Pourquoi le séisme à Java a été aussi dévastateur // Why the Java earthquake was so devastating

Le bilan du séisme qui a frappé l’ouest de Java (Indonésie) le 21 novembre 2022 est très lourd, avec plus de 260 morts et des centaines de blessés. Des bâtiments se sont effondrés et les habitants terrifiés se sont enfuis de leurs domiciles pour échapper à la mort. Des corps continuent d’être retirés des décombres dans la ville de Cianjur, la plus durement touchée, et un certain nombre de personnes sont toujours portées disparues.
En général, un séisme de magnitude M5,6 ne cause que des dégâts mineurs aux bâtiments et autres structures. A Java, les scientifiques disent que la proximité des lignes de faille, la faible profondeur du séisme (10 km) et la fragilité des infrastructures incapables de résister aux séismes ont contribué à la catastrophe.
Les scientifiques de l’USGS expliquent que les séismes de cette intensité ne causent généralement pas de dégâts majeurs aux infrastructures solidement construites. Selon l’agence, « il n’y a pas une magnitude au-dessus de laquelle les dégâts sont importants. Cela dépend d’autres variables, telles que la distance par rapport à l’épicentre du séisme, le type de sol sur lequel les bâtiments ont été construits, ainsi que d’autres facteurs. »
Des dizaines de bâtiments ont été endommagés à Java, notamment des écoles islamiques, un hôpital et d’autres bâtiments publics. Des routes et des ponts ont également été endommagés, et certaines parties de la région ont connu des pannes d’électricité.
Selon les scientifiques, la proximité des lignes de faille, la profondeur du séisme et les bâtiments qui n’ont pas été construits selon des méthodes parasismiques sont les causes de la destruction. « Même si le séisme était d’intensité moyenne, il était proche de la surface et situé à l’intérieur des terres, près d’un endroit où vivent des gens. L’énergie était encore suffisamment importante pour provoquer des secousses susceptibles d’entraîner des dégâts. »
La zone la plus touchée est proche de plusieurs failles connues. Un géologue a expliqué que la région a probablement plus de failles que n’importe quelle autre partie de Java. En outre, bien que certaines failles bien connues se trouvent dans la région, il existe de nombreuses autres failles actives qui ne sont pas bien étudiées.
Comme je l’ai écrit précédemment, en raison de sa situation sur la Ceinture de Feu du Pacifique, l’Indonésie est fréquemment frappée par des séismes, des éruptions volcaniques et des tsunamis. La zone s’étend sur quelque 40 000 kilomètres et c’est là que se produisent la majorité des séismes dans le monde. Beaucoup sont mineurs et ne causent que peu ou pas de dégâts. Mais il y a aussi eu des événements meurtriers, comme ceux de Sumatra occidental et de Sulawesi occidental (voir ma note précédente).
Source : médias d’information américains.

——————————————

The death toll of the earthquake that struck western Java (Indonesia) on Nevember 21st, 2022 is very heavy, with more than 260 dead and hundreds injured as buildings crumbled and terrified residents ran for their lives. Bodies continue to be pulled from the debris in the hardest-hit city of Cianjur, and anumber of people are still missing.

While the magnitude – M5.6 – would typically be expected to cause light damage to buildings and other structures. However, experts say the proximity to fault lines, the shallowness of the quake (10 km deep) and inadequate infrastructure that cannot withstand earthquakes all contributed to the damage.

USGS scientists explain that earthquakes of this size usually don’t cause widespread damage to well-built infrastructure. However, according to the agency, « there is not one magnitude above which damage will occur. It depends on other variables, such as the distance from the earthquake, what type of soil you are on, building construction, and other factors. »

Dozens of buildings were damaged in Java, including Islamic boarding schools, a hospital and other public facilities. Also damaged were roads and bridges, and parts of the region experienced power blackouts.

According to experts, proximity to fault lines, the depth of the earthquake and buildings not being constructed using earthquake-proof methods were factors in the devastation. « Even though the earthquake was medium-sized, it was close to the surface and located inland, close to where people live. The energy was still large enough to cause significant shaking that led to damage. »

The worst-affected area is close to several known faults. One geologist explained that the area probably has the most inland faults compared to the other parts of Java. Besides, while some well-known faults are in the area, there are many other active faults that are not well studied.

As I put it before, because of its situation on the Pacific Ring of Fire, Indonesia is frequently struck by earthquakes, volcanic eruptions and tsunamis. The area spans some 40,000 kilometers and is where a majority of the world’s earthquakes occur. Many of Indonesia’s earthquakes are minor and cause little to no damage. But there have also been deadly earthquakes, like the ones in West Sumatra and West Sulawesi (see my previous post).

Source: American news media.

Source: La BBC

Exploration des profondeurs océaniques // Ocean depth exploration

Depuis des siècles, l’humanité est fascinée par la mer, avec des explorateurs en quête de nouvelles terres et de nouvelles aventures. L’océan représente environ 71% de la surface de la Terre, et c’est le plus grand écosystème de la planète; il recèle 99% de tout l’espace habitable dans le monde. Cependant, on sait peu de choses sur le fond de nos océans, les abysses et les fosses où se déclenchent la plupart des séismes dévastateurs. En fait, nous avons une meilleure connaissance de la surface de la planète Mars ou de la Lune que des fonds marins.
Les cinq principaux bassins océaniques, Pacifique, Atlantique, Indien, Arctique et Austral, contiennent 94 % de la faune sur Terre et 97 % de toute l’eau de notre planète bleue. Malgré le rôle central joué dans l’équilibre de notre planète, nous avons bien du mal à percer les mystères des profondeurs océaniques. Jusqu’à récemment, seuls 5% des océans avaient été explorés et cartographiés par les humains.
Des progrès ont toutefois été réalisés et un article récent publié par la BBC nous apprend qu’aujourd’hui environ 25 % (23,4 % pour être exact) des fonds marins ont été cartographiés grâce à une initiative internationale, Seabed 2030. S’appuyant en grande partie des données bathymétriques aimablement fournies par les gouvernements, les entreprises et les instituts de recherche, le projet fait partie d’une initiative plus large dirigée par l’ONU et baptisée The Ocean Decade.

Seabed 2030 espère cartographier 100% du fond des océans d’ici 2030, ce qui, selon les chercheurs, reste possible grâce aux progrès de la technologie et à la collecte des données déjà disponibles. Au cours de la seule année écoulée, Seabed 2030 a ajouté des données océaniques correspondant à environ la taille de l’Europe. Il faut toutefois noter que ces progrès ont été largement réalisés grâce à des archives récemment ouvertes, plutôt que par des missions de cartographie sur le terrain.
Les scientifiques pensent que la collecte de nouvelles données bathymétriques permettra d’approfondir notre compréhension du changement climatique et de mieux préserver les océans. La cartographie des fonds marins permettra aussi de détecter les tsunamis et autres catastrophes naturelles.
Une grande partie des données utilisées par Seabed 2030 existaient déjà. Comme indiqué plus haut, le groupe s’appuie en grande partie sur les contributions des gouvernements et des entreprises, bien que certaines de ces entités hésitent encore à ouvrir complètement leurs archives de peur de divulguer des secrets nationaux ou commerciaux.
Toutes les données collectées par Seabed 2030 seront mises à la disposition du public en ligne sur le site GEBCO (General Bathymetric Chart of the Oceans). Avant Seabed 2030, très peu de données concernant les fonds marins étaient disponibles pour un usage public. La plupart des mesures bathymétriques sont effectuées à l’aide de relevés d’altimètres satellitaires qui donnent une idée très approximative de la topographie des fonds marins. Certains scientifiques pensent que les efforts pour localiser l’épave du vol MH370 de Malaysia Airlines aurait été couronnés de succès si l’on avait utilisé des méthodes plus récentes et plus précises pour cartographier le fond de l’océan.
Jusqu’à ces dernières années, il était difficile de cartographier le fond des océans en raison d’un manque de technologie. Les techniques d’exploration océanique sont relativement nouvelles. Bien sûr, grâce aux satellites, nous pouvons cartographier les températures, les eaux et la couleur de la surface de l’océan (qui est un indicateur de la vie végétale), mais nous avons besoin d’une technologie beaucoup plus avancée pour cartographier les parties les plus profondes de nos océans où les conditions d’exploration deviennent extrêmes. La soi-disant «zone de lumière solaire» se termine à environ 200 mètres sous la surface, ce qui rend l’imagerie beaucoup plus délicate. De plus, la pression est extrêmement élevée. Autrement dit, il est plus facile d’envoyer une personne dans l’espace que d’aller au fond de l’océan !
Source : BBC.

———————————————–

For centuries, humankind has been fascinated by the sea, exploring it and venturing towards the blue horizon in search of new land and adventures. Today, we know that the ocean makes up about 71% of the Earth’s surface, and it is the biggest ecosystem of the planet, holding 99% of all habitable space in the world. However, little is known about the bottom of our oceans, the abysses and the trenches where most of the devastating earthquakes are triggered. Actually, we have a better knowledge of the surface of Mars or the Moon than of the seafloor.

The five main ocean basins, the Pacific, Atlantic, Indian, Arctic and Southern Oceans contain 94% of the world’s wildlife and 97% of all the water on our blue planet. Despite the central role it obviously plays in our planet’s balance, we do not know much about its mysteries.

It might be shocking to find out, but until recently only 5% of the ocean had been explored and charted by humans.

Some progress has been made today and a recent article released by the BBC informs us that roughly 25 percent (23.4 percent to be exact) of the Earth’s sea floor has now been mapped, thanks to an international initiative known as Seabed 2030. Relying largely on voluntary contributions of bathymetric data by governments, companies and research institutions, the project is part of a larger UN-led initiative called The Ocean Decade. Seabed 2030 hopes to map 100 percent of the ocean floor by 2030, which researchers say will be possible thanks to advances in technology and corralling already available data. Over the past year alone, Seabed 2030 has added measurements of the oceans for roughly the size of Europe, primarily through newly opened archives, rather than active mapping efforts.

Scientists believe collecting more bathymetric data will help further our understanding of climate change and ocean preservation efforts. Ocean floor mapping also helps in the detection of tsunamis and other natural disasters.

As the BBC notes, much of the data used in Seabed 2030 already existed. The group largely relies on contributions from governments and companies, though some of these entities are still reluctant to completely open up their archives for fear of spilling national or trade secrets.

All the data that Seabed 2030 is collecting will be available to the public online on the GEBCO (General Bathymetric Chart of the Oceans) global grid. Prior to Seabed 2030, very little directly measured ocean floor data was available for public use. Most bathymetric measurements are estimated using satellite altimeter readings, which give a very rough idea of the shape of the sea floor surface. Some scientists believe a global effort to locate the crash of Malaysia Airlines flight MH370 would have been better informed by newer, more precise methods to chart the ocean floor.

Up to now, it was difficult to map the ocean seafloor because of a lack of technology. Ocean exploration technology is relatively new. Of course, with satellites we can chart the ocean surface temperatures, waters and colour (which is an indicator of plant life), but we need much more advanced technology to map its deeper parts. Also, it is difficult to see in deep water.

Another reason for the relatively small amount of ocean we have explored is that, at great depths, exploration conditions become extreme. The so-called “sunlight zone” ends at about 200 meters below the surface, making imaging much trickier, and pressure is extremely high.

Basically, it is easier to send a person in space than it is to get the bottom of the ocean! I

Source: The BBC.

Prévision d’exploration océanique par la mission Ocean Exploration de la NOAA pour 2022 (Source: NOAA)

Des séismes aux profondeurs négatives // Earthquakes with negative depths

L’USGS nous indique dans un nouvel article que les profondeurs des séismes sous l’archipel hawaiien sont désormais évaluées par rapport au géoïde, ou niveau de la mer. Le géoïde est défini comme « une surface équipotentielle du champ de pesanteur coïncidant au mieux avec le niveau moyen des océans et qui se prolonge sous les continents. »

En conséquence, l’affichage des séismes et de leur profondeur sur la carte présentée sur le site web de l’USGS utilise la couleur rouge foncé pour indiquer les séismes qui sont enregistrés au-dessus du niveau de la mer, mais sous la surface du sol. Les profondeurs positives indiquent que l’on se trouve en dessous du niveau de la mer et les profondeurs négatives que l’on se trouve au-dessus.
Avant le nouveau système, le HVO signalait la profondeur d’un séisme par rapport à la surface du sol au-dessus de l’hypocentre. En fait, cette surface ne représente pas l’élévation réelle du sol, mais l’élévation moyenne des cinq stations sismiques les plus proches. Comme la surface de la Terre n’est pas plane, les approximations de profondeur ne représentaient pas toujours la profondeur réelle d’un séisme. Cela signifiait aussi qu’il n’y avait pas de cadre de référence uniforme pour comparer les profondeurs des différents séismes. L’élévation par rapport au zéro était différente pour chaque événement.
Pour illustrer la différence entre l’ancien et le nouveau système, il suffit d’imaginer un séisme sous le Mauna Loa dont le sommet culmine à plus de 4000 mètres au-dessus du niveau de la mer. La profondeur d’un séisme aurait été précédemment évaluée à 3 km, mais avec le nouveau système, la profondeur du géoïde est maintenant de 3 km moins 4 km, soit une profondeur négative de 1 km. Un avantage des profondeurs par rapport au géoïde est que les erreurs systématiques causées par la topographie des montagnes sont corrigées.
En adoptant le niveau de la mer comme donnée de référence commune, les séismes signalés à l’échelle nationale sont maintenant plus cohérents et comparables. Au cours des dernières années, les réseaux sismiques régionaux à travers les Etats Unis sont passés de la profondeur par rapport à la surface à la profondeur par rapport au géoïde. L’adoption par le HVO de la référence au niveau de la mer la rend conforme à cette norme.
Il est important de noter que l’emplacement absolu des séismes calculés dans l’espace tridimensionnel n’a pas changé. La seule différence est le point auquel on attribue le niveau zéro.

Source: USGS / HVO.

————————————–

USGS informs us in a new article that the depths of earthquakes beneath Hawaii are now reported with respect to the geoid, or sea level. When displaying earthquakes by depth, the HVO website map now includes a dark red colour to indicate earthquakes that occur above sea level but below the ground surface. Positive depths indicate downward from sea level, and negative depths indicate upward from sea level.

Prior to the new system, HVO reported depths with respect to the ground surface above the earthquake hypocenter. This model surface was not the actual ground elevation but, instead, was the average elevation of the five closest seismic stations. Since the earth’s surface is not flat, model depth approximations did not always represent the true depth of an earthquake below ground. More importantly, it meant that there was no uniform frame of reference for comparing depths of different earthquakes. The zero elevation was different for every earthquake.

To illustrate the difference between model and geoid depths, it suffices to imagine an earthquake beneath Mauna Loa, with its summit about 4 km above sea level. The model depth of this earthquake would have been previously reported as 3 km, but with the new system, the geoid depth is now 3 km minus 4 km, or negative 1 km. One advantage of geoid depths is that systematic bias caused by mountain topography is corrected.

By adopting the common reference datum of sea level, earthquakes reported nationwide are now more consistent and comparable. Regional seismic networks around the country have been migrating from model depth to geoid depth over the past few years. HVO’s adoption of the sea level reference brings it in line with this standard.

It’s important to note that the absolute location of earthquakes being computed in three-dimensional space has not changed. The only difference is the point at which we assign zero depth.

Source : USGS / HVO.

Cette figure montre que deux séismes peuvent avoir des profondeurs négatives ou positives en fonction de leur situation par rapport au niveau de la mer (Source: USGS)