce dont le déversoir se situait dans les environs du pont actuel sur Orakei Road. Lorsque le niveau de la mer s’est élevé au terme de la dernière période glaciaire, le lac, qui était alors devenu un marécage, a été envahi par la mer et est devenu le lagon que nous connaissons aujourd’hui.
Les scientifiques ont foré jusqu’à plus de 100 mètres sous l’Orakei Basin afin de mettre à jour l’histoire éruptive de l’ancien site d’Auckland. Les échantillons récemment extraits d’anciens dépôts de sédiments lacustres donneront des détails sur les éruptions volcaniques qui ont secoué la région sur une période qui remonte probablement à 140 000 ans. L’activité éruptive des 53 volcans de l’Auckland Volcanic Field remonte à quelque 250 000 ans, avec les événements les plus récents à Rangitoto il y a entre 550 et 600 ans. Nous savons déjà beaucoup de choses sur la région, en particulier sur les 50 000 dernières années, mais nos connaissances sont très réduites sur les périodes éruptives précédentes. .
Bien qu’il soit devenu un estuaire peu profond suite à l’activité explosive qui l’a formé, l’Orakei Basin a surtout été, au cours de son histoire, un lac d’eau douce profond au fond duquel se sont accumulés des sédiments, des cendres volcaniques et des vestiges biotiques, autrement dit les restes d’interactions du vivant sur le vivant dans cet écosystème. Les sédiments lacustres se sont, pour la plupart, déposés en fines couches et joueront un rôle essentiel dans la compréhension de l’histoire des éruptions passées dans et autour de la ville d’Auckland. .
Tout en permettant une meilleure compréhension des risques volcaniques à Auckland, les échantillons permettront également aux scientifiques de reconstituer le climat de la région au cours des 100 000 dernières années. Ils pourront ainsi établir une comparaison avec des échantillons correspondants recueillis sous la glace de l’Antarctique et ailleurs sur la planète, à une époque où on essaye de tirer des leçons de périodes plus chaudes du passé de la Terre.
Source: New Zealand Herald.

———————————-

drapeau anglaisIn New Zealand, Auckland was built on a potentially active volcanic field. A popular place for watersports today is the Orakei Basin (see satellite image below). It is one of the volcanoes in an area known as the Auckland Volcanic Field. It has an explosion crater around 700 metres wide, with a surrounding tuff ring. After an eruption that occurred about 85,000 years ago, it became a freshwater lake that had an overflow stream in the vicinity of present Orakei Road bridge. As sea level rose after the end of the Last Ice Age, the lake, which by then had shallowed to a swamp, was breached by the sea and has been a lagoon ever since.
Scientists have probed more than 100 metres beneath Orakei Basin in order to reveal the explosive history of ancient Auckland. The samples they have just retrieved from ancient deposits of lake sediment will detail volcanic eruptions that have taken place in the region over a period potentially stretching back 140,000 years. Eruptive activity among the 53 volcanoes of the Auckland Volcanic Field went back some 250,000 years – and most recently, at Rangitoto, between 550 and 600 years ago. We know quite a lot, especially about the last 50,000 years, but prior to that, we have very little understanding of the eruptive events.
Although it’s now a shallow estuary, following the volcanic explosion that formed it, the Orakei Basin was for most of its history a deep freshwater lake collecting sediment, volcanic ash and biotic remains. These lake sediments were mostly very finely layered and would be crucial in compiling the most detailed history of past eruptions in and around the city area.
Along with a better understanding of Auckland’s volcanic risks, the samples might also help scientists reconstruct the region’s climate over the past 100,000 years. These would provide a comparison to corresponding records recovered from deep below the ice in Antarctica and elsewhere on the planet, at a time scientists are racing to learn lessons from warmer periods in the Earth’s past.
Source : New Zealand Herald.

Orakei Basin

Image satellite de l’Orakei Basin (Source: Google maps)

Les tests nucléaires nord-coréens peuvent-il déclencher une éruption du Mt Baekdu? // Can North Korean nuclear tests trigger an eruption of Mt Baekdu?

drapeau-francaisLe sujet réapparaît de temps à autre, un peu comme le monstre du Loch Ness, et aucune preuve réelle n’a jamais été donnée de son existence. La question est de savoir s’il peut y avoir un lien entre les séismes d’origine naturelle ou humaine et l’activité volcanique. Il y a quelques mois, les Japonais s’inquiétaient de l’effet possible du séisme de M 9 – qui a secoué le pays le 11 Mars 2011 – sur le Mont Fuji dont la chambre magmatique aurait pu être déstabilisée par l’événement. Au moment où j’écris ces lignes, rien ne montre que le Mont Fuji est sur le point d’entrer en éruption!
Après le dernier essai nucléaire effectué par la Corée du Nord (le 4ème depuis 2006), une équipe de scientifiques sud-coréens a indiqué que les séismes qui accompagnent inévitablement les tests pourraient déclencher une éruption du Mont Baekdu (2.750 m), une montagne de Corée du Nord située à proximité du site où ils ont lieu. Un professeur de sismologie à l’Université de Séoul a déclaré que les mouvements du sol pouvaient induire des changements de contraintes dynamiques. Cela peut entraîner une surpression dans la chambre magmatique et accélérer l’activité volcanique. Ce fut le principal argument utilisé par des scientifiques japonais à propos du Mount Fuji.
Le Mont Baekdu, un stratovolcan actif, est situé à 116 kilomètres du site nord-coréen d’essais nucléaires. Le professeur pense qu’il est suffisamment proche pour être affecté par un événement sismique de magnitude moyenne ou forte. La dernière éruption a eu lieu en 1903.
En 2011, à la demande de la Corée du Nord, à la suite du séisme et du tsunami dévastateurs au Japon, des scientifiques des deux Corées se sont rencontrés pour parler de l’activité du Mont Baekdu. Cependant, les deux parties n’ont pas réussi à tenir de nouvelles réunions ou mettre en place un travail sur le terrain.
Le Mont Baekdu a une signification importante pour les deux Corées. Pyongyang affirme que c’est le lieu de naissance de son ancien dirigeant, Kim Jong-il, le défunt père de l’actuel dirigeant Kim Jong-un. La montagne est également mentionnée dans l’hymne national de la Corée du Sud.
Source: The Korean Herald.

 ————————————–

drapeau anglaisThe topic reappears from time to time, a little like the Loch Ness monster, and no real proof has ever been given of its existence. The question is to know whether there can be a link between natural or man-triggered earthquakes and volcanic activity. A few months ago, the Japanese worried about the possible effect of the M 9 earthquake (March 11th 2011) and the possible reaction of Mount Fuji whose magma chamber might have been destabilised by the event. At the moment I’m writing these lines, there is nothing to show that Mount Fuji is about to erupt!
After the last nuclear test performed by North Korea (the 4th one since 2006), a team of South Korean experts warned that the accompanying earthquakes might trigger a volcanic eruption of Mount Baekdu (2,750 m), a North Korean mountain situated close to the test site. A professor of seismology at Seoul’s University said that strong ground motion can induce large dynamic stress changes. This may cause overpressure in the magma chamber of a volcano, thus accelerating volcanic activity. This was the main argument already used by Japanese scientists about Mount Fuji.
Mount Baekdu, an active stratovolcano, is located 116 kilometres away from the North Korean test site. The professor thinks it is close enough to be potentially affected by a moderate-sized or large seismic event. The last eruption occurred in 1903.
In 2011, experts of the two Koreas held talks on potential volcanic activity on Mount Baekdu at the North’s request, following the devastating earthquake and tsunami in Japan. However, the two sides have since failed to hold further talks or conduct an on-site survey of the mountain.
The mountain holds significance for both South and North Korea. Pyongyang claims it as the birthplace of its former leader, Kim Jong-il, the late father of the current leader Kim Jong-un. It is mentioned in the national anthem of South Korea.
Source : The Korean Herald.

 Baekdu

Caldeira sommitale du Mont Baekdu (Crédit photo: Wikipedia)

Failles et activité sismique à Hawaii // Faults and seismic activity in Hawaii

drapeau-francaisLes séismes sont monnaie courante sur la Grande Ile d’Hawaii et, la plupart du temps, ils sont dus à des mouvements de failles, suite à l’activité volcanique du Kilauea. Le 12 février 2016 à 09h23 (heure locale), un nouveau séisme de M 4,1 a été enregistré sous le flanc sud du volcan, l’une des zones sismiques les plus actives des États-Unis. Toutefois, l’événement est survenu sur une faille qui a généré des événements destructeurs au cours des dernières années.
Les failles responsables de la majorité des séismes sur le flanc sud du Kilauea appartiennent au système Hilina. Ce système comprend les failles qui donnent naissance à des falaises (pali en hawaiien) le long de la côte sud-est d’Hawaï. Hilina Pali et Hōlei Pali en sont des exemples typiques. Sous ces failles, on en observe un autre type, plus rare, appelé faille de « décollement ». L’analyse du dernier séisme du 12 février indique qu’il a probablement eu lieu sur cette structure particulière.
Une faille de « décollement » – également appelée «faille de détachement» – fait référence à une faille quasiment horizontale qui est souvent complètement enterrée. S’agissant du Kilauea, une faille de « décollement » existe à l’interface entre le fond marin et le volcan sus-jacent. Le glissement qui se produit le long de cette faille est en partie provoqué par l’intrusion magmatique le long de l’East Rift Zone du Kilauea qui exerce une pression sur le flanc sud du volcan et le pousse vers la mer.
Les données fournies par le réseau GPS du HVO montrent que, la plupart du temps, les mouvements du flanc sud du Kilauea se produisent à un rythme régulier, à raison d’environ 6 cm par an. On a alors affaire à un glissement stable le long de la faille, ce qui ne provoque pas de séismes majeurs. .
Cependant, le « décollement » du flanc sud du Kilauea n’est pas toujours aussi régulier. Il peut également se produire par à-coups d’une durée de quelques secondes qui génèrent des séismes ressentis par la population.
Alors que les failles qui ont donné naissance à Hilina Pali, Hōlei Pali, et autres falaises le long de la côte sud de Big Island produisent la majorité des séismes (en général de faible intensité) dans cette région, la faille de « décollement » est responsable des séismes les plus puissants.
Ainsi, en 1989, un événement de ce type a déclenché un séisme de M 6,1 qui a blessé cinq personnes, détruit cinq maisons, et a été ressenti dans toute la Grande Ile. La secousse la plus forte a été localisée dans le Lower Puna District, secteur qui connaît depuis cette époque une croissance rapide de la population.
En 1975, un séisme de M 7,7 à Kalapana a été encore plus destructeur. À l’époque, il y avait peu d’habitations à proximité de l’épicentre, mais de fortes secousses ont eu lieu dans tout le district de Puna et à Hilo, qui a subi des dégâts importants. Le séisme a également entraîné un affaissement de la côte atteignant parfois 3,5 mètres, avec un tsunami qui a causé la mort de deux personnes.
Source: USGS / HVO.

———————————-

drapeau anglaisEarthquakes are quite frequent on Hawaii Big Island and are mostly caused by fault movements generated by volcanic activity on Kilauea. On February 12th at 9:23 a.m.(local time), an M 4.1 earthquake occurred beneath Kilauea Volcano’s south flank which is one of the most seismically active areas in the United States. However, the event occurred on a fault that has also produced large and damaging events in past years.
The faults responsible for the majority of Kilauea south flank earthquakes belong to the Hilina Fault System. This system includes steep faults that form the cliffs lining Hawaii’s southeast coast, of which the Hilina Pali and Hōlei Pali are spectacular examples. Underneath these faults is another, and more uncommon, type of fault called “a décollement”. Analysis of the last earthquake indicates that it likely occurred on this unique structure.
“Décollement” or “detachment fault” refers to a nearly flat-lying fault that is often completely buried underground. At Kilauea, a décollement exists at the interface between the original seafloor and the overlying volcano. Sliding along this fault is driven partly by magma intruding into Kilauea’s East Rift Zone, which puts pressure on the south flank of the volcano and pushes it seaward.
Data from HVO’s GPS monitoring network shows that most of the time Kilauea south flank motion occurs at a steady rate of 6 cm per year. This indicates stable sliding on the fault, without the shaking that accompanies earthquakes.
However, Kilauea’s south flank décollement doesn’t only creep. It can also suddenly lurch forward in a matter of seconds, producing felt earthquakes.
While the faults responsible for Hilina, Hōlei, and other pali produce the majority of (usually low intensity) earthquakes on Kilauea’s south flank, the « décollement » is responsible for the strongest quakes.
In 1989, such an event produced an M 6.1 earthquake, which injured five people, destroyed five houses, and was felt throughout the Big Island. The strongest shaking was centered in the island’s Lower Puna District, an area that has since seen rapid population growth.
The 1975 M 7.7 Kalapana earthquake was even more destructive. At the time, there were few structures near the epicenter, but severe shaking occurred throughout the Puna District and in Hilo, which experienced heavy damage. The earthquake also caused the coastline to suddenly drop by up to 3.5 metres, generating a tsunami that resulted in the two fatalities associated with this event.
Source: USGS / HVO.

Séisme

Séisme du 12 février 2016 (Source: USGS / HVO)

Hilina Pali

Vue de l’Hilina Pali (Photo: C. Grandpey)

Quelques nouvelles volcaniques // A few volcanic pieces of news

drapeau-francaisDans son rapport pour la période du 10 au 16 février 2016, le Global Volcanism Network de la Smithsonian Institution mentionne quatre volcans qui ont été particulièrement actifs :
Des explosions sont encore observées sur le Sakurajima (Japon) avec des émissions de cendre jusqu’à 2 km d’altitude. Le niveau d’alerte reste à 3, sur une échelle de 5 niveaux.
Les panaches de cendre du Semeru (Indonésie) atteignent généralement des altitudes de 7-8 km. Un effondrement du dôme le 13 février a généré des coulées pyroclastiques qui ont dévalé les flancs S et SE sur 4 ou 5 km.
Les émissions de gaz et de vapeur du Soputan (Indonésie) montent jusqu’à environ 200 mètres au-dessus du cratère. La sismicité est dominée par des signaux indiquant des avalanches et des émissions de gaz. Le niveau d’alerte reste à 3 (sur une échelle de 1-4). Il est demandé aux habitants et aux touristes de ne pas approcher les cratères à moins de 6,5 km.
Les explosions du Zhupanovsky (Kamchatka) continuent, avec des panaches de cendre jusqu’à 7 km d’altitude. Une forte explosion le 13 février a généré un panache de cendre qui est monté jusqu’à 10 km d’altitude. L’alerte aérienne a été portée à la couleur Rouge, avant d’être ramenée à l’Orange.

———————————

drapeau anglaisIn its report for the period between February 10th and 16th, the Smithsonian Institution’s Global Volcanism Program mentions four volcanoes that have been quite active.
Explosions are still observed on Sakurajima (Japan) with ash emissions up to 2 km a.s.l. The alert level remains at 3, on a 5-level scale.
Ash plumes from Semeru (Indonesia) usually rise to altitudes of 7-8 km. A lava-dome collapse on February 13th generated pyroclastic flows that travelled 4-5 km down the S and SE flanks.
White plumes from Soputan (Indonesia) rise as high as 200 metres above the crater. Seismicity is dominated by signals indicating avalanches and emissions. The alert level remains at 3 (on a scale of 1-4). Residents and tourists are advised not to approach the craters within a radius of 6.5 km.
Explosions at Zhupanovsky (Kamchatka) continue, generating ash plumes up to 7 km a.s.l. A larger explosion on February 13th generated an ash plume that rose up to10 km a.s.l. The aviation colour code was then raised to Red and later lowered to Orange.