Le mois de mai sur le Kilauea (Hawaii) // May on Kilauea Volcano (Hawaii)

Le mois de mai est particulièrement riche en éruptions sur le Kilauea. Plusieurs d’entre elles ont débuté, évolué ou pris fin au cours de ce mois. Dans son dernier « Volcano Watch », le HVO a examiné quelques uns des événements les plus marquants entre le 19ème et le 21ème siècle.

La première éruption du Kilauea décrite par des missionnaires occidentaux a eu lieu en 1823. Une fracture de 10 kilomètres de long baptisée «The Great Crack» a donné naissance à la coulée de Keaiwa dans la Lower Southwest Rift Zone (zone de fracture SO) au début de l’été de cette même année. À l’époque, les Hawaïens ont raconté que «Pélé était sortie d’une caverne souterraine et avait débordé dans la plaine… L’apparition de la lave a été soudaine et violente, a brûlé un canot et en a emporté quatre autres dans la mer. À Mahuku [Bay], le puissant torrent de lave est entré dans la mer… »

L’éruption de 1840 a commencé le 30 mai dans la partie inférieure du District de Puna et a duré 26 jours. Il existe peu de témoignages oculaires de cet événement qui a montré l’importance du travail sur le terrain pour déterminer la chronologie des événements. La cartographie géologique révèle que l’éruption de 1840 a probablement ressemblé à celle de 2018.

En 1922, dix ans après la création de l’Observatoire des Volcans d’Hawaii (le HVO), une éruption fissurale a commencé le 28 mai vers 21 heures au niveau des cratères Makaopuhi et Napau sur l’East Rift Zone (zone de fracture E) du Kilauea.

Il a fallu aux scientifiques du HVO 30 minutes de voiture, puis trois heures de marche pour atteindre le Makaopuhi Crater. Le lendemain, une autre équipe scientifique s’est approchée par le côté est et a observé de faibles projections dans le Napau Crater avant d’atteindre le Makaopuhi. Les deux équipes ont dû traverser des zones de végétation dense et difficile pendant plusieurs heures avant d’atteindre les sites éruptifs.

L’éruption explosive de l’Halema’uma’u en 1924 a duré 17 jours et a pris fin le 28 mai. Un volumineux panache de cendre s’est échappé du cratère pendant cette éruption qui a tué une personne le 18 mai 1924, le même jour de mai que la célèbre éruption du Mont St. Helens.

Une éruption fissurale de trois jours et demi a commencé le 31 mai 1954 dans le cratère de l’Halema’uma’u. Cette éruption a été l’une des premières du Kilauea à avoir été annoncée grâce au réseau de surveillance géophysique. Les scientifiques du HVO avaient observé des signes d’augmentation de la pression magmatique sous le sommet et déclaré que «dans de telles conditions, une éruption pourrait survenir avec sans prévenir longtemps à l’avance». Le premier séisme a réveillé la population à 3 h 42, le tremor est apparu à 4 h 09 et une lueur rouge a été observée dans le ciel à 4 h 10.

L’éruption dans la partie basse du District de Puna en 1955 s’est terminée le 26 mai après 88 jours d’activité dans la même zone que l’éruption de 2018. Cette éruption a dévasté des terres agricoles et isolé le village de Kapoho.

Le 24 mai 1969, le Mauna Ulu est entré en éruption dans l’Upper East Rift Zone du Kilauea. Cet événement a fait suite à une décennie de brèves éruptions fissurales. Les scientifiques du HVO pensaient que cette nouvelle éruption allait durer entre une semaine et un mois. Ce ne fut pas le cas. L’activité s’est concentrée sur une bouche unique entre les cratères Alae et Alo aujourd’hui recouverts par la lave, et s’est poursuivie presque continuellement pendant quatre ans et demi ! Cette longue éruption a permis aux volcanologues du HVO d’étudier et de comprendre les processus volcaniques. L’éruption a permis d’analyser comment se comportent les coulées de lave, les fluctuations de leur vitesse en fonction de la pente, le phénomène de gas pistoning, et la formation des laves en coussins (pillow lavas) lorsque la lave entre dans l’océan.

Lors de l’éruption de 2018 dans la Lower East Rift Zone, la Fracture n°8 s’est réactivée une dernière fois le 24 mai, brièvement accompagnée le 27 mai par l’ouverture de la Fracture n°24. Dans la soirée du 27 mai, la principale coulée de lave issue de la Fracture n°8 a commencé a progresser vers l’océan. Cette éruption est sans aucun doute celle qui a été le mieux documenté sur le Kilauea.
Source: USGS / HVO.

————————————————

The month of May has been quite rich on Kilauea, with several notable eruption beginnings, changes, and endings. In its latest “Volcano Watch”, HVO examined a few significant events that marked the last three centuries.

The first eruption of Kilauea documented by western missionaries occurred in 1823. A 10-kilometre-long fissure called “the Great Crack” produced the Keaiwa Flow on the Lower Southwest Rift Zone sometime in the early summer. At the time, local Hawaiians explained that “Pele had issued from a subterranean cavern and overflowed the lowland … The inundation was sudden and violent, burnt one canoe, and carried four more into the sea. At Mahuku [Bay], the deep torrent of lava bore into the sea…”

The 1840 eruption in lower Puna began on May 30th and lasted for 26 days. Few eyewitness accounts exist of this eruption, which emphasized the importance of geological fieldwork to reconstruct the chronology of events that occurred. Geologic mapping indicated 1840 may have been similar to the 2018 eruption.

In 1922, ten years after the Hawaiian Volcano Observatory (HVO) was founded, a fissure eruption began around 9 p.m. on May 28th in Makaopuhi and Napau craters on Kilauea’s East Rift Zone. HVO scientists drove for 30 minutes and then hiked three hours to reach Makaopuhi. The next day, another field party approached from the east and saw weak spattering in Napau Crater before reaching Makaopuhi Crater. Both teams endured hours of jungle bushwhacking to reach the eruption sites.

The explosive 1924 eruption of Halema’uma’u lasted 17 days and ended activity on May 28th. The crater unleashed a large ash cloud that killed one person on May 18th, 1924, a day later associated with the famous Mount St. Helens eruption.

A 3.5-day-long fissure eruption started on May 31st, 1954 in Halema’uma’u crater. This eruption was one of the first at Kilauea to be “anticipated” through geophysical monitoring. HVO scientists had noted signs of increasing pressurization at the summit and stated that “under such conditions, an eruption might come with very little forewarning.” The first earthquake woke residents at 3:42 a.m., seismic tremor started at 4:09 a.m., and at 4:10, there was red glow in the sky.

The 1955 lower Puna eruption ended on May 26th after 88 days of activity in the same area as the recent 2018 eruption. This eruption devastated farmland and isolated Kapoho Village.

Mauna Ulu began erupting on Kilauea’s Upper East Rift Zone on May 24th, 1969. It followed a decade of short-lived fissure eruptions and HVO staff suspected it would be another week-to-month-long event. However, activity focused at a single vent between the now buried ‘Alae and Alo’i craters and continued there almost continuously for 4.5 years. This sustained activity allowed HVO staff to document, study and understand volcanic processes in great detail. The eruption advanced understanding of how lava flows advance and inflate, the effect of lava velocity and slope on flow textures, gas-pistoning behaviour, and the formation of pillow basalts when lava flows into the ocean.

During the 2018 Lower East Rift Zone eruption, fissure 8 reactivated for a final time on May 24th and was joined briefly on May 27th by the final fissure (#24) opening. In the evening of May 27th, the main fissure 8 lava flow began its advance towards the ocean. This eruption was arguably the best-documented eruption at Kilauea yet.

Source : USGS / HVO.

L’éruption de l’Halema’uma »u en 1924 (Source : USGS / HVO)

Eruption 2018 : coulée issue de la Fracture n°8 (Crédit photo : HVO)

 

Passé, présent et futur sur le Mauna Loa (Hawaii) // Past, present and future on Mauna Loa (Hawaii)

Dominant la Grand Ile d’Hawaii de ses 4170 mètres, le, Mauna Loa est l’un des volcans les plus actifs sur Terre. Il est entré en moyenne en éruption tous les 5 à 6 ans au cours des 3 000 dernières années.
Les éruptions peuvent se produire dans différents secteurs du volcan: au sommet, en général dans la caldeira Moku’weweoweo ; le long de l’une des zones de rift nord-est et sud-ouest, ou à partir de bouches radiales à l’extérieur de la caldeira et sur des zones de rift sur les flancs nord et ouest du volcan.
Depuis 1843, Mauna Loa est entré 33 fois en éruption. Parmi ces éruptions historiques, environ la moitié ont commencé au sommet et sont restées confinées dans la zone sommitale. 24% des éruptions ont commencé au sommet puis, au bout de quelques minutes ou quelques jours, elles ont migré vers la zone de Rift Nord-est. 21% ont commencé au sommet puis ont migré vers des altitudes plus basses le long de la zone de Rift Sud-ouest. Environ 6% des éruptions se sont produites au niveau de bouches radiales, mais ces éruptions historiques avaient également une relation avec le sommet.

L’Observatoire des Volcans d’Hawaii (HVO) surveille le Mauna Loa 24 heures sur 24. Un vaste réseau d’instruments a été mis en place, avec des sismomètres, des inclinomètres, des stations GPS et des webcams, ainsi que des capteurs de température, de SO2 et de CO2. Ces instruments transmettent les données en temps réel au HVO 24 heures sur 24, sept jours sur sept.

Que ce soit pour les éruptions volcaniques ou les autres événements géologiques, le passé est essentiel pour comprendre le futur. C’est pourquoi, pour anticiper le déroulement de la prochaine éruption du Mauna Loa, le HVO se tourne vers le passé.
Au vu des éruptions passées du Mauna Loa, les scientifiques du HVO s’attendent à ce que la prochaine commence au sommet du volcan. Malheureusement, il n’est pas possible de savoir si elle restera confinée au sommet, si elle migrera vers l’une des zones de rift, ou si elle comportera une éruption radiale. Les volcanologues  ne le saurons qu’en observant le processus éruptif.

Comme nous sommes en avril, il est intéressant d’observer les éruptions du Mauna Loa qui se sont produites au cours de ce mois.
En 1942, une éruption a commencé le 26 avril. C’était au moment de la Seconde Guerre mondiale et l’éruption s’est déroulée dans la plus grande discrétion à Hawaï. Les autorités américaines craignaient que l’armée japonaise puisse utiliser la forte lueur émise de nuit par la lave pour guider leurs avions de guerre vers l’archipel hawaiien. L’éruption a commencé sur la lèvre ouest de la caldeira sommitale du Mauna Loa, avant de migrer vers la Zone de Rift Nord-est.

La troisième plus longue éruption sommitale de l’histoire du Mauna Loa a commencé le 7 avril 1940. Des fontaines de lave de 20 à 60 mètres de hauteur ont tout d’abord jailli le long d’une ligne de fissures entre le centre de la caldeira sommitale et une zone sur le flanc sud-ouest du volcan. Le lendemain soir, l’éruption, qui a duré 134 jours, se limitait à la partie sud-ouest de la caldeira. Là, des bouches actives ont construit un cône de cendres et de projections de 100 mètres de haut, encore bien visible aujourd’hui sur le plancher de la caldeira.
Le 10 avril 1926, une éruption a commencé au sommet du Mauna Loa, mais des fissures ont rapidement migré sur 5 kilomètres le long de la Zone de Rift Sud-ouest du volcan. Trois jours plus tard, l’éruption a continué à migrer le long de la zone de rift ; trois bouches sont restées actives entre 2200 et 2400 mètres d’altitude et ont émis de volumineuses coulées de lave «a». La coulée  principale s’est rapidement dirigée vers la mer en détruisant au passage le petit village et le port de Ho`ōpūloa le 18 avril. Cette éruption de courte durée, mais destructrice, s’est terminée le 26 avril.
En 1896, une éruption sommitale de 16 jours a commencé le 21 avril.
Une autre éruption sommitale du Mauna Loa a commencé le 20 avril 1873 et a duré 18 mois.

Au moment où j’écris ces lignes, le Mauna Loa n’est pas en éruption. Son niveau d’alerte reste à ADVISORY (Vigilance conseillée). Des séismes de faible magnitude sont souvent enregistrés dans la partie supérieure du volcan, mais cela ne signifie pas qu’une éruption est sur le point d’avoir lieu. Les instruments montrent que la lente inflation sommitale se poursuit. La température des fumerolles et les concentrations de gaz dans la Zone du Rift Sud-Ouest restent stables.
Source: USGS / HVO.

——————————————-

On Hawaii Big Island, Mauna Loa (4,170 m) is one of the most active volcanoes on Earth. It has erupted, on average, every 5 to 6 years during the past 3,000 years.

Eruptions may occur in different areas of the volcano: at the summit, typically within the Moku‘āweoweo caldera, along one of the Northeast and Southwest Rift Zones, or from radial vents outside the caldera and rift zones on the volcano’s north and west flanks.

Since 1843, Mauna Loa has erupted 33 times. Of these historic eruptions, about half started at the summit and stayed in the summit area. 24% of the eruptions started at the summit and then, within minutes to days, migrated down the Northeast Rift Zone. 21% started at the summit and then migrated to lower elevations along the Southwest Rift Zone. Around 6% of the eruptions occurred at radial vents, but those historical eruptions also had a summit component.

The Hawaiian Volcano Observatory (HVO) is monitoring Mauna Loa 24 hours. To track changes on the volcano, an extensive network of instruments has been set up, including seismometers, tiltmeters, GPS stations and webcams, as well as temperature, SO2 and CO2 sensors. These instruments transmit real-time data to HVO 24 hours a day, seven days a week.

With volcanic eruptions and other geologic events, the past is the key to the future. So, to understand what might happen during the next Mauna Loa eruption, HVO looks to the past.

Given what we know about past Mauna Loa eruptions, HVO scientists expect that the next one will begin at the summit of the volcano. Unfortunately, it is not possible to know if it will stay at the summit, if it will migrate down one of the rift zones, or if it will result in a radial vent eruption. That will only be revealed as the eruption progresses.

As we are in April, it is interesting to observe the Mauna Loa eruptions that occurred during this month.

In 1942, an eruption began on April 26th. With World War II underway, news blackouts were imposed on Hawaii. American officials feared that if the eruption was publicized, the Japanese military could use the bright glow of lava at night to guide warplanes to the islands. The eruption began on the western rim of Mauna Loa’s summit caldera but then migrated down the volcano’s Northeast Rift Zone.

Mauna Loa’s third-longest summit eruption in recorded history began on April 7th, 1940. Lava fountains 20-60 metres high initially erupted along a line of fissures extending from near the centre of Mauna Loa’s summit caldera to an area down the volcano’s southwest flank. By the next evening, the eruption, which lasted 134 days, was restricted to the southwestern part of the caldera. There, active vents built a 100-metre high cinder-and-spatter cone, which remains a prominent landmark on the caldera floor today.

On April 10th, 1926, an eruption began at the summit of Mauna Loa, but fissures soon migrated 5 kilometres down the volcano’s Southwest Rift Zone. Three days later, the eruption migrated farther down the rift zone, with three main vents between 2,200 and 2,400 metre elevation, sending massive ‘a’ā flows downslope. The main flow rapidly advanced toward the sea, where it destroyed the small village and harbour at Ho`ōpūloa on April 18th. This short-lived, but destructive, eruption ended on April 26th.

In 1896, a 16-day-long summit eruption on Mauna Loa began on April 21st.

Another Mauna Loa summit eruption started on April 20th, 1873, and lasted 18 months.

As I am writing these lines, Mauna Loa is not erupting. Its alert level remains at ADVISORY. Small-magnitude earthquakes are often recorded beneath the upper elevations of the volcano, but they do not mean an eruption is about to take place. Monitoring data show that slow summit inflation continues and fumarole temperature and gas concentrations on the Southwest Rift Zone remain stable.

Source: USGS / HVO.

Vue aérienne du sommet du Mauna Loa (Crédit photo : USGS)

Dans la caldeira sommitale (Photo : C. Grandpey)

Caldeira sommitale avec le cône de 1940 (Photo: C. Grandpey)

Zones éruptives du Mauna Loa (Source: USGS / HVO)

Coulée de lave de 1926 (Photo: C. Grandpey)

En cas d’éruption…(Photo : C. Grandpey)

 

L’OVPF célèbre ses 40 ans d’existence

En cette année 2020, l’Observatoire Volcanologique du Piton de la Fournaise (OVPF) célèbre son quarantième anniversaire, avec quarante années de bons et loyaux services.

Depuis sa création les scientifiques n’ont pas chômé ; ils ont enregistré 77 éruptions ! Comme l’indique le nom de l’Observatoire, la mission des scientifiques qui y travaillent est d’observer, étudier et essayer de comprendre le fonctionnement du volcan pour mieux le surveiller. Pour cela, toute une panoplie d’instruments a été mise à la disposition du personnel de l’Observatoire, avec une foule d’écrans permettant de suivre en direct les humeurs du volcan.

A noter que depuis le mois de mai 2018, l’activité de l’OVPF a été étendue à Mayotte où l’on a observé une forte hausse de la sismicité et la naissance d’un volcan sous marin à une cinquantaine de kilomètres à l’est de l’île. .

L’histoire de l’île de la Réunion est directement liée à celle de ses volcans. Il y a d’abord eu le Piton des Neiges qui s’est endormi il y a environ 12 000 ans.

Le Piton de La Fournaise a ensuite pris le relais avec une activité particulièrement soutenue.

Au fil des ans, les volcans réunionnais ont façonné le relief et les paysages de l’île. Les trois grands cirques (Mafate ci-dessous, Cilaos, Salazie) font partie des principaux pôles touristiques.

 Il ne faudrait, bien sûr, pas oublier le célèbre Enclos Fouqué, vaste dépression bordée en amont par la Plaine des Sables et en aval par le Tremblet (commune de Saint-Philippe) et par Bois-Blanc (commune de Sainte-Rose). L’Enclos couvre une superficie de 96 km2 inhabitée.

 Aucune habitation n’est donc sous la menace des coulées de lave. Le Piton de la Fournaise est donc un merveilleux laboratoire où les scientifiques peuvent travailler en toute tranquillité. .
La quasi-totalité des éruptions se déroulent dans cet amphithéâtre naturel où les coulées de basalte, grâce au climat humide et chaud, sont rapidement colonisées par des lichens, des mousses, des orchidées sauvages et des goyaviers.

(Photos: C. Grandpey)

Les visiteurs les plus chanceux pourront assister à une éruption qui fait partie des attraits touristiques de la Réunion.

Ainsi, en mars 1977, une éruption a démarré dans l’Enclos sous les regards des volcanologues Maurice et Katia Krafft. Les images ont montré des torrents de lave très fluide, typique des coulées de volcans de point chaud, que l’on trouve par exemple sur le Kilauea à Hawaii. De très hautes fontaines de lave rehaussent en général le spectacle. En mars1977, les coulées atteignirent la Plaine des Osmondes avant de s’engager dans les Grandes Pentes.

(Photo: Christian Holveck)

Les 5, 7 et 8 avril, de nouvelles fissures s’ouvrirent sur le flanc nord-est du Piton de la Fournaise, à l’extérieur de l’Enclos, juste, au-dessus du village de Bois-Blanc. On avait donc affaire à une éruption « hors Enclos », ce qui changeait la donne d’un point de vue humain car des habitations étaient menacées. En quelques heures un vent de panique se propagea au sein de la population, avec un ordre d’évacuation décrété par les autorités.
Dans la nuit du 9 au 10 avril 1977 la lave atteignit le littoral. Le village de Piton Ste-Rose fut coupé en deux. Plusieurs habitations furent détruites, mais l’église fut miraculeusement épargnée. Le 13 avril, en pleine semaine sainte, les coulées se sont arrêtées sur le parvis de l’église, rebaptisée depuis : Notre-Dame des Laves. A l’intérieur, on peut aujourd’hui admirer la célèbre Vierge au parasol.

 Cette éruption a montré aux autorités qu’une éruption pouvait déborder de l’Enclos Fouqué et qu’il serait souhaitable de mettre en place un observatoire en mesure de contrôler l’activité volcanique. Deux ans plus tard, l’Observatoire Volcanologique du Piton de la Fournaise voit le jour. Les scientifiques disposent enfin d’un outil pour tenter de décrypter le fonctionnement du volcan.

En 40 ans, ils ont étudié 77 éruptions réparties sur 1850 jours. Elles ont émis 743 millions de mètres cubes de lave. L’île s’est agrandie à plusieurs reprises. L’Océan Indien et ses vagues ont cependant retaillé le profil de la côte du sud sauvage.

(Photos: C. Grandpey)

Source : Réunion La 1ère.

Volcan Taal (Philippines) : Un sacré pétard ! // A very dangerous explosive volcano

Il va falloir suivre avec attention l’évolution de l’éruption du Taal car l’histoire du volcan montre qu’il peut être particulièrement méchant. Voici un résumé de ce que j’écrivais dans mon livre « Killer Volcanoes », aujourd’hui épuisé.

Plusieurs évents éruptifs parsèment le fond du Lac Taal au centre duquel se dresse Volcano Island. Cette île, d’un diamètre d’environ cinq kilomètres, a été le siège des dernières éruptions.

Une population importante s’est installée autour du Lac Taal, facile d’accès depuis la capitale, et très prisé des Philippins qui apprécient sa beauté. De plus, de nombreuses fermes d’élevage de poissons ont envahi les lieux de sorte que l’île voit sa population augmenter régulièrement, malgré l’interdiction d’installation de structures permanentes décrétée par le PHILVOCS.

L’éruption de 1911 est la plus meurtrière de l’histoire du Taal. Précédées d’une forte sismicité,  de violentes explosions précèdent l’éruption proprement dans l’évent central du volcan avec de puissants épisodes explosifs phréatiques. Le vacarme des détonations est perçu à 500 kilomètres. Elles sont accompagnées de surges ou déferlantes basales qui  entraînent la mort de 1334 personnes. La cendre retombe en abondance sur les villages situés autour de la caldera. La couche atteint une épaisseur de 25 à 80 cm. Poussée par le vent, elle arrive jusqu’à Manille.

L’éruption de 1965 se produit dans le secteur du cône Tabaro, petit évent adventif sur le flanc sud-ouest de l’île. Elle débute le 28 septembre par des explosions modérées qui deviennent phréatomagmatiques et particulièrement violentes. La nouvelle bouche éjecte des matériaux jusqu’à 20 kilomètres d’altitude. Il ne fait aucun doute que l’on assiste à une redoutable éruption plinienne qui s’accompagne de déferlantes basales extrêmement rapides qui se déplacent jusqu’à 4 km de distance et déclenchent des tsunamis. Des villages sur les berges du lac sont détruits et deux cents personnes périssent dans le cataclysme.

La dernière éruption de 1977 débute le 3 octobre dans la partie nord-est du cratère formé en 1976. On observe de faibles émissions de cendre qui incitent les autorités à faire évacuer la population de l’île bien que cette activité explosive soit relativement modérée. Le panache le plus haut s’élève à seulement cinq cents mètres au-dessus du volcan. Aucune victime n’est à déplorer.

Ces différents événements expliquent les appels à la prudence et les mises en garde du PHIVOLCS. Déferlantes basales et tsunamis font partie de l’histoire du Taal et sont appelés à se reproduire un jour ou l’autre.

+++++++++

Situation le 13 janvier 2020 à 7 heures (heure française): Le dernier bulletin du PHIVOLCS indique que l’éruption du Taal continue et que la sismicité reste élevée, ce qui traduit la poursuite de l’intrusion magmatique sous l’édifice volcanique.

Malgré l’éruption, l’aéroport international de Manille, situé à 65 km du volcan, a repris ses activités. Il est toutefois demandé aux passagers de s’assurer auprès de leurs compagnies que les vols sont maintenus.

°°°°°°°°°

12 heures : Dans sa dernière mise à jour de16 heures- heure locale (9 heures – heure française), le PHIVOLCS indique qu’après un bref déclin de l’activité, l’éruption du Taal a repris de plus belle avec de petites  fontaines de lave sporadiques et une activité phréato-magmatique dans le Cratère Principal. Elle a généré des panaches de vapeur et de cendre d’environ 2 km de hauteur. De nouvelles bouches éruptives se sont ouvertes sur le flanc nord, donnant naissance à des fontaines de lave de 500 mètres de hauteur.
Depuis la dernière mise à jour, d’importantes retombées de cendre ont affecté plusieurs zones au sud-ouest de Volcano Island.
Le PHIVOLCS rappelle au public que cette cendre peut causer des problèmes de santé. Il est conseillé à la population d’éviter l’inhalation de la cendre et d’utiliser des masques ou un chiffon humide pour se rendre à l’extérieur des maisons. Les automobilistes doivent conduire avec une extrême prudence car la cendre peut entraîner une mauvaise visibilité et, lorsqu’elle est mouillée, rendre les routes glissantes.
La sismicité reste élevée avec plusieurs événements ressentis par la population. Comme je l’ai expliqué précédemment, une telle activité sismique intense correspond probablement à la poursuite d’une intrusion magmatique sous l’édifice volcanique, avec le risque d’une activité éruptive plus intense.

————————————————

The evolution of the Taal eruption will have to be monitored carefully because the history of the volcano shows that it can be particularly nasty. Here is a summary of what I wrote in my book « Killer Volcanoes« , now out of print.

Several eruptive vents dot the bottom of Taal Lake at the centre of which stands Volcano Island. This island, about five kilometres in diameter, has been the site of the latest eruptions.
A large population settled around Lake Taal, easily accessible from the capital, and very popular with Filipinos who appreciate its beauty. In addition, many fish farms have invaded the area so that the population of the island increased regularly, despite the ban on the installation of permanent structures decreed by PHILVOCS.

The 1911 eruption was the deadliest in the history of Taal. Preceded by strong seismicity, violent explosions preceded the eruption itself in the central vent of the volcano with powerful phreatic explosive episodes. The noise of detonations could be heard 500 kilometres away. They were accompanied by surges which caused the deaths of 1334 people. Huge amounts of ash fell in on the villages located around the caldera. The layer was up to 25 to 80 cm thick. Pushed by the wind, it reached Manila.

The 1965 eruption occurred in the area of ​​the Tabaro cone, a small adventive vent on the southwest flank of the island. It began on September 28th with moderate explosions which became phreatomagmatic and particularly violent. The new vent ejected materials up to 20 km a.s.l. It was undoubtedly a dreadful plinian eruption accompanied by extremely rapid surges that travelled as far as 4 km and triggered tsunamis. Villages on the banks of the lake were destroyed and two hundred people perished in the disaster.

The last eruption of 1977 began on October 3rd in the northeastern part of the crater formed in 1976. There were low ash emissions which incited the authorities to evacuate the population of the island although this explosive activity was relatively moderate. The tallest plume rose five hundred metres above the volcano. No casualties were reported.

These various events explain PHIVOLCS’ calls to caution and  warnings. Surges and tsunamis are part of the history of Taal Volcanoand are bound to happen again sooner or later.

+++++++++

Latest news at 7 a.m. (French time): The latest PHIVOLCS bulletin indicates that the Taal eruption continues and that seismicity remains elevated, which indicates magmatic intrusion is going on beneath the volcanic edifice.
Despite the eruption, Manila International Airport, located 65 km from the volcano, has resumed operations. Passengers are however requested to check with their companies to ensure that flights are maintained.

°°°°°°°°°°

Midday noon: In its 4 p.m. update, PHIVOLCS indicates that after a brief waning of activity, Taal’s eruption resumed immediately with weak sporadic lava fountaining and phreatomagmatic activity at the Main Crater that generated steam-laden plumes approximately 2 km tall. New lateral vents have opened up on the northern flank releasing 500m lava fountains.

Since the last update, heavy ashfall from the ongoing eruptions of Taal has reportedly fallen in several areas southwest of the volcano island.

PHIVOLCS reminds the public that ashfall can cause health problems. Affected populations are advised to avoid inhalation of ash and use facemasks or wet cloth or towel when going outdoors. Motorists are advised to drive with extreme caution as ash can cause poor visibility and, when wet, can make roads slippery.

Seismicity is still high with several events felt by the population. As I put it before, such intense seismic activity probably signifies continuous magma intrusion beneath the Taal edifice, which may lead to more intense eruptive activity.

Crédit photo: Wikipedia

Une balise pour prévoir séismes, tsunamis et éruptions // A buoy to predict earthquakes, tsunamis and eruptions

Des géophysiciens de l’Université de Floride du Sud (USF) ont mis au point et testé avec succès une balise de haute technologie, utilisable en eau peu profonde, capable de détecter les moindres variations du plancher océanique, souvent annonciateurs de catastrophes naturelles dévastatrices, telles que les séismes, les tsunamis et les éruptions volcaniques.

Le système flottant, mis au point avec l’aide d’une subvention de 822 000 dollars allouée par la National Science Foundation, a été installé à Egmont Key dans le Golfe du Mexique en 2018 et a déjà livré des données sur le mouvement tridimensionnel du plancher océanique. Ainsi, il sera capable de détecter de petites variations de contrainte dans la croûte terrestre.
En attente de brevet, ce système de géodésie présente l’aspect d’une balise ancrée au fond de la mer et surmontée d’un GPS de haute précision. L’orientation de la balise est mesurée à l’aide d’une boussole numérique fournissant des informations sur le cap, le tangage et le roulis, ce qui permet de mesurer latéralement  les mouvements de la Terre et diagnostiquer les principaux séismes déclencheurs de tsunamis.
Bien que plusieurs autres techniques de surveillance des fonds marins soient actuellement disponibles, la technologie mise au point en Floride fonctionne généralement mieux dans les milieux océaniques profonds où les interférences sonores sont moindres. Les eaux côtières peu profondes (moins de quelques centaines de mètres de profondeur) constituent un environnement plus difficile à analyser, mais également important pour de nombreuses applications, notamment certains types de séismes dévastateurs. Les processus d’accumulation et de libération de contraintes au niveau de la croûte terrestre au large sont essentiels à la compréhension des puissants séismes et des tsunamis.
Le système flottant est relié au fond de la mer à l’aide d’un lest en béton et il a pu résister à plusieurs tempêtes, dont l’ouragan Michael dans le Golfe du Mexique. Le système est capable de détecter des mouvements du plancher océanique de seulement deux centimètres.
La technologie a plusieurs applications potentielles dans l’industrie pétrolière et gazière en mer et pourra être utilisée pour la surveillance de certains volcans. Toutefois, la principale application concerne l’amélioration de la prévision des séismes et des tsunamis dans les zones de subduction. Les puissants séismes et tsunamis qui ont frappé Sumatra en 2004 et le Japon en 2011 sont des événements que les scientifiques souhaiteraient mieux comprendre et prévoir.
Le système mis au point par l’Université de Floride est conçu pour les applications de zones de subduction de la Ceinture de Feu du Pacifique, où les processus d’accumulation et de libération de contraintes de l’écorce terrestre en mer sont actuellement mal connus. Les scientifiques espèrent pouvoir installer le nouveau système dans les eaux côtières peu profondes de l’Amérique Centrale, où se produisent souvent des tremblements de terre.
Le site d’Egmont Key où le système a été testé présente une profondeur de 23 mètres. Bien que la Floride ne soit pas sujette aux séismes, les eaux au large d’Egmont Key se sont avérées un excellent site de test. Ce lieu est exposé à de forts courants de marée qui ont permis de tester le système de correction de la stabilité et de l’orientation de la balise. La prochaine étape consistera à installer un système semblable dans les eaux plus profondes du Golfe du Mexique, au large de la côte ouest de la Floride.
Source: Université de Floride du Sud.

—————————————

University of South Florida (USF) geoscientists have successfully developed and tested a new high-tech shallow water buoy that can detect the small movements and changes in the Earth’s seafloor that are often a precursor to deadly natural hazards, like earthquakes, volcanoes and tsunamis.

The buoy, created with the assistance of an $822,000 grant from the National Science Foundation, was installed off Egmont Key in the Gulf of Mexico in 2018 and has been producing data on the three-dimensional motion of the sea floor.  Ultimately the system will be able to detect small changes in the stress and strain the Earth’s crust.

The patent-pending seafloor geodesy system is an anchored spar buoy topped by high precision Global Positioning System (GPS). The buoy’ orientation is measured using a digital compass that provides heading, pitch, and roll information – helping to capture the crucial side-to-side motion of the Earth that can be diagnostic of major tsunami-producing earthquakes.

While there are several techniques for seafloor monitoring currently available, that technology typically works best in the deeper ocean where there is less noise interference. Shallow coastal waters (less than a few hundred metres deep) are a more challenging environment but also an important one for many applications, including certain types of devastating earthquakes. Offshore strain accumulation and release processes are critical for understanding powerful earthquakes and tsunamis.

The experimental buoy rests on the sea bottom using a heavy concrete ballast and has been able to withstand several storms, including Hurricane Michael up the Gulf of Mexico. The system is capable of detecting movements as small as one to two centimetres.

The technology has several potential applications in the offshore oil and gas industry and volcano monitoring in some places, but the big one is for improved forecasting of earthquakes and tsunamis in subduction zones. The giant earthquakes and tsunamis in Sumatra in 2004 and in Japan in 2011 are examples of the kind of events scientists would like to better understand and forecast in the future.

The system is designed for subduction zone applications in the Pacific Ocean’s “Ring of Fire” where offshore strain accumulation and release processes are currently poorly monitored. One example where the group hopes to deploy the new system is the shallow coastal waters of earthquake prone Central America.

The Egmont Key test location sits in just 23 metres depth.  While Florida is not prone to earthquakes, the waters off Egmont Key proved an excellent test location for the system. It experiences strong tidal currents that tested the buoy’s stability and orientation correction system. The next step in the testing is to deploy a similar system in deeper water of the Gulf of Mexico off Florida’s west coast.

Source: University of South Florida.

Vue de la balise haute technologie mise au point par l’Université de Floride (Source : USF)

Vue du site d’Egmont Key, sur la côte ouest de la Floride, où la balise a été testée (Source : Google maps)

Nouvelle carte du Mauna Loa (Hawaii) // New map of Mauna Loa (Hawaii)

Bien qu’il ne soit pas entré en éruption depuis 1984, le Mauna Loa reste un volcan actif. Les dernières mesures de déformation révèlent une inflation continue du sommet, ce qui prouve que le magma exerce une pression sous l’édifice volcanique. L’USGS a récemment publié une carte géologique du versant centre-sud-est du Mauna Loa (“Geologic Map of the Central-Southeast flank of Mauna Loa Volcano”). Cette nouvelle carte remplace la «Carte géologique de l’île d’Hawaï» (1996) et la «Carte géologique de l’État d’Hawaï» pour la région de Mauna Loa. Elle englobe 500 kilomètres carrés du flanc sud-est du Mauna Loa et s’étend entre 3 100 mètres d’altitude et le niveau de la mer. Elle comprend les zones adjacentes et en aval de la zone de rift nord-est du Mauna Loa, ainsi que les régions à l’est et directement en aval de Mokuaweoweo, la caldera sommitale du volcan. A partir de la partie supérieure du flanc est du Mauna Loa, la zone cartographiée s’étend vers le Parc National des Volcans d’Hawaï et le village de Volcano au nord-est. À la limite sud de la zone cartographiée se trouve Punalu’u Bay.
Les coulées de lave en provenance des parties médiane et supérieure de la zone de rift nord-est occupent la partie nord de la carte ; elles représentent environ 40% de la superficie totale. La partie sud de la carte inclut les coulées en provenance de la partie supérieure de la zone de rift sud-ouest qui représentent environ 2% de la superficie totale. Les coulées de lave émises dans la partie supérieure des deux zones de rift forme généralement des lobes étroits.
Les 58% restants de la carte (zone centrale) sont constitués de coulées de lave provenant du sommet du Mauna Loa. Contrairement aux coulées des zones de rift, celles en provenance de la caldera sommitale forment de vastes épanchements de lave pahoehoe qui couvrent de grandes surfaces. Il y a bien quelques coulées de lave a’a dans cette zone mais elles sont insignifiantes par rapport aux coulées pahoehoe.
La carte montre la répartition de 96 coulées réparties en 15 groupes d’âge allant depuis plus de 30 000 ans avant notre ère jusqu’à aujourd’hui, avec l’éruption de 1984. La palette de couleurs varie avec l’âge des dépôts volcaniques. Le rouge, le rose et l’orange représentent les époques récentes, tandis que le bleu et le violet représentent les dépôts plus anciens.
À partir de cette carte, on peut tirer plusieurs conclusions sur l’histoire géologique du flanc sud-est de Mauna Loa. Par exemple, la cartographie géologique et la datation des coulées au Carbone 14 indiquent qu’il y a eu une période d’activité sommitale intense entre environ 2 000 et 1 300 ans avant notre ère. Les coulées de lave de cette époque couvrent plus de 75% de la zone directement en aval du sommet. Cela signifie que le Mauna Loa a connu environ 700 ans d’activité presque continue, ce qui est nettement plus long que l’éruption de 35 ans observée sur le Kilauea entre1983 et 2018.
De plus, on peut noter qu’environ 55% de la surface de la carte est recouverte de couches de cendres volcaniques d’épaisseurs variables qui révèlent des éruptions volcaniques accompagnées d’une activité explosive. Les âges et les origines de ces dépôts de cendres doivent encore être déterminés.
Une zone tectonique historiquement active sur le flanc sud-est du Mauna Loa, connue sous le nom de Ka‘oiki Fault Zone, a été le théâtre de certains séismes récents. En 1983, un séisme de magnitude M 6,6 sur cette zone de faille a précédé l’éruption du Mauna Loa en 1984. Des séismes d’une magnitude supérieure à M 5,5 se sont également produits dans cette zone en 1974, 1963 et 1962.
La carte géologique du versant centre-sud-est du Mauna Loa fournit des informations fondamentales sur le comportement éruptif du Mauna Loa sur une très longue période. Elle offre également des informations précieuses sur lesquelles pourront s’appuyer des études futures en géologie et en biologie. La carte peut être consultée ou téléchargée gratuitement sur le site Web de l’USGS à cette adresse:
https://pubs.er.usgs.gov/publication/sim2932B

Source: USGS.

————————————————

Although it has not erupted since 1984, Mauna Loa is still an active volcano. The latest deformation measurements show continued summit inflation, which proves that magma is pushing beneath the volcanic edifice. USGS has recently published a “Geologic Map of the Central-Southeast flank of Mauna Loa Volcano.” The new map supersedes the “Geologic Map of the Island of Hawaii” (1996) and the “Geologic Map of the State of Hawaii” for the Mauna Loa region. It encompasses 500 square kilometres of the southeast flank of Mauna Loa and ranges from an elevation of 3,100 metres to sea level. It includes areas adjacent to and downslope of Mauna Loa’s Northeast Rift Zone, as well as regions east and directly downslope of Mokuaweoweo, the volcano’s summit caldera. From high on Mauna Loa’s east flank, the mapped area extends toward Hawaii Volcanoes National Park and the community of Volcano in the northeast. At the southern boundary of the mapped area is Punalu‘u Bay.

Lava flows from the middle and upper reaches of the Northeast Rift Zone dominate the northern part of the map, comprising about 40% of the total area. The map’s southern portion contains flows from the upper Southwest Rift Zone that make up about 2% of the total area. Lava from the upper reaches of both rift zones generally forms narrow flow lobes.

The remaining 58% of the map (centre area) consists of lava flows from the summit of Mauna Loa. In contrast to flows from the rift zones, lava flows derived from the summit caldera form voluminous, broad expansive sheets of pahoehoe that cover large areas. Aa flows occur in this area but are inconsequential when compared to the pahoehoe flows.

The map shows the distribution of 96 eruptive flows separated into 15 age groups ranging from more than 30,000 years before present to 1984. The colour scheme is based on the ages of the volcanic deposits. Red, pink, and orange represent recent epochs of time while blue and purple represent older deposits.

From the geologic record, one can deduce several generalized facts about the geologic history of Mauna Loa’s southeast flank. For example, geologic mapping and radiocarbon ages of the flows indicate that there was a period of sustained summit activity from about 2,000 to 1,300 years before the present. Lava flows of this age cover more than 75% of the area directly downslope from the summit. This means that Mauna Loa experienced approximately 700 years of nearly continuous activity, significantly longer than the 35-year-long eruption that occurred on Kilauea in 1983-2018.

Moreover, one can notice that about 55% of the map area is covered by layers of volcanic ash of varying thicknesses, which indicate explosive volcanic eruptions. The ages and origins of these ash deposits still need to be determined.

A historically active tectonic zone on the southeast flank of Mauna Loa, known as the Ka‘oiki Fault Zone, is the site of some recent large tectonic earthquakes. In 1983, an M 6.6 earthquake on the Ka‘oiki Fault Zone preceded Mauna Loa’s 1984 eruption. Earthquakes greater than M 5.5 also occurred there in 1974, 1963 and 1962.

The “Geologic Map of the Central-Southeast Flank of Mauna Loa Volcano” provides fundamental information on the long-term eruptive behaviour of Mauna Loa volcano. It also offers valuable base information on which collaborative studies in geology and biology can be launched. The map can be viewed or freely downloaded from the USGS Publications website at this address:

https://pubs.er.usgs.gov/publication/sim2932B

Source: USGS.

Source: USGS

Nouvelles recherches sur l’histoire éruptive de Yellowstone // More research about Yellowstone eruptive history

La surveillance des volcans aux États-Unis est une priorité pour l’USGS qui est en train de mettre en place un système d’alerte volcanique à l’échelle du pays. Le système permettra aux scientifiques de mieux contrôler les volcans dangereux aux États-Unis en modernisant et en étendant les réseaux de surveillance existants, notamment à l’aide de sismomètres large bande, de récepteurs GPS effectuant des mesures en continu et en temps réel, et de capteurs de gaz volcaniques. De nouveaux réseaux sont également en train d’être installés sur des volcans mal surveillés jusqu’à présent, comme le Mont Baker dans l’Etat de Washington. Yellowstone fait partie de ces efforts pour améliorer la surveillance des volcans américains.
La plupart des articles de presse sur Yellowstone affirment que le volcan est en retard dans son processus éruptif et qu’une éruption majeure pourrait survenir à court terme. Le super volcan de Yellowstone a provoqué une éruption cataclysmale il y a environ 613 000 ans. Il a alors a rejeté environ 1 000 kilomètres cubes de matériaux, ce qui représente plus du double du volume du Lac Érié et 2 500 fois le volume de matériaux émis pendant l’éruption du Mont St. Helens en 1980.
Depuis la dernière super éruption, le volcan de Yellowstone a connu de nombreuses éruptions de moindre importance avec émissions de coulées de rhyolite. Les scientifiques de l’USGS essayent maintenant de mieux appréhender ces événements de moindre envergure afin de comprendre les dangers liés au système magmatique du volcan de Yellowstone.
Selon le California Volcano Observatory, le super volcan a connu au moins 28 éruptions de rhyolite au cours des 610 000 dernières années. Ce ne sont pas des éruptions mineures car elles ont donné naissance à des coulées de lave avec des volumes allant de 0,42 à 71 km3. En comparaison, le Mont St. Helens a vomi 0,25 kilomètre cube de matériaux en 1980.
Les scientifiques espèrent savoir si ces coulées de lave ont été produites lentement au fil du temps, ou si elles proviennent de courtes éruptions réparties sur un bref laps de temps. Si les éruptions sont regroupées dans le temps, la survenue d’une première éruption peut indiquer que d’autres peuvent se produire à brève échéance.
Les chercheurs ont utilisé une technique de datation basée sur la désintégration du potassium 40 radioactif en argon 40 radioactif ; elle permet de savoir à quel moment la roche s’est cristallisée et donc de calculer l’époque à laquelle elle est apparue.
En analysant les roches volcaniques de Yellowstone, les chercheurs ont découvert que les coulées de rhyolite étaient «fortement concentrées dans le temps», avec des éruptions qui se sont produites par épisodes. Au cours de l’une des phases d’activité, il y a eu sept éruptions sur une période d’environ 1 000 ans. L’équipe scientifique espère maintenant affiner ces recherches et les intégrer dans l’évaluation des risques volcaniques à Yellowstone.
Source: USGS, Newsweek.

—————————————————

Monitoring volcanoes across the U.S. is a priority for the USGS, and the agency is currently in the process of establishing a National Volcano Early Warning System. The system will help scientists better monitor all dangerous volcanoes in the U.S. by modernizing and expanding its networks using broadband seismometers, real-time continuous GPS receivers and volcanic gas sensors, among other technologies. New networks are also being introduced to poorly monitored volcanoes like Mount Baker in Washington. Yellowstone is part of these efforts to better monitor U.S. volcanoes.

Most press articles about Yellowstone affirm that the volcano is overdue in its eruptive history and that a major eruption might occur in the short term. The Yellowstone supervolcano produced a huge eruption around 613,000 years ago, when it ejected about 1,000 cubic kilometres of material. This is more than double the volume of Lake Erie, and 2,500 times bigger than the 1980 eruption of Mount St. Helens.

Since that time, the Yellowstone volcano has produced many more smaller eruptions of rhyolite lava flows. USGS scientists are now working to better understand these smaller events in order to understand the hazards posed by the magmatic system at Yellowstone.

According to the California Volcano Observatory, the super volcano has produced at least 28 rhyolite eruptions over the last 610,000 years. These were not small eruptions as they produced lava flows ranging from 0.42 to 71 cubic kilometres. In comparison, Mount St. Helens produced 0.25 cubic kilometres of material.

What scientists are hoping to work out is whether these lava flows were produced slowly over time, or whether it came from short, clustered eruptions. If eruptions are clustered in time then the occurrence of one eruption may indicate that the next eruption may follow closely.

Researchers used a dating technique based on the decay of the radioactive potassium-40 to radioactive argon-40, which can tell them when the rock crystalized, allowing them to work out time of origin.

By analyzing the volcanic rocks at Yellowstone, researchers discovered that rhyolite lava flows were “highly clustered in time,” with eruptions taking place in episodes. In one phase of activity there were seven eruptions over a period of around 1,000 years. The scientific team now hopes to further refine these episodes and build this into volcanic hazard assessments for Yellowstone.

Monitoring volcanoes across the U.S. is a priority for the USGS, and the agency is currently in the process of establishing a National Volcano Early Warning System. The system will help scientists better monitor all dangerous volcanoes in the U.S. by modernizing and expanding its networks using broadband seismometers, real-time continuous GPS receivers and volcanic gas sensors, among other technologies. New networks are also being introduced to “under-monitored” volcanoes like Mount Baker in Washington.

“Improvements to volcano monitoring networks allow the USGS to detect volcanic unrest at the earliest possible stage,” Tom Murray, the USGS Volcano Science Center director, said in a statement. “This provides more time to issue forecasts and warnings of hazardous volcanic activity and gives at-risk communities more time to prepare.”

Source : USGS, Newsweek.

Coulées de lave et dépôts de rhyolite à Yellowstone (Photos: C. Grandpey)