Nouvelles recherches sur l’histoire éruptive de Yellowstone // More research about Yellowstone eruptive history

La surveillance des volcans aux États-Unis est une priorité pour l’USGS qui est en train de mettre en place un système d’alerte volcanique à l’échelle du pays. Le système permettra aux scientifiques de mieux contrôler les volcans dangereux aux États-Unis en modernisant et en étendant les réseaux de surveillance existants, notamment à l’aide de sismomètres large bande, de récepteurs GPS effectuant des mesures en continu et en temps réel, et de capteurs de gaz volcaniques. De nouveaux réseaux sont également en train d’être installés sur des volcans mal surveillés jusqu’à présent, comme le Mont Baker dans l’Etat de Washington. Yellowstone fait partie de ces efforts pour améliorer la surveillance des volcans américains.
La plupart des articles de presse sur Yellowstone affirment que le volcan est en retard dans son processus éruptif et qu’une éruption majeure pourrait survenir à court terme. Le super volcan de Yellowstone a provoqué une éruption cataclysmale il y a environ 613 000 ans. Il a alors a rejeté environ 1 000 kilomètres cubes de matériaux, ce qui représente plus du double du volume du Lac Érié et 2 500 fois le volume de matériaux émis pendant l’éruption du Mont St. Helens en 1980.
Depuis la dernière super éruption, le volcan de Yellowstone a connu de nombreuses éruptions de moindre importance avec émissions de coulées de rhyolite. Les scientifiques de l’USGS essayent maintenant de mieux appréhender ces événements de moindre envergure afin de comprendre les dangers liés au système magmatique du volcan de Yellowstone.
Selon le California Volcano Observatory, le super volcan a connu au moins 28 éruptions de rhyolite au cours des 610 000 dernières années. Ce ne sont pas des éruptions mineures car elles ont donné naissance à des coulées de lave avec des volumes allant de 0,42 à 71 km3. En comparaison, le Mont St. Helens a vomi 0,25 kilomètre cube de matériaux en 1980.
Les scientifiques espèrent savoir si ces coulées de lave ont été produites lentement au fil du temps, ou si elles proviennent de courtes éruptions réparties sur un bref laps de temps. Si les éruptions sont regroupées dans le temps, la survenue d’une première éruption peut indiquer que d’autres peuvent se produire à brève échéance.
Les chercheurs ont utilisé une technique de datation basée sur la désintégration du potassium 40 radioactif en argon 40 radioactif ; elle permet de savoir à quel moment la roche s’est cristallisée et donc de calculer l’époque à laquelle elle est apparue.
En analysant les roches volcaniques de Yellowstone, les chercheurs ont découvert que les coulées de rhyolite étaient «fortement concentrées dans le temps», avec des éruptions qui se sont produites par épisodes. Au cours de l’une des phases d’activité, il y a eu sept éruptions sur une période d’environ 1 000 ans. L’équipe scientifique espère maintenant affiner ces recherches et les intégrer dans l’évaluation des risques volcaniques à Yellowstone.
Source: USGS, Newsweek.

—————————————————

Monitoring volcanoes across the U.S. is a priority for the USGS, and the agency is currently in the process of establishing a National Volcano Early Warning System. The system will help scientists better monitor all dangerous volcanoes in the U.S. by modernizing and expanding its networks using broadband seismometers, real-time continuous GPS receivers and volcanic gas sensors, among other technologies. New networks are also being introduced to poorly monitored volcanoes like Mount Baker in Washington. Yellowstone is part of these efforts to better monitor U.S. volcanoes.

Most press articles about Yellowstone affirm that the volcano is overdue in its eruptive history and that a major eruption might occur in the short term. The Yellowstone supervolcano produced a huge eruption around 613,000 years ago, when it ejected about 1,000 cubic kilometres of material. This is more than double the volume of Lake Erie, and 2,500 times bigger than the 1980 eruption of Mount St. Helens.

Since that time, the Yellowstone volcano has produced many more smaller eruptions of rhyolite lava flows. USGS scientists are now working to better understand these smaller events in order to understand the hazards posed by the magmatic system at Yellowstone.

According to the California Volcano Observatory, the super volcano has produced at least 28 rhyolite eruptions over the last 610,000 years. These were not small eruptions as they produced lava flows ranging from 0.42 to 71 cubic kilometres. In comparison, Mount St. Helens produced 0.25 cubic kilometres of material.

What scientists are hoping to work out is whether these lava flows were produced slowly over time, or whether it came from short, clustered eruptions. If eruptions are clustered in time then the occurrence of one eruption may indicate that the next eruption may follow closely.

Researchers used a dating technique based on the decay of the radioactive potassium-40 to radioactive argon-40, which can tell them when the rock crystalized, allowing them to work out time of origin.

By analyzing the volcanic rocks at Yellowstone, researchers discovered that rhyolite lava flows were “highly clustered in time,” with eruptions taking place in episodes. In one phase of activity there were seven eruptions over a period of around 1,000 years. The scientific team now hopes to further refine these episodes and build this into volcanic hazard assessments for Yellowstone.

Monitoring volcanoes across the U.S. is a priority for the USGS, and the agency is currently in the process of establishing a National Volcano Early Warning System. The system will help scientists better monitor all dangerous volcanoes in the U.S. by modernizing and expanding its networks using broadband seismometers, real-time continuous GPS receivers and volcanic gas sensors, among other technologies. New networks are also being introduced to “under-monitored” volcanoes like Mount Baker in Washington.

“Improvements to volcano monitoring networks allow the USGS to detect volcanic unrest at the earliest possible stage,” Tom Murray, the USGS Volcano Science Center director, said in a statement. “This provides more time to issue forecasts and warnings of hazardous volcanic activity and gives at-risk communities more time to prepare.”

Source : USGS, Newsweek.

Coulées de lave et dépôts de rhyolite à Yellowstone (Photos: C. Grandpey)

Impacts des éruptions volcaniques sur la formation des ouragans // Impact of volcanic eruptions on the formation of hurricanes

On peut lire sur le site web de The Weather Network un article très intéressant sur l’impact des éruptions volcaniques sur la formation des ouragans. Jusqu’à une étude récente, les scientifiques ne savaient pas exactement comment les deux phénomènes naturels interagissaient.
L’étude, dirigée par des chercheurs de l’Université du Québec à Montréal et de l’Université Columbia, montre pour la première fois dans quelle mesure les grandes éruptions volcaniques ont non seulement un impact immédiat sur la saison des cyclones tropicaux, mais également sur les années suivantes.
Il a fallu pas mal de temps aux chercheurs pour établir le lien entre les deux phénomènes naturels. En effet, la plupart des éruptions majeures de l’histoire récente se sont produites simultanément avec des événements El Niño ou La Niña (l’oscillation australe El Niño ou ENSO) qui ont eux-mêmes un impact sur les saisons cycloniques tropicales à travers le monde.
Cette étude, basée sur des simulations de dernière génération, s’est efforcée d’étudier les événements éruptifs majeurs indépendamment de tout impact ENSO, et les chercheurs ont réussi a obtenir un schéma très révélateur. Ils ont découvert que des éruptions importantes dans les hémisphères nord et sud avaient pour effet d’éloigner la zone de convergence intertropicale (ZCIT) de sa position habituelle – plus loin dans l’hémisphère sud en cas d’éruption de l’hémisphère nord et inversement, lors d’une éruption. au sud de l’équateur.
La ZCIT est la bande proche de l’équateur où convergent les alizés. Elle a été baptisée «pot au noir» par les marins parce que les vents à la surface de l’océan sont calmes à ce point de convergence. Cette région joue un rôle clé dans la formation de cyclones tropicaux lorsque la frontière se déplace vers le nord ou vers le sud au niveau du « pot au noir », et se dirige vers des régions plus propices au développement de cyclones, qu’il s’agisse d’ouragans pour l’Atlantique ou de typhons pour le Pacifique.
Une puissante éruption dans les régions tropicales de l’hémisphère nord entraîne un déplacement de la zone de convergence intertropicale vers le sud. Cela se traduit par une augmentation de l’activité des ouragans entre l’équateur et la latitude 10º N et une diminution plus au nord. Le déplacement de la zone vers le sud a d’autres effets dans l’hémisphère sud, car cela entraîne une baisse de l’activité sur les côtes australiennes, indonésiennes et tanzaniennes, tandis que Madagascar et le Mozambique connaissent une augmentation. En bref, une éruption majeure dans l’hémisphère nord pousse la ZCIT vers le sud et les ouragans font de même. L’inverse est également vrai. Les chercheurs ont remarqué que les effets ont persisté pendant quatre ans après l’éruption, ce qui signifie que même après que le volcan se soit calmé, la saison cyclonique tropicale reste perturbée.
Si l’on considère que les cyclones tropicaux provoquent des dizaines de milliards de dollars de dégâts chaque année, l’amélioration des prévisions est essentielle pour atténuer les conséquences des prochaines catastrophes. Si les chercheurs parviennent à mieux comprendre les différents paramètres qui déterminent l’évolution des tempêtes – qu’il s’agisse des éruptions volcaniques ou des événements El Niño – les prévisions s’en trouveront forcément améliorées. .
Source: The Weather Network, PNAS.

————————————————–

One can read on the website of The Weather Network a very intersting article about the impact of volcanic eruptions on the formation of hurricanes. Until a recent study, scientists were not sure how the two interacted.

The study, led by researchers at The University of Quebec in Montreal and Columbia University, shows for the first time how large volcanic eruptions have impacts that echo through not just the tropical cyclone season following the eruption, but for years afterward.

It took quite a lot of time to find the link between the two natural phenomena because most of the major eruptions in recent history have occurred during El Niño or La Niña events (the El Niño Southern Oscillation, or ENSO), which themselves impact tropical cyclone seasons around the globe.

This study, based on sophisticated simulations, seeks to isolate major eruption events from any ENSO impact, and a distinct pattern emerged. The researchers found that large eruptions in either the northern or southern hemispheres served to push the Intertropical Convergence Zone (ITCZ) away from its usual position — further into the southern hemisphere in the case of a northern hemisphere eruption, and the opposite for an eruption south of the Equator.

The ITCZ is the band near the Equator where the trade winds converge, known as the ‘doldrums’ — so named by sailors because the surface winds are calm at this convergence point. This region plays a key role in the formation of tropical cyclones when the boundary drifts north or south out of the doldrums and into regions more favourable for cyclone development, be they Atlantic hurricanes or Pacific typhoons.

A large eruption in the tropical regions of the Northern Hemisphere leads to a southward shift of the Intertropical Convergence Zone. This results in an increase in hurricane activity between the Equator and the 10ºN line, and a decrease further north. The zone’s southward shift has further effects in the Southern Hemisphere, causing a decrease in activity on the coasts of Australia, Indonesia, and Tanzania, while Madagascar and Mozambique experience an increase. To put it briefly, a major eruption in the northern hemisphere pushes the ITCZ south, and the hurricanes go with it. The reverse is also true. More than that, the effects lingered for four years following the eruption, meaning even after the volcano has quieted, the tropical cyclone season was still altered.

With tropical cyclones generating tens of billions of dollars in damages every year, improved forecasting is one key to lessening the blow from future disasters. The more researchers can understand about the ingredients that go into determining the evolution of the storms – whether they are volcanic eruptions or strong El Niño events – the better future forecasts will be.

Source: The Weather Network, PNAS.

L’image ci-dessus montre l’évolution possible de l’intensité cyclonique, ou la force des tempêtes qui se développent, suite à des éruptions dans l’hémisphère Nord (en haut) et dans l’hémisphère Sud (en bas). [Source: Proceedings of the National Academy of Sciences ].

Volcanisme stratosphérique et isotopes du sulfate // Stratospheric volcanism and sulphate isotopes

Dans les archives glaciaires, les éruptions volcaniques du passé sont associées à des pics de concentration de sulfate. Pour estimer la contribution volcanique aux variations climatiques passées, il est nécessaire de pouvoir faire la différence, dans ces enregistrements, entre les éruptions stratosphériques, à fort impact climatique, et les éruptions troposphériques, d’impact faible et local. L’étude des isotopes du sulfate (soufre et oxygène), permet de faire cette distinction et d’établir un inventaire des éruptions stratosphériques enregistrées à Dôme C, Antarctique, sur les 2600 dernières années. Cette étude a été réalisée par l’Institut des géosciences de l’environnement de l’Université de Grenoble et le Laboratoire de géologie de Lyon.

La glace polaire est la meilleure archive en terme de paléovolcanisme. Les reconstructions du volcanisme passé se basant sur l’analyse des carottes de glace sont nombreuses. Elles permettent d’estimer l’effet refroidissant du volcanisme et ses conséquences climatiques, dû aux interactions entre aérosols d’acide sulfurique d’origine volcanique, et le rayonnement solaire incident.

Différencier, dans les enregistrements volcaniques polaires, les éruptions troposphériques des éruptions stratosphériques (à forte conséquence climatique) est crucial pour estimer l’impact climatique naturel exercé par le volcanisme dans le passé. La découverte d’une signature isotopique particulière sur le sulfate volcanique formé dans la stratosphère a permis d’établir une reconstruction des éruptions stratosphériques enregistrées à Dôme C, Antarctique, sur les 2600 dernières années.

Jusqu’alors, les reconstructions volcaniques ont été faites à partir d’enregistrements volcaniques bipolaires (carottes de glace issues d’Antarctique et du Groenland), et reposent sur le principe qu’une éruption stratosphérique, à fort impact climatique, entraîne un dépôt global de sulfate, mis en évidence par comparaison de carottes de glace de pôles opposés. Les émissions soufrées issues d’une éruption dite troposphérique ont, quant à elles, une faible durée de vie dans cette basse couche de l’atmosphère, et leur incidence climatique reste négligeable. Cette approche, dite bipolaire, nécessite une excellente synchronisation et datation des carottes de glace entre elles.

En 2010-2011, 5 carottes de glace de 100 mètres de long ont été collectées à Dôme C en Antarctique et ensuite rapatriées à Grenoble. Ces carottes ont été analysées et échantillonnées dans le but de reconstruire une histoire du volcanisme stratosphérique des 2600 dernières années, par la méthode isotopique.

Cette première reconstruction des éruptions stratosphériques par la méthode isotopique fournit une validation indépendante des reconstructions antérieures. Elle met en évidence des évènements stratosphériques de hautes latitudes, non bipolaires mais néanmoins significatifs d’un point de vue climatique. Il arrive en effet que les aérosols issus d’une éruption stratosphérique localisée dans les hautes latitudes se cantonnent à un seul hémisphère. L’analyse isotopique révèle également, en profondeur, des signaux troposphériques jusqu’alors considérés comme bipolaires. Elle permet donc d’affiner les précédentes reconstructions.

Tandis que l’analyse isotopique du soufre renseigne sur la nature de l’éruption, l’analyse isotopique de l’oxygène révèle un effondrement du traceur suite à deux éruptions majeures. Cette évolution du signal isotopique reflète soit une altitude d’injection particulièrement importante, soit un épuisement de l’ozone atmosphérique, provoqué par une large injection de composés halogénés.

Etendue à d’autres régions et d’autres types de sites, cette approche isotopique constitue un outil intéressant pour affiner et compléter les reconstructions du volcanisme passé, et à terme, pour mieux quantifier l’impact du volcanisme sur le climat.

Source : Observatoire des Sciences de l’Univers de Grenoble (OSUG).

———————————————————-

In glacial records, volcanic eruptions of the past are associated with peaks of sulphate concentration. To estimate the volcanic contribution to past climatic variations, it is necessary to be able to make a diffrence, in these recordings, between stratospheric eruptions, with high climatic impact, and tropospheric eruptions, of weak and local impact. The study of sulphate isotopes (sulphur and oxygen) makes it possible to make this distinction and to establish an inventory of the stratospheric eruptions recorded at Dome C, Antarctica, over the last 2600 years. This study was carried out by the Institute of Environmental Geosciences of Grenoble University and the Geology Laboratory of Lyon.
Polar ice is the best archive in terms of paleovolcanism. The reconstructions of past volcanism based on the analysis of ice cores are numerous. They make it possible to estimate the cooling effect of volcanism and its climatic consequences, due to the interactions between sulphuric acid aerosols of volcanic origin, and the incident solar radiation.
Differentiating in polar volcanic recordings tropospheric eruptions from stratospheric (high climatic) eruptions is crucial for estimating the natural climatic impact of volcanism in the past. The discovery of a particular isotopic signature on the volcanic sulphate formed in the stratosphere has made it possible to establish a reconstruction of the stratospheric eruptions recorded at Dome C, Antarctic, over the last 2600 years.
Up to now, volcanic reconstructions have been made from bipolar volcanic records (ice cores from Antarctica and Greenland), and are based on the premise that a stratospheric, climate-impacting eruption results in a global sulphate deposition, highlighted by comparison of ice cores from opposite poles. The sulphur emissions resulting from a so-called tropospheric eruption have, for their part, a short life in this low layer of the atmosphere, and their climatic incidence remains negligible. This so-called bipolar approach requires excellent synchronization and dating of the ice cores.
In 2010-2011, five 100-meter-long ice cores were collected at Dome C in Antarctica and then repatriated to Grenoble. These cores were analyzed and sampled with the aim of reconstructing a history of stratospheric volcanism of the last 2600 years by the isotopic method.
This first reconstruction of stratospheric eruptions by the isotopic method provides an independent validation of previous reconstructions. It highlights stratospheric events of high latitudes, non-bipolar but nevertheless significant from a climatic point of view. Aerosols from a stratospheric eruption located in high latitudes may be confined to a single hemisphere. Isotopic analysis also reveals, in depth, tropospheric signals previously considered as bipolar. It allows to refine previous reconstructions.
While isotopic analysis of sulphur provides information on the nature of the eruption, isotopic analysis of oxygen reveals a collapse of the tracer after two major eruptions. This evolution of the isotopic signal reflects either a particularly high injection altitude, or a depletion of atmospheric ozone, caused by a large injection of halogenated compounds.
Extended to other regions and other types of sites, this isotopic approach is an interesting tool to refine and complete reconstructions of past volcanism, and ultimately to better quantify the impact of volcanism on the climate.
Source: Observatoire des Sciences de l’Univers de Grenoble (OSUG).

L’analyse isotopique des sulfates volcaniques permet de différencier les éruptions stratosphériques (en rouge), à fort impact climatique, des éruptions troposphériques (en bleu), d’incidence climatique négligeable et locale. Les éruptions enregistrées à Dôme C (Antarctique) sur les 2600 dernières années sont majoritairement d’origine stratosphérique.

Volcans extratropicaux et refroidissement de l’atmosphère:// Extratropical volcanoes and atmospheric cooling

Selon une étude effectuée par des chercheurs de plusieurs pays et publiée dans la revue Nature Geoscience, les éruptions volcaniques extratropicales qui se produisent dans les moyennes et les hautes latitudes ont une influence beaucoup plus forte sur le climat qu’on ne le pensait auparavant. [NDLR : A noter que les chercheurs appliquent à la volcanologie l’adjectif « extratropical » qui est davantage utilisé à propos des cyclones].
Au cours des dernières décennies, des éruptions extratropicales telles que celles du Kasatochi (Alaska, 2008) et du Sarychev (Russie, 2009) ont injecté du soufre dans les basses couches de la stratosphère. L’influence climatique de ces éruptions a toutefois été faible et de courte durée.

Jusqu’à présent, la plupart des scientifiques pensaient que les éruptions extratropicales avaient des effets plus faibles que les événements tropicaux. Cependant, des chercheurs appartenant à plusieurs institutions allemande, norvégienne, britannique, suisse et américaine ne sont pas d’accord avec cette hypothèse. Ils expliquent que de nombreuses éruptions volcaniques extratropicales observées au cours des 1 250 dernières années ont provoqué un refroidissement de surface prononcé dans l’hémisphère Nord. En fait, les éruptions extratropicales ont un impact plus prononcé que les éruptions tropicales en ce qui concerne le refroidissement de l’hémisphère par rapport aux quantités de soufre émises.
Un refroidissement à grande échelle se produit lorsque les volcans injectent de grandes quantités de gaz soufrés dans la stratosphère, la couche de l’atmosphère qui commence à environ 10 à 15 km d’altitude. Une fois dans la stratosphère, les gaz soufrés génèrent des aérosols sulfuriques qui persistent pendant des mois ou des années. Ces aérosols renvoient une partie du rayonnement solaire qui ne peut plus atteindre les couches inférieures de l’atmosphère, ni la surface de la Terre.
Jusqu’à présent, on supposait que les aérosols provenant d’éruptions volcaniques sous les tropiques avaient une durée de vie stratosphérique plus longue, car ils devaient migrer vers des latitudes moyennes ou des hautes latitudes avant de pouvoir être éliminés. En conséquence, on pensait qu’ils auraient un impact plus important sur le climat. Au contraire, les aérosols provenant d’éruptions à des latitudes plus élevées étaient censés disparaître de l’atmosphère plus rapidement. Les récentes éruptions extratropicales, avec des effets minimes mais mesurables sur le climat, correspondent à cette image. Cependant, ces éruptions étaient beaucoup plus faibles que celle du Pinatubo, par exemple.
Pour quantifier l’impact sur le climat des éruptions extratropicales par rapport aux éruptions tropicales, les chercheurs ont comparé des reconstitutions avec injection de soufre stratosphérique volcanique à partir de carottes de glace, avec trois reconstitutions avec une température estivale dans l’hémisphère Nord à partir de cernes d’arbres remontant à 750 après J.C. A leur surprise, les chercheurs ont constaté que les éruptions extratropicales produisaient un refroidissement de l’hémisphère beaucoup plus important que les éruptions tropicales proportionnellement à la quantité de soufre rejeté.
Pour mieux apprécier ces résultats, les chercheurs ont simulé des éruptions volcaniques à des latitudes moyennes à élevées avec des quantités de soufre et des niveaux d’injection correspondant à l’éruption du Pinatubo. Ils ont constaté que la durée de vie des aérosols résultant de ces éruptions extratropicales n’était que légèrement inférieure à celle des éruptions tropicales. En outre, les aérosols se concentraient essentiellement dans l’hémisphère de l’éruption plutôt que sur l’ensemble du globe, ce qui renforçait l’impact climatique dans l’hémisphère où avait eu lieu l’éruption.
L’étude montre aussi l’importance de la hauteur d’injection du soufre dans la stratosphère sur l’impact des éruptions extratropicales sur le climat. Les injections dans la stratosphère extratropicale la plus basse font naître des aérosols de courte durée, tandis que les injections dont la hauteur stratosphérique est semblable à celle du Pinatubo et des autres grandes éruptions tropicales peuvent entraîner une durée de vie des aérosols plus ou moins semblable à celle des éruptions tropicales.
Les résultats de cette étude permettront aux chercheurs de mieux quantifier l’impact des éruptions volcaniques sur la variabilité climatique du passé. Cela montre également que le climat des prochaines années sera affecté par des éruptions extratropicales.
Source: The Watchers.
Référence: « Disproportionately strong climate forcing from extratropical explosive volcanic eruptions »  – Toohey, M., K. Kruger, H. Schmidt, C. Timmreck, M. Sigl, M. Stoffel, R. Wilson (2019).

——————————————————–

According to an international study published in Nature Geoscience, explosive extratropical volcanic eruptions taking place in mid and high latitudes, have a much stronger influence on climate than was previously thought.

In recent decades, extratropical eruptions like those of Kasatochi (Alaska, 2008) and Sarychev Peak (Russia, 2009) have injected sulphur into the lower stratosphere. The climatic influence of these eruptions has however been weak and short-lived. So far, scientists have largely assumed that extratropical eruptions lead to weaker effects than their tropical counterparts.

However, researchers from several German, Norwegian, British, Ewiss and U.S institutions now contradict this assumption. They affirm that many extratropical volcanic eruptions in the past 1,250 years have caused pronounced surface cooling over the Northern Hemisphere, and in fact, extratropical eruptions are actually more efficient than tropical eruptions in terms of the amount of hemispheric cooling in relation to the amount of emitted sulphur.

Large-scale cooling after volcanic eruptions occurs when volcanoes inject large quantities of sulphur gases into the stratosphere, the layer of the atmosphere which starts at about 10 – 15 km high. Once in the stratosphere, the sulphur gases produce a sulphuric aerosol haze that persists for months or years. The aerosols reflect a portion of incoming solar radiation, which can no longer reach the lower layers of the atmosphere and the Earth’s surface.

Until now, the assumption was that aerosols from volcanic eruptions in the tropics have a longer stratospheric lifetime because they have to migrate to mid or high latitudes before they can be removed. As a result, they would have a greater effect on the climate. On the contrary, aerosols from eruptions at higher latitudes would be removed from the atmosphere more quickly. The recent extratropical eruptions, which had minimal but measurable effects on the climate, fit this picture. However, these eruptions were much weaker than that of Pinatubo, for instance.

To quantify the climate impact of extratropical vs. tropical eruptions, the researchers compared new long-term reconstructions of volcanic stratospheric sulphur injection from ice cores with three reconstructions of Northern Hemisphere summer temperature from tree rings extending back to 750 CE. Surprisingly, the authors found that extratropical explosive eruptions produced much stronger hemispheric cooling in proportion to their estimated sulphur release than tropical eruptions.

To help understand these results, the researchers performed simulations of volcanic eruptions in the mid to high latitudes with sulphur amounts and injection heights equal to that of Pinatubo. They found that the lifetime of the aerosol from these extratropical explosive eruptions was only marginally smaller than for tropical eruptions. Furthermore, the aerosol was mostly contained within the hemisphere of eruption rather than globally, which enhanced the climate impact within the hemisphere of eruption.

The study goes on to show the importance of injection height within the stratosphere on the climate impact of extratropical eruptions. Injections into the lowermost extratropical stratosphere lead to short-lived aerosol, while those with stratospheric heights similar to Pinatubo and the other large tropical eruptions can lead to aerosol lifetimes roughly similar to the tropical eruptions.

The results of this study will help researchers better quantify the degree to which volcanic eruptions have impacted past climate variability. It also suggests that future climate will be affected by explosive extratropical eruptions.

Source : The Watchers.

Reference: « Disproportionately strong climate forcing from extratropical explosive volcanic eruptions » – Toohey, M., K. Kruger, H. Schmidt, C. Timmreck, M. Sigl, M. Stoffel, R. Wilson (2019).

L’éruption du Pinatubo en 1991 et les aérosols qu’elle a générés servent de référence sur l’impact des éruptions volcaniques sur le climat (Crédit photo: Wikipedia)

Eruptions 2018: Un lourd bilan // A heavy toll

Selon le Centre de recherches sur l’épidémiologie des désastres (CRED), on a comptabilisé en 2018 281 événements liés au climat et à la géophysique. Ils incluent des séismes et des tsunamis, des tempêtes, des inondations, des éruptions volcaniques, des sécheresses et des températures extrêmes, ainsi que des incendies de forêt. Au total, ces catastrophes naturelles ont causé la mort de 10 733 personnes et affecté 61 millions de personnes dans le monde. Cependant, on constate en 2018 la poursuite de la tendance à la baisse du nombre de décès par rapport aux années précédentes. Cela démontre probablement l’amélioration des niveaux de vie et une meilleure gestion des catastrophes.
L’activité volcanique a été assez élevée en 2018. Cela a entraîné plus de décès que pendant les 18 années précédentes combinées. L’un des événements les plus meurtriers s’est produit en juin, lorsque Fuego est entré en éruption au Guatemala. Le dernier bilan du CONRED le 22 août 2018 était de 169 morts et 256 disparus.
Plus tard en décembre, l’éruption de l’Anak Krakatau en Indonésie a déclenché un tsunami. Le dernier bilan en date du 2 janvier 2019 était de 437 morts, 14 059 blessés et 16 disparus.
Source: CRED, The Watchers..

Ces chiffres montrent que notre capacité à prévoir des événements volcaniques majeurs reste faible. Les volcanologues guatémaltèques ont été critiqués pour ne pas avoir su anticiper le déclenchement de coulées pyroclastiques meurtrières. Leurs homologues indonésiens n’ont pas subi le même sort, mais force est de reconnaître qu’ils n’avaient pas prévu l’effondrement d’un flanc de l’Anak Krakatau et les vagues meurtrières qui ont suivi.

Aujourd’hui, la plupart des rapports d’activité se contentent de résumer l’activité éruptive et ses conséquences. On évacue les populations, mais trop souvent après le déclenchement des éruptions. C’est ce qui vient de se passer à Manam. Il arrive aussi que l’on évacue des populations et qu’il ne se passe rien ; c’est ce qui s’est passé il y a quelques mois quand l’Agung menaçait de se mettre en colère. Certes, la volcanologie a progressé au cours du siècle écoulé, mais il reste beaucoup à faire !

———————————————————

According to the Centre for Research on the Epidemiology of Disasters (CRED), there were 281 climate-related and geophysical events in 2018. These include earthquakes and tsunamis, storms, floods, volcanic eruptions, droughts and extreme temperatures, wildfires. Altogether, they caused the deaths of 10 733 people and affected 61 million people across the world. However, the ongoing trend of lower death tolls from previous years continued into 2018, potentially demonstrating the efficacy of improved standards of living and disaster management.

Volcanic activity was quite high in 2018. It resulted in more deaths than in the previous 18 years combined. The most deadly events occurred in June, when Fuego erupted in Guatemala. CONRED’s last toll on 22 August, 2018 was 169 deaths and 256 missing.

Later in December, the eruption of Anak Krakatau in Indonesia triggered a tsunami. The last toll on January 2nd, 2019 was 437 dead, 14 059 injured and 16 missing.

Source: CRED, The Watchers.

These figures show that our ability to predict major volcanic events remains low. Guatemalan volcanologists have been criticized for failing to anticipate the triggering of deadly pyroclastic flows. Their Indonesian counterparts were not criticised, but it is clear that they did not anticipate the collapse of a flank of Anak Krakatau and the deadly waves that followed.
Today, most activity reports simply sum up eruptive activity and its consequences. People are evacuated, but too often after an eruption has started. This is what has just happened in Manam. Authorities sometimes evacuate people and nothing happens; this was the case a few months ago when My Agung threatened erupt. Even though volcanology has progressed in the last century, much remains to be done!

En comparant les images des volcans (ici le Fuego et l’Anak Krakatau) avant et après les éruptions, il est facile de comprendre – mais trop tard – pourquoi ces événements ont tué tant de personnes.

Steven Brantley (USGS) prend sa retraite // USGS Steven Brantley retires

Steven Brantley, l’un des piliers de l’USGS, prend sa retraite ce mois-ci, après 37 années de bons et loyaux services, dont 16 à l’Observatoire Volcanologique des Cascades (CVO) et 21 ans à l’Observatoire des Volcans d’Hawaii (HVO). Dans un article qu’il a écrit pour ce dernier observatoire, Steve dit que ce fut pour lui un privilège de consacrer sa longue carrière à observer des volcans, travailler avec ses collègues et à aider les gens à comprendre les impacts potentiels des éruptions.
Sa carrière a débuté sur le Mont St. Helens en 1981 et se termine sur le Kilauea en 2018, éruptions marquées par deux événements majeurs d’effondrement volcanique. Suite à l’éruption du Mont Saint Helens, j’avais demandé des informations à Steve Brantley et il m’avait aimablement envoyé de la documentation pour mieux comprendre l’événement. L’éruption du Mont Saint Helens a conduit à la création de l’Observatoire Volcanologique des Cascades, inspiré de l’Observatoire des Volcans d’Hawaii, qui permet aux scientifiques de se concentrer sur des observations à long terme et de surveiller de près les volcans de la Chaîne des Cascades.
Steve Brantley explique dans son article que de nombreuses éruptions aux États-Unis et à l’étranger ont jalonné sa carrière. Après seulement quatre ans de travail au CVO, l’éruption du Nevado del Ruiz en 1985 a tué plus de 25 000 personnes lorsque des lahars ont submergé plusieurs vallées. Pendant des décennies, des milliers de personnes ont implanté, sans le savoir, leurs communautés sur des dépôts de lahars issus de précédentes éruptions du volcan. Cela a finalement créé le dilemme auquel les autorités colombiennes ont été confrontées lorsque le volcan s’est réveillé un an avant l’éruption meurtrière: Pendant combien de temps pourrait-on retarder l’évacuation de milliers de personnes afin de minimiser les bouleversements économiques et les coûts politiques d’une évacuation trop précoce ou d’une fausse alerte? Steve affirme que ce dilemme est le même partout dans le monde pour les autorités qui gèrent les situations d’urgence ainsi que pour les élus, car de plus en plus de gens vivent et travaillent sur les pentes des volcans ou dans des zones connues pour leurs dangers potentiels.
Ce dilemme crée également de plus en plus de défis pour les scientifiques qui doivent s’efforcer d’améliorer leurs capacités de surveillance et d’interprétation du comportement volcanique afin de pouvoir émettre des bulletins d’alerte plus précis concernant les éruptions et leurs conséquences potentielles. Ces mêmes scientifiques doivent également communiquer efficacement les résultats de leurs travaux avant, pendant et après les éruptions pour sensibiliser les médias et le public qui s’intéressent de plus en plus aux risques induits par les volcans.
Steve nous rappelle que depuis la tragédie du Nevado del Ruiz, des crises volcaniques ont trouvé des solutions positives. Selon lui, deux éruptions émergent parce que les mesures prises par les autorités et les scientifiques ont sauvé des milliers de vies: le Mont Pinatubo, aux Philippines en 1990, et le Merapi, en Indonésie en 2010, même si je pense personnellement que pour le Merapi, le bilan aurait été moins lourd avec une meilleure gestion du périmètre de sécurité.
Source: HVO, Hawaii 24/7.

———————————————-

Steven Brantley, one of the pillars of the U.S. Geological  Survey (USGS) is going to retire this month after a 37-year career, with 16 years at the Cascades Volcano Observatory (CVO) and 21 at the Hawaiian Volcano Observatory (HVO). In an article he wrote for this observatory, Steve says he feels privileged to have spent a long career observing volcanoes, supporting his colleagues, and striving to help people understand the potential impacts of eruptions.

His career began at Mount St. Helens in 1981 and is ending at Kilauea Volcano in 2018, with two major collapse events on volcanoes. In the wake of Mt St Helens eruption, I had asked Steve Brantley for information and he had kindly sent me documents to better understand the event.  The eruption of Mt St Helens led to the creation of the Cascades Volcano Observatory, modelled after the Hawaiian Volcano Observatory for scientists to focus long-term investigations and keep a watchful eye on Cascade Range volcanoes.

In the article, Steve Brantley says that many eruptions in the U.S. and abroad punctuated his career. Only four years into his work at CVO, the 1985 eruption of Nevado del Ruiz killed more than 25,000 people when lahars swept down several river valleys. Thousands of people had, for many decades, unknowingly built their communities on lahar deposits from earlier eruptions of the volcano. This eventually created the dilemma faced by Colombian authorities when the volcano awakened a year before the deadly eruption: How long could evacuation of thousands of people be delayed to minimize economic upheaval and political costs of a too-early evacuation or false alarm? Steve says that this dilemma is universal for current emergency-management authorities and elected officials as increasing numbers of people live and work on the slopes of volcanoes or within areas known for potential volcanic hazards.

The dilemma also creates increasing challenges for scientists to improve their capabilities to monitor and interpret volcanic behaviour so they can issue more accurate and timely warnings of eruptions and potential consequences. They must also effectively communicate the results of their work before, during, and after eruptions to raise awareness of volcano hazards to an increasingly interested and demanding media and public.

Steve reminds us that there have been successful responses to sudden periods of volcanic unrest since the Nevado del Ruiz tragedy. In his opinion, two eruptions stand out because bold actions taken by officials and scientists saved thousands of lives: Mount Pinatubo, Philippines, in 1990, and Mount Merapi, Indonesia, in 2010, although I personally think that for Mount Merapi the death toll could have been lower with a better management of the danger zone.

Source : HVO, Hawaii 24/7.

Steve Brantley le 17 juillet 2018 durant une réunion d’information à Pahoa sur l’éruption du Kilauea.

Les effondrements du Mt St Helens (Photo : C. Grandpey) et de l’Halema’uma’u (Photo : HVO) ont encadré la carrière de Steven Brantley

Cyclones, typhons, ouragans et éruptions volcaniques // Cyclones, typhoons, hurricanes and volcanic eruptions

Ces dernières semaines, des cyclones et des ouragans ont frappé plusieurs régions du monde, laissant derrière eux leur lot de mort et de destruction. Certains de ces événements extrêmes se sont produits dans des pays où des volcans actifs sont présents, comme Hawaii et les Philippines. Le site Forbes pose la question suivante: Que se passe-t-il lorsqu’un ouragan frappe un volcan actif? Selon ce site, la réponse est que les conséquences peuvent être catastrophiques ou négligeables, ou entre les deux. J’ajouterai que la différence dépend du type de lave émise par les volcans: coulées de basalte qui durcit rapidement comme à Hawaii, ou cendre qui se dépose en épiasses couches comme en Indonésie ou aux Philippines.
Le premier point à noter est que les ouragans ou les typhons n’affectent pas le processus volcanique. L’éruption se poursuit même dans des conditions très défavorables. Il semblerait que les fluctuations de la pression atmosphérique n’affectent pas le comportement de puissants volcans comme le Mauna Loa. C’est ce que m’a fait remarquer Haroun Tazieff lorsque j’étudiais le phénomène sur le Stromboli en Sicile.
La plupart des ouragans qui ont frappé Hawaii l’ont fait au moment où le Kilauea était en éruption. Lorsque les fortes pluies s’abattent sur la Grande Ile pendant un ouragan, on peut observer des nuages ​​de vapeur denses sur les sites où la pluie ou l’eau de ruissellement rencontrent de la lave, mais l’éruption proprement dite se poursuit et l’ouragan ne l’affecte pas vraiment. La lave continue à couler comme si rien de spécial ne s’était passé dans le ciel.
Au pire, on remarque que la taille imposante de volumineux édifices volcaniques comme le Mauna Loa et le Mauna Kea leur permet de contrarier la circulation des ouragans qui passent à proximité. Le Mauna Loa n’a pas la capacité d’arrêter un ouragan, mais il contribue probablement à affaiblir les plus forts et à fortement perturber les plus faibles. Ce comportement protège dans une certaine mesure les autres îles hawaïennes et leur population.

L’impact des cyclones ou des typhons est différent dans les pays où les volcans explosifs émettent d’énormes quantités de cendre. La plupart d’entre eux se dressent autour de la Ceinture de Feu du Pacifique. Le Pinatubo est entré en éruption au moment où le typhon Yunya (de catégorie 3) frappait les Philippines en 1991. Les cendres émises par le volcan se sont mélangées à la pluie pour former des lahars. Lorsque de grandes quantités de pluie tombent sur des coulées pyroclastiques récentes, cela peut provoquer ou intensifier les lahars. Les coulées pyroclastiques peuvent également envahir le lit des rivières et autres voies d’écoulement des eaux, ce qui provoque des inondations. Comme les accumulations de cendre sont relativement instables, ces barrages peuvent se rompre et provoquer des inondations soudaine en aval, même après la période de pluie.

————————————————–

In recent weeks, cyclones and hurricanes has struck several parts of the world, leaving behind them a trail of death and devastation. Some of these extreme events have occurred in countries where active volcanoes are present, like Hawaii and the Philippines. The website Forbes asks the question: What happens when a hurricane hits an active volcano? The answer is that results can be catastrophic or negligible or anything in between. I would add that the difference depends on the kind of lava emitted by volcanoes: flows of basalt that get hard rapidly like in Hawaii, or ash that accumulates in thick layers like in Indonesia or the Philippines.

The first point to notice is that hurricanes or typhoons do not affect the volcanic process. The eruption goes on even in very adverse conditions. It seems the fluctuations in atmospheric pressure do not affect the behaviour of powerful volcanoes like Mauna Loa, as Haroun Tazieff told me when I was studying the phenomenon in Stromboli volcano in Sicily.

Most hurricanes that have struck Hawaii have done so while Kilauea volcano was erupting. When the heavy rains pour on the Big Island during a hurricane, one can observe dense clouds of steam where rain or flowing water encounter lava, but the eruption itself goes on like before and the hurricane does not really affect it. Lava keeps flowing as if nothing special happened in the skies.

At most, the size of huge volcanic edifices like Mauna Loa and Mauna Kea allows them to interfere with the circulation of nearby hurricanes. Mauna Loa is not quite a hurricane killer, but it certainly helps weaken the strong ones and scramble the weak ones. This effect helps protect the rest of the inhabited Hawaiian islands to some extent.

The consequence of hurricanes or typhoons is different in areas where explosive volcanoes emit huge quantities of ash. Most of them are located around the Pacific Ring of Fire. Mount Pinatubo erupted at the same time that typhoon Yunya (Cat 3) struck the Philippines in 1991. The ash emitted by the volcano mixed with rain to form lahars. Large amounts of rain falling onto fresh pyroclastic flows can cause or enhance lahars. Pyroclastic flows can also dam rivers and other drainage paths, resulting in flooding. Since fresh piles of ash and dust are not very strong, these dams may then break apart, causing sudden flooding downstream, even after the rain has passed.

Lave basaltique à Hawaii

Dépôts de lahar à la Martinique

(Photos: C. Grandpey)