Islande 2021-2022 : une éruption en continu // Iceland 2021-2022 : a continuous eruption

Dans son dernier article Volcano Watch, l’Observatoire des Volcans Hawaïens – le HVO – donne une bonne description des deux éruptions qui ont eu lieu en Islande sur la péninsule de Reykjanes. On se rend compte – comme je le pense personnellement – que les deux événements sont étroitement liés et que d’autres éruptions pourraient se produire à l’avenir.
Avant l’activité récente, la dernière période éruptive dans la région remonte à plus de 800 ans. Deux éruptions fissurales dans le système volcanique Krýsuvík-Trölladyngja ont généré d’importantes coulées de lave qui sont entrées dans l’océan sur les côtes nord et sud de la péninsule. Selon les volcanologues islandais, il se pourrait que la péninsule de Reykjanes soit entrée dans une période d’activité sur le long terme avec une alternance d’activité sismique, de déformation du sol et d’éruptions.

Le HVO rappelle que cette région est l’un des rares endroits où la dorsale médio-atlantique est visible sur terre, avec des éruptions consistant en des coulées de lave relativement fluide et peu de dépôts de tephra. L’aéroport international de Keflavik se trouve dans la partie ouest de la péninsule de Reykjanes et la capitale, Reykjavík, se trouve à l’extrémité nord-est. En conséquence, les éruptions sur la péninsule sont susceptibles d’y provoquer des perturbations.
L’activité actuelle le long du système Krýsuvík-Trölladyngja a commencé en janvier 2020 autour du mont Thorbjorn où on a enregistré une hausse de l’activité sismique et un soulèvement inhabituel de la surface du sol. Au vu des données sismiques et de déformation, les scientifiques ont conclu qu’une intrusion magmatique s’était produite à plusieurs kilomètres de profondeur. Tout au long de l’année 2020, plusieurs autres essaims sismiques et de nouveaux épisodes de possible intrusion magmatique se sont produits dans la région, ainsi que quelques séismes de plus forte intensité.
En février 2021, une hausse de la sismicité et un signal de déformation ont laissé supposer qu’une intrusion s’était produite près de Fagradalsfjall. Début mars, l’activité sismique s’est intensifiée, avec l’apparition d’un tremor volcanique. Ces événements ont été attribués à des mouvements de magma peu profonds, à environ 1-1,5 km de profondeur. Le Met Office islandais a alors indiqué qu’une éruption était possible sans prévenir car le magma était déjà proche de la surface.
Vers 20h45. le 19 mars 2021, une éruption a commencé près de Fagradalsfjall dans la vallée de Geldingadalir. Des fontaines de lave ont jailli d’une fissure d’environ 200 m de long. Après plusieurs semaines, l’activité éruptive s’est concentrée sur un seul bouche où les fontaines ont édifié un cône de projections (spatter cone)en forme de fer à cheval qui alimentait une coulée de lave bien canalisée.
Le site de l’éruption se trouvait à une dizaine de kilomètres des habitations les plus proches et à environ 2,6 km de la route côtière sud qui longe la péninsule. Il n’y avait donc pas de danger pour des infrastructures à proximité. L’activité éruptive a duré 6 mois et s’est officiellement terminée le 18 septembre 2021.
Après la fin de cette éruption, la présence d’une inflation tendait à prouver que du magma circulait en profondeur dans la zone. Fin décembre 2021, une nouvelle intrusion et un essaim sismique ont été enregistrés, comme cela s’était produit en mars 2020.
Le 30 juillet 2022, une activité sismique intense est réapparue sur la péninsule de Reykjanes. La déformation du sol autour de Fagradalsfjall indiquait que le magma de l’intrusion se trouvait à environ 1 km sous la surface. Le 2 août, le Met Office a publié un bulletin indiquant qu’une éruption près de Fagradalsfjall était probable « dans les prochains jours. » .
L’éruption a commencé le 3 août 2022. A 13h18, une nouvelle fissure s’est ouverte dans la vallée de Meradalir, située sur la crête nord du champ de lave de mars 2021. Une fois l’éruption commencée, la sismicité et les valeurs de déformation du sol ont rapidement ralenti. Contrairement à l’éruption de 2021, l’activité a considérablement diminué après moins de trois semaines. Dans la nuit du 21 août, l’activité a cessé sur le site de l’éruption et le tremor volcanique a disparu. Le Met Office n’a toujours pas déclaré que l’éruption était officiellement terminée, mais tous les paramètres montrent qu’il est très peu probable qu’elle recommence.
Source : USGS, HVO.

——————————————–

In its latest Volcano Watch article, the Hawaiian Volcano Observatory – HVO – gives a good description of the two eruptions on Iceland’s Reykjanes Peninsula. It shows that the two events were closely connected, and that more eruptions might occur in the future.

Prior to the recent activity, the last eruptive period in the area was over 800 years ago. Two fissure eruptions from the Krýsuvík-Trölladyngja volcanic system produced extensive lava flows that entered the ocean on the peninsulas north and south coasts. According to Icelandic volcanologists, the Reykjanes Peninsula could be entering into a period of extended unrest that could include alternating seismic, deformation, and eruptive activity.

HVO reminds us that this region is one of the few places where the Mid-Atlantic Ridge is visible on land, with eruptions characterized by effusive lava flows and limited tephra deposits. Iceland’s international airport is located on the western end of Reykjanes Peninsula and the capital, Reykjavík, lies on the northeastern end. Therefore, eruptions on the peninsula have the potential to be highly disruptive.

The current unrest along the Krýsuvík-Trölladyngja volcanic system started in January 2020 around Mount Thorbjorn with seismic activity and uplift beyond the typical background levels. Scientists concluded that a magmatic intrusion had occurred at several kilometers depth based on seismic and deformation data. Throughout the year, several more seismic swarms and intrusive episodes occurred in the area, along with a few stronger earthquakes

In February 2021, increased seismicity and a deformation signal suggested an intrusion occurred near Fagradalsfjall. By early-March, seismic activity ramped up with increased seismic events and seismic tremor which was attributed to shallow magma movements at around 1-1.5 km depth. The Icelandic Meteorological Office (IMO) noted that an eruption was possible without any strong precursory signals because the magma was already close to the surface.

Around 8:45 p.m. on March 19th, 2021, an eruption began near Fagradalsfjall in Geldingadalir valley. Low lava fountains erupted from an approximately 200 m long fissure. After several weeks eruptive activity focused at a single vent where the fountains built a horseshoe-shaped spatter cone feeding a channelized lava flow.

The eruption site was approximately 10 km from the nearest populated region and about 2.6 km from the peninsula’s south coast road, so not in the immediate vicinity of critical infrastructure. The eruptive activity lasted for 6 months, and officially ended on September 18th, 2021.

After it ended, inflation suggested that magma was flowing into the area at depth. In late-December 2021, another intrusion and earthquake swarm followed, which appeared similar to the one in March 2020.

On July 30th, 2022, increased seismic activity reappeared on the Reykjanes Peninsula. Deformation around Fagradalsfjall suggested that magma from a shallow intrusion was approximately 1 km below the ground surface and on August 2nd, the IMO released a statement saying that an eruption near Fagradalsfjall in the coming days was likely.

The eruption began on August 3rd, 2022. At 1:18 p.m., a new fissure opened in Meradalir valley, located on the northern ridge of the March 2021 lava field. After the eruption onset, seismicity and deformation rates quickly slowed. Unlike the 2021 eruption, activity decreased significantly after less than three weeks. By the night of August 21st, there was no indication of volcanic activity at the eruption site, and the volcanic tremor had ceased. The IMO has not yet declared that the eruption was officially over, but all parameters show that it is highly unlikely to start again.

Source: USGS, HVO.

L’éruption de 2021 a parfois été spectaculaire et esthétique (Image webcam)

Loin d’être laide, l’éruption de 2022 fut moins spectaculaire (Image webcam)

Leçons de l’éruption du Mauna Loa (Hawaii) en 1916 // Lessons from the 1916 Mauna Loa eruption (Hawaii)

C’est en 1916 qu’est né le Parc National des Volcans d’Hawaii. C’est aussi cette même année que le Mauna Loa est entré en éruption avec la coulée de lave d’Honamalino sur la zone de rift sud-ouest (southwest rift zone – SWRZ) du volcan. L’éruption a commencé le 19 mai 1916 et a duré moins de deux semaines. Même si elle a été courte, on peut tirer des leçons pour les futures éruptions du Mauna Loa.
Le Dr Thomas Jaggar, qui avait fondé l’Observatoire des Volcans d’Hawaii, le HVO, en 1912, a tenté de prévoir la prochaine éruption du Mauna Loa en se basant sur le schéma éruptif des zones de rift depuis 1868. Les éruptions précédentes avaient eu lieu tantôt sur la zone de rift nord-est (NERZ ), tantôt sur la zone sud-ouest(SWRZ), tout en étant fréquemment séparées par des éruptions dans la caldeira sommitale du Mauna Loa (Moku’āweoweo).

 

Caldeira sommitale du Mauna Loa (Source: USGS)

Le Mauna Loa était entré en éruption en 1907 dans la SWRZ et en 1914-15 au sommet. C’est pourquoi le Dr Jaggar a émis l’hypothèse que la prochaine éruption latérale se produirait sur la NERZ.
Le 19 mai 1916, l’éruption sur la SWRZ n’a pas respecté le schéma éruptif que le Dr Jaggar avait observé sur le Mauna Loa. Comme de nombreuses éruptions sur l’île d’Hawaï, elle a été précédée d’une activité sismique. Les habitants de Ka’u ont ressenti de nombreuses secousses en début de matinée avant qu’apparaisse un impressionnant panache de vapeur au-dessus de la SWRZ du Mauna Loa dans la matinée du 19 mai. L’activité dans cette zone a duré moins de 24 heures.

 

Source: Université d’Hawaii

Plus tard, un autre essaim sismique a secoué la région de Ka’u lorsque la lave a pénétré dans la SWRZ, avec l’ouverture d’une ligne de fractures dans la partie inférieure de cette zone dans la soirée du 21 mai. La lave émise par les différentes bouches s’est répandue sur la crête de la zone de rift, avec des coulées de chaque côté: la coulée d’Honomalino a dévalé le versant sud-ouest, plus escarpé, tandis que la plus grande coulée de Kahuku se répandait plus largement vers le sud-est.
En raison de la nature ramifiée de l’éruption de 1916 et des coulées de part et d’autre de la zone de rift, avec un volume éruptif relativement faible, les coulées de lave ne sont pas allées très loin. Une seule structure a été détruite lors de l’éruption qui s’est terminée le 31 mai.
L’éruption de 1916 a été suivie par les éruptions de 1919 et 1926 sur la SWRZ du Mauna Loa, sans éruptions intermédiaires. Au cours de ces deux éruptions, des coulées de lave ont atteint l’océan et détruit des villages côtiers. Les coulées de lave de 1919 et 1926 auraient coupé l’actuelle Highway 11 et causé de graves problèmes aux personnes qui habitent actuellement dans ce secteur.
Plusieurs autres coulées de lave en provenance de la SWRZ du Mauna Loa, notamment en 1868, 1887 et 1950, ont également affecté cette région. Elles ont traversé des routes et atteint l’océan, parfois quelques heures après l’ouverture des bouches éruptives.

Eruptions sur la SWRZ du Mauna Loa (Source: USGS)

L’éruption de 1950 sur la SWRZ a été la plus grande éruption observée sur le Mauna Loa. Elle a donné naissance à des coulées qui se sont dirigées de part et d’autre de la crête de la zone de rift, comme lors de l’éruption de 1916. Toutefois, contrairement à l’éruption de 1916, trois coulées de lave sont apparues en 1950 et sont entrées dans l’océan moins de 24 heures après le début de l’éruption. Une répétition de l’éruption de 1950 serait aujourd’hui très problématique en raison de l’importante population de la région.
La principale leçon à tirer de l’éruption du Mauna Loa en 1916 est que les éruptions – et les volcans – ne suivent pas toujours les mêmes schémas éruptifs . Alors que la plupart des éruptions observées dans la SWRZ couperaient au minimum la Highway 11, la plus petite éruption de 1916 démontre que ce n’est pas toujours le cas.
Au cours des 200 dernières années, les éruptions sur les zones de rift du Mauna Loa se sont réparties de manière égale entre la SWRZ et la NERZ. Cependant, la remarquable série de quatre éruptions consécutives (1907, 1916, 1919, 1926) sur la SWRZ montre le peu de fiabilité des modèles de probabilité éruptive, aussi bien à long terme qu’à court terme.
Source : USGS, HVO.

———————————————

1916 marked the birth of Hawaiʻi Volcanoes National Park, but it was also the year of a Mauna Loa eruption with the Honamalino flow on the volcano’s Southwest Rift Zone (SWRZ).

The eruption began on May 19th, 1916, and lasted less than two weeks. even though it was short, it offers lessons for future Mauna Loa eruptions.

Dr. Thomas Jaggar, who had founded the Hawaiian Volcano Observatory in 1912, attempted to forecast the next Mauna Loa eruption based on the pattern of rift zone eruptions on the volcano since 1868. The previous rift eruptions alternated locations between the Northeast Rift Zone (NERZ) and the SWRZ though these were frequently separated in time by eruptions confined to Mauna Loa’s summit caldera (Moku‘āweoweo).

Mauna Loa had erupted in 1907 from the SWRZ and in 1914-15 from the summit. Therefore, Dr. Jaggar hypothesized that the next Mauna Loa flank eruption would occur from the NERZ.

The May 19th, 1916, SWRZ event deviated from the pattern of eruptions Dr. Jaggar had observed at Mauna Loa. Like many eruptions on the Island of Hawaii, it was preceded by earthquake activity. Residents of Ka‘u felt numerous earthquakes early in the morning before an impressive steam plume rose high up on Mauna Loa’s SWRZin the morning of May 19th, marking the start of the eruption (sse image above). Activity in this area lasted less than 24 hours.

Later, another seismic swarm shook the Ka‘u area as lava intruded the SWRZ resulting in a line of fissures opening on the lower SWRZ on the evening of May 21st. Lava from the vents spread over the crest of the rift zone feeding lava flows on either side : the Honomalino flow moving down the steep southwest side and the larger Kahuku flow spreading more widely to the southeast.

Due to the branched nature of the 1916 eruption and the flows on either side of the rift zone, coupled with the relatively small total erupted volume, lava flows did not travel very far. Only one homestead was destroyed during the eruption, which ended on May 31st.

The 1916 eruption was followed by Mauna Loa’s 1919 and 1926 SWRZ eruptions with no intervening eruptions. During both eruptions, lava flows reached the ocean and destroyed Hawaiian coastal villages. The 1919 and 1926 lava flows would have cut the current Highway 11 and caused severe disruptions for current residents.

Several other lava flows from Mauna Loa’s SWRZ, including in 1868, 1887 and 1950, have also travelled quickly through this region, crossing roads and entering the ocean, sometimes within a matter of hours of the vent opening.

The 1950 eruption on the SWRZ was the largest recorded Mauna Loa eruption and fed flows on either side of the rift zone crest like the 1916 eruption. In a contrast to the 1916 eruption, three lava flows erupted in 1950 entered the ocean within less than 24 hours of that eruption starting.

A repeat of the 1950 eruption would be of great concern today due to the increased population of the area.

The main lesson to be drawn from Mauna Loa’s 1916 eruption is that eruptions and volcanoes do not always follow the same patterns. While repeats of most recorded SWRZ eruptions would at a minimum cut off Highway 11, the smaller 1916 eruption demonstrates this is not always the case.

Over the past 200 years, Mauna Loa rift zone eruptions are evenly divided between the SWRZ and the NERZ. However, the remarkable run of four SWRZ eruptions in a row (1907, 1916, 1919, 1926) shows the weakness of long-term or short-term probability models.

Source: USGS, HVO.

 

Coulée de lave et système d’alerte sur le versant SO du Mauna Loa (Photo: C. Grandpey)

Volcans en éruption // Erupting volcanoes

Aujourd’hui, avec Internet, les nouvelles se propagent à la vitesse de la lumière. Les gens sont informés dès qu’un volcan entre en éruption. Cela peut donner l’impression que plus d’éruptions se produisent sur Terre que par le passé. Cependant, ce n’est pas le cas.
En règle générale, au cours d’une année donnée, 40 à 50 volcans entrent en éruption, soit un peu moins de 10% des volcans actifs de la planète.
Le 17 mars 2022, le Global Volcanism Report (GVP) de la Smithsonian Institution faisait état de 48 volcans en éruption.
De nombreux volcans de cette liste sont en éruption récurrente depuis des années, des décennies, voire des siècles. Ainsi, le Yasur (Vanuatu), est en éruption intermittente depuis au moins l’année 1774.
On pense que le Stromboli (Italie) est en éruption quasiment continue depuis dix fois plus longtemps, si l’on se réfère aux archives romaines.
Le dernier volcan à avoir rejoint la liste est le Wolf dans les îles Galapagos (Equateur). Il est entré en éruption le 6 janvier 2022, avec une fracture de 8 km de long qui a émis des coulées de lave sur environ 18,5 km sur ses flancs. Selon l’Instituto Geofísico, l’éruption a cessé le 5 mai 2022. Le Wolf quittera peut-être la liste des volcans en éruption, à moins que l’activité reprenne ou qu’une autre éruption commence dans les deux prochains mois.
La répartition des volcans en éruption par continent montre à quel point ils sont disséminés sur Terre : 1 en Antarctique, 2 en Europe, 4 en Afrique, 4 en Amérique du Nord, 6 en Asie (dont 3 au Kamtchatka, Russie), 7 en Amérique centrale, 7 en Amérique du Sud et 17 en Océanie.
Il n’est pas surprenant que l’Océanie domine la liste des endroits sur Terre avec des volcans en éruption ; en effet, une grande partie de la région se trouve sur la « Ceinture de Feu » du Pacifique.
Parmi les volcans en éruption les mieux connus sur la liste, on notera l’Erebus (Antarctique) et l’Erta Ale (Éthiopie). L’Erebus, l’Erta Ale et le Kilauea (Hawwai) hébergent des lacs de lave permanents.
Les volcans moins connus de la liste comprennent le Dukono (Indonésie), le Telica (Nicaragua) et le Suwanosejima (Japon). Le Dukono se dresse sur l’île de Halmahera et est en éruption sporadique depuis 1933. Le Telica est en éruption intermittente depuis avril 2021 tandis que le Suwanosejima se manifeste depuis octobre 2004.
Quatre volcans aux États-Unis figurent sur la liste de la Smithsonian Institution. Ce sont le Kilauea (Hawaï) et trois volcans en Alaska : le Pavlof, sur la péninsule de l’Alaska, est sur la liste depuis août 2021 ; le Great Sitkin, dans les îles Aléoutiennes, depuis mai 2021, et le Semisopochnoi, également dans les îles Aléoutiennes, depuis février 2021.
Tous les volcans mentionnés ci-dessus sont sur la terre ferme, mais dautres volcans se cachent dans les profondeurs de l’océan où ils entrent en éruption sans être détectés. Bien qu’ils représentent 75% de la production de magma sur Terre, les volcans de la dorsale médio-océanique sont encore mal compris et ils entrent généralement en éruption de manière invisible.
L’Islande, située sur la dorsale médio-atlantique, offre une fenêtre sur ce monde sous-marin. La récente éruption du Fagradalsfjall, de mars à septembre 2021, est un exemple spectaculaire de volcanisme de dorsale médio-océanique. C’est l’une des rares fois où un volcan de dorsale médio-océanique a figuré sur la liste de la Smithsonian Institution.

Cette note est inspirée d’un article Volcano Watch publié par l’Observatoire des Volcans d’Hawaii (HVO).

NDLR : S’agissant des volcans sous-marins, on se doit de rappeler l’éruption du Hunga-Tonga-Hunga-Ha’apai (Tonga), l’une des plus puissantes des dernières décennies.

——————————————-

Today, with the Internet, news spreads at the speed of light. People are informed as soon as a volcano starts erupting. This may give the impression that more eruptions are occuring on Earth than in the past. However, this is not the case.

Typically, in a given year, 40–50 volcanoes erupt, or a bit less than 10% of the world’s active volcanoes.

As of March 17th, 2022, the Smithsonian Institution’s Global Volcanism Report (GVP) reported 48 volcanoes in an erupting status.

Many of the volcanoes in this list have been erupting recurrently for years to decades to even centuries. Yasur (Vanuatu), has been erupting intermittently since at least the year 1774.

Stromboli (Italy) is thought to have been erupting semi-continuously for ten times as long according to Roman records!

The volcano to join the list most recently is Wolf in the Galapagos Islands (Ecuador). It began erupting on January 6th, 2022, with an 8-km-long fissure sending lava flows about 18.5 km down its flanks. THe Instituto Geofísico has reported that the eruption ceased on May 5th, 2022. Wolf may not be long on the list of erupting volcanoes, unless the eruption resumes or another eruption begins within the next two months.

Breaking the list of erupting volcanoes down by continent demonstrates how variable in location they are on Earth: 1 in Antarctica, 2 in Europe, 4 in Africa, 4 in North America, 6 in Asia (including 3 in Kamchatka, Russia), 7 in Central America, 7 in South America, and 17 in Oceania.

It is no surprise that Oceania should dominate the list of locations on Earth with erupting volcanoes; indeed, much of the region lies within the Pacific “Ring of Fire

Well-known volcanoes on the list of erupting volcanoes include Erebus (Antarctica) and Erta Ale (Ethiopia). Erebus, Erta Ale, and Kilauea (Hawwai) are known to host persistent lava lakes.

Lesser-known volcanoes on the list include Dukono (Indonesia), Telica (Nicaragua), and Suwanosejima (Japan). Dukono occupies the remote island of Halmahera and has been erupting sporadically since 1933. Telica has been erupting intermittently since April 2021 whereas Suwanosejima has been doing so since October 2004.

Four volcanoes in the United States make the GVP list of volcanoes in an erupting status, including Kilauea (Hawaii) and three volcanoes in Alaska: Pavlof, on the Alaska Peninsula, has been on the list since August 2021; Great Sitkin, in the Aleutian Islands, since May 2021, and Semisopochnoi, in the Aleutian Islands too, since February 2021.

All the volcanoes mentioned so far are on land, but hidden deep beneath the ocean surface are volcanoes that erupt undetected. Though they account for 75% of Earth’s magma production, mid-ocean ridge volcanoes are poorly understood and usually erupt unseen.

Iceland, where the Mid-Atlantic Ridge comes to the surface, offers us a window into this submarine world. The recent eruption of Fagradalsfjall, from March–September 2021, was a spectacular example of mid-ocean ridge volcanism and one of the rare times when a mid-ocean ridge volcano made the GVP list.

This post is adapted from a Volcano Watch article published by the USGS Hawaiian Volcano Observatory (HVO).

Editor’s note: With regard to submarine volcanoes, one should remembert remember the eruption of Hunga-Tonga-Hunga-Ha’apai (Tonga), one of the most powerful in recent decades.

L’éruption de Fagradalsfjall (Islande) a marqué l’année 2021 (capture écran webcam)

Séismes et éruptions : la Sicile s’inquiète… // Earthquakes and eruptions : Sicily is getting anxious…

Un réveil de l’Etna, un accès de colère du Stromboli, deux séismes entre Lampedusa et Linosa pour l’un et au large des Iles Eoliennes pour l’autre; il y avait de quoi mettre en émoi la presse sicilienne le 14 mai 2022!

Comme je l’ai indiqué précédemment, la lave a percé le flanc sud du Cratère Sud-Est de l’Etna et une coulées avance jusqu’à la base du cône. Le 13 mai, une violente explosion a secoué le Stromboli avec des projections de matériaux jusque sur le Pizzo.

Les séismes enregistrés le 14 mai avaient des magnitudes de M 3,6 au large de Lampedusa et de M 3;8 au large des Eoliennes. Les hypocentres ont été localisés respectivement à 10 et 11 km de profondeur. Ces événements ne semblent pas avoir causé de dégâts.

Selon l’INGV, le coupable de cette sismicité est probablement le complexe Alfeo-Etna, un immense système de failles, pouvant atteindre une centaine de kilomètres de long, situé à l’est de l’escarpement ibléo-maltais qui génère un essaim sismique avec des événements mineurs depuis novembre 2021. Les données géologiques et géophysiques acquises en mer ces dernières années indiquent que la zone de déformation, d’une orientation nord-ouest-sud-est, de la faille Alfeo-Etna modifie le fond marin au large de la côte ionienne en rejoignant, le long de la Timpa d’Acireale, les systèmes de failles actives du versant oriental de l’Etna.
S’agissant de la surveillance de la faille Alfeo-Etna, je vous renvoie à une note que j’ai publiée sur ce blog le 15 février 2021:

https://claudegrandpeyvolcansetglaciers.com/2021/02/15/letude-de-la-faille-au-pied-de-letna-the-study-of-the-fault-at-the-foot-of-mt-etna/

————————————————

An awakening of Mt Etna, a fit of anger at Stromboli, two earthquakes between Lampedusa and Linosa for one and off the Aeolian Islands for the other; there was enough to stir the Sicilian press on May 14th, 2022!
As I indicated before, lava has pierced the southern flank of Etna’s Southeast Crater and a flow is advancing to the base of the cone. On May 13th, a violent explosion shook Stromboli with projections of materials as far as the Pizzo.

The earthquakes recorded on May 14th had magnitudes of M 3.6 off Lampedusa and M 3.8 off the Aeolian Islands. The hypocenters were located respectively at 10 and 11 km depth. These events do not appear to have caused any damage.
According to INGV, the cause of the seismicity probably lies with the Alfeo-Etna complex, a huge fault system, up to a hundred kilometers long, located east of the Ibleo-Maltese escarpment which has been generating a seismic swarm with minor events since November 2021. Geological and geophysical data acquired at sea in recent years indicate that the deformation zone, with a northwest-southeast orientation, of the Alfeo-Etna fault modifies the seabed off the Ionian coast as it merges, along the Timpa of Acireale, with the active fault systems of the eastern slope of Mt Etna.
Regarding the monitoring of the Alfeo-Etna fault, you can have a look at a post I published on this blog on February 15, 2021:
https://claudegrandpeyvolcansetglaciers.com/2021/02/15/letude-de-la-faille-au-pied-de-letna-the-study-of-the-fault-at-the-foot-of-mt- etna/

La lave sur le flanc du Cratère SE de l’Etna (Capture webcam)