Les causes de la crise sismique à Santorin (Grèce) // Causes of the seismic crisis in Santorini (Greece)

Étrangement, nous ne sommes pas capables de prédire les séismes ou les éruptions volcaniques, mais nous pouvons expliquer pourquoi et comment ces événements naturels se sont produits. Une nouvelle étude tente d’expliquer la cause de la sismicité qui a déclenché une vague de panique à Santorin début 2025.

Source: NASA

Fin janvier 2025, une importante crise sismique a touché les îles grecques de Santorin, Amorgos et Anafi. Ces îles de la mer Égée ont connu une série d’essaims comprenant plus de 28 000 événements, dont plusieurs d’une magnitude supérieure à M5.0. Les habitants de Santorin craignaient une violente éruption volcanique. Nombre d’entre eux ont décidé de fuir et de se réfugier en lieu sûr. Au bout d’environ un mois, la crise sismique s’est terminée sans dégâts majeurs.

Source : TW/SAM, Google

Aujourd’hui, les scientifiques pensent avoir trouvé le coupable : il semble qu’un dyke magmatique se soit rapidement élevé des profondeurs de la croûte terrestre et ait déclenché l’essaim sismique du mois de janvier. Publiée en septembre 2025 dans la revue Nature, l’étude révèle également un lien surprenant entre Santorin et Kolumbo, un volcan sous-marin situé non loin de l’île et initialement suspecté d’être à l’origine de la crise sismique.

Source: Nature

Grâce à de nouveaux instruments et à l’intelligence artificielle, les scientifiques sont désormais en mesure de suivre le mouvement du magma sous la région, ce qui leur permettra de mieux évaluer le risque éruptif la prochaine fois que ces îles connaîtront une nouvelle crise sismique.
On sait que cette partie de la mer Égée a une histoire volcanique explosive. Une méga-éruption en 1560 av. J.-C. a anéanti la civilisation minoenne. De son côté, le volcan Kolumbo, tapi sous l’eau à un peu plus de six kilomètres au nord-est de Santorin, constitue également une menace pour la région. En 1650, une explosion a déclenché d’importants tsunamis et généré une brume de gaz nocif pouvant être mortel.
Santorin et Kolumbo sont tous deux des systèmes volcaniques actifs, susceptibles d’entrer à nouveau en éruption un jour ou l’autre. C’est pourquoi les habitants de Santorin, d’Amorgos et d’Anafi ont craint le pire lorsque la terre a commencé à trembler au début de cette année.
Alors que de nombreux habitants fuyaient Santorin, les scientifiques essayaient de déterminer la cause de la crise sismique. Ils ont été surpris de constater que les séismes s’éloignaient rapidement de Santorin et se propageaient vers l’est, en se concentrant dans une zone de failles à proximité, et non sous des volcans connus. Les scientifiques ne savaient pas s’il s’agissait d’un événement magmatique ou tectonique.

Heureusement, certains de leurs collègues surveillaient déjà Santorin et Kolumbo. MULTI-MAREX, un projet interdisciplinaire germano-grec visant à transformer la région en laboratoire scientifique, était pleinement opérationnel lorsque la forte sismicité a commencé. Des capteurs avaient été déployés à l’intérieur du cratère du Kolumbo où ils ont détecté des signaux sismiques et des variations de pression provenant du fond marin. L’équipe scientifique a également utilisé des satellites équipés de radars capables de suivre les moindres déformations de la région, ainsi que des stations GPS terrestres et des détecteurs de gaz volcaniques. Les chercheurs ont même utilisé une forme d’intelligence artificielle avec des programmes d’apprentissage automatique conçus à partir de décennies de données sismiques. Ces programmes sont capables identifier les moindres séismes et de localiser précisément leur origine dans la croûte terrestre.

De juillet 2024 à janvier 2025, avant la crise sismique, les données ont montré que Santorin s’était légèrement soulevée, avec une hausse des émissions de dioxyde de carbone et d’hydrogène, signe qu’un nouveau magma entrait dans le réservoir magmatique peu profond. Cette situation est souvent passée inaperçue à l’époque. C’est pourtant à ce moment-là que l’essaim sismique a commencé.

De fin janvier à fin février, la sismicité a migré de Santorin vers les eaux au sud de Kolumbo. La source se trouvait à une profondeur de 18 kilomètres et la sismicité a progressé jusqu’à un peu moins de 3 kilomètres de la surface en quelques semaines seulement. Les instruments ont révélé que cette activité sismique était liée à un dyke magmatique d’environ 13 km de long qui remontait vers la surface. Au cours de son ascension, le magma a brisé des kilomètres de roches et a exercé une pression sur une série de failles à proximité, provoquant leur rupture. Au final, l’intrusion magmatique a déclenché une réaction sismique en chaîne, à l’origine des secousses les plus fortes observées sur l’île de Santorin. Simultanément, alors que le dyke s’élevait à travers la croûte, le réservoir magmatique situé sous Santorin et Kolumbo se vidangeait, provoquant l’affaissement des deux volcans.

Source: Nature

L’ascension rapide du dyke faisait craindre que le magma puisse atteindre les fonds marins et provoquer une activité explosive. Heureusement, le dyke a stoppé son ascension, probablement à cause d’une alimentation insuffisante (son volume est estimé à environ 0,31 km³), ce qui a mis fin à la crise sismique.
Cependant, si l’intrusion magmatique a pris fin prématurément cette fois, d’autres pourraient ne pas faire de même. À l’avenir, une meilleures compréhension du système d’alimentation magmatique permettra aux chercheurs de suivre le magma en temps réel et d’alerter les habitants en cas de risque d’éruption.
Source : Nature.

NB : Un visiteur de mon blog précise que la contribution française à cette étude a été primordiale. Les deux chercheurs les plus impliqués étaient Nikolai Shapiro, Directeur de recherches au CNRS et Florent Brenguier, Physicien des observatoires. Ils sont tous les deux enseignants-chercheurs à l’Institut des Sciences de la Terre de Grenoble. Ce travail a aussi fait l’objet d’un article dans le journal « Le Monde » du samedi 27 septembre 2025.

————————————————

Strangely, we are not able to predict earthquakes or volcanic eruptions, but we are able to explain why these natural events occurred. A new study tried to explain the cause of the seismicity that triggered a wave of panic in Santoriny early in 2025.

In late January 2025, a significant seismic crisis affected theGreek islands of Santorini, Amorgos, and Anafi. These Aegean islands experienced a series of swarms including over 28,000 events, among which several had magnitudes above M5.0. Locals on Santorini feared that a violent volcanic eruption might occur. Many local residents decided to flee and go and live in a safet place.

After about a month, the seismic crisis ended without incident. Today, scientists think they have found the culprit : it looks as if a sheet of magma rapidly rose from the depths of the Earth’s crust and triggered the seismic swarm.

Published in September 2025 in the journal Nature, a study also revealed a surprising connection between Santorini and Kolumbo, a submarine volcano not far from the island and which was initially suspected to be the cause of the seismic crisis. .

Thanks to a new instruments and artificial intelligence, scientists now know they can track the movement of magma beneath the region, which allows them to better forecast the likelihood of an eruption the next time these islands begin to shake.

It is well known that this part of the Aegean Sea has an explosive volcanic history.a Mega eruption in 1560 B.C.wiped outa civilization. Kolumbo, hiding underwater just over six kilometers to the northeast, is also a threat to the region. In 1650, an explosion there triggered tall tsunamis and released a deadly haze of noxious gas.

Both Santorini and Kolumbo are active volcanic systems, likely to erupt again someday. This is why the residents of Santorini, Amorgos, and Anafi feared the worst when the earth started to shake earlier this year.

As many of its residents fled Santorini, scientists scrambled to work out what was causing the seismic crisis. Surprisingly, the quakes quickly moved away from Santorini and offshore to the east, clustering within a nearby fault zone and not beneath any known volcanoes.Scientists did not know whether it was magmatic or tectonic. Luckily, scientists were already monitoring Santorini and Kolumbo. In particular, the MULTI-MAREX project, a German-Greek-led interdisciplinary effort to turn the region into a natural scientific laboratory, was fully operating when the quakes began.

Sensors had been deployed within the Kolumbo’s crater and detected seismic signals and pressure changes from the seafloor. The team also used radar-equipped satellites able to track the subtle shifts in the shape of the region, as well as GPS ground stations and volcanic gas detectors. They even deployed a form of artificial intelligence: machine learning programs trained on decades of seismic data. These programs could identify the smallest earthquakes and pinpoint exactly where in the crust they were coming from.

From July 2024 to January 2025, prior to the seismic crisis, the data showed that Santorini uplifted slightly, and more carbon dioxide and hydrogen gas leaked out of its roof, indicating that new magma was filling up its own shallow magma reservoir. This situation went largely unnoticed. Then the seismic swarm began.

From late January to the end of February, the seismicity migrated from Santorini to below the waters south of Kolumbo. They started at a depth of 18 kilometers and rose to just under 3 kilometers below the surface in just a few weeks.

The instruments revealed that a dike of magma was rushing to the surface. As it did so, it smashed through kilometers of brittle rock and put pressure on a series of nearby faults, causing them to rupture. In short, the dike intrusion set off a chain reaction, and this was what generated the stronger shaking experienced on the island.

Simultaneously, as the dike rose through the crust, the magma reservoir below both Santorini and Kolumbo shrank as its own molten rock was escaping. This caused both volcanoes to subside.

The dike’s rapid ascent meant that magma might reach the shallow seafloor and cause some explosive activity. Fortunately, the dike stopped its ascent, and the crisis came to an end. There probably was not enough magma in the dike so that it was unable to reach the surface. Its volume is estimated at approximately 0.31 cubic kilometers.

However, while this intrusion ended prematurely, others might not. And in the future sketching out other aspects of the plumbing system will help researchers track dangerous magma in real time and warn locals.

Source : Nature.

Hausse d’activité à Vulcano (Îles Éoliennes / Italie)

Au cours des dernières semaines, on a observé un regain d’activité dans le cratère de la Fossa sur l’île éolienne de Vulcano.

Les derniers bulletins de l’INGV indiquent que la température des fumerolles est passée de 280 à 291°C. Cette hausse n’a rien d’inquiétant pour le moment. Lors de campagnes de mesures dans les années 1990, la température des fumerolles sur la lèvre du cratère avoisinait les 400°C.

Photos: C. Grandpey

S’agissant de la nappe phréatique, au cours de la deuxième quinzaine d’août, une augmentation de la température a été observée au puits Camping Sicilia, ainsi qu’une légère remontée de la nappe phréatique au puits Bambara.

Évolution de la nappe phréatique dans le puits Bambara (Source: INGV)

Depuis le 1er août 2025, on enregistre, une forte augmentation du flux de CO2, dans les fumerolles du cratère, avec des valeurs anormales qui ont persisté tout au long du mois. On a relevé des valeurs journalières entre 10 000 et 40 000 g/m2 (valeur maxi enregistrée le 18 août) . Ce sont les plus élevées depuis la crise de 2021.

À la base du cône de La Fossa et dans la zone de Vulcano Porto, on observe également une hausse des émissions de CO2.

Une baisse des émissions de CO2 a été observée fin août, mais elles restent élevées.

Émissions de CO2 dans le cratère de la Fossa en 2025 (Source:INGV)

Les émissions de SO2 dans la zone du cratère présentent un niveau moyen à élevé avec 70 tonnes par jour à la fin du mois d’août.

Émissions de SO2 dans le cratère de la Fossa (Source: INGV)

S’agissant de la sismicité, on enregistre une augmentation de la microsismicité locale, mais aucun événement significatif. .

Les mesures InSAR de déformation de l’édifice volcanique effectuées entre le 24 avril 2015 et le 29 août 2025 révèlent qu’en août 2025, un soulèvement de La Fossa a été enregistré jusqu’à un maximum d’environ 2 cm dans la partie interne du cratère. Durant la même période, aucune autre zone n’a présenté de déformation. Les pentes externes du volcan connaissent un déplacement vertical vers le bas, avec des valeurs moyennes d’environ 1 cm/an. Aucun changement significatif n’a été enregistré dans ces zones ces derniers mois.

Évolution de la déformation du cratère de La Fossa au cours des dernières années. On remarquera le soulèvement d’environ 5 cm entre septembre 2021 et fin novembre 2021.

Source : INGV

On peut raisonnablement penser que les modifications observées dans les paramètres de surveillance de la Fossa sont dues à une intrusion magmatique à grande profondeur. Si la situation évolue comme précédemment, il faut s’attendre à une persistance de cette hausse d’activité pendant quelque temps avant d’assister à son déclin. Si le magma devait migrer vers des profondeurs moins importantes, les scientifiques seraient alertés par une hausse significative de la sismicité et des signaux de déformation de l’édifice volcanique, mais nous n’en sommes pas là.

Une surveillance continue est bien sûr nécessaire. Il faut espérer que la hausse des émissions de CO2 ne conduira pas à de nouvelles mesures contraignantes pour la population de l’île comme ce fut le cas en 2022. La saison touristique touchant à sa fin, si des mesures devaient être prises, elles seraient tout de même moins pénalisantes qu’au cœur de l’été.

Magma et plaques tectoniques dans l’Afar (Éthiopie) // Magma and tectonic plates in the Afar region (Ethiopia)

En Éthiopie, la région Afar se situe au-dessus de la jonction entre trois plaques tectoniques. Des scientifiques ont découvert que du magma en fusion vient frapper la croûte terrestre par en dessous. Dans cette partie du monde, le continent africain se déchire lentement, et finira par former un nouveau bassin océanique. En échantillonnant les signatures chimiques des volcans de cette région, une équipe scientifique de l’Université de Swansea et de l’Université de Southampton, au Royaume-Uni, a essayé d’obtenir davantage d’informations sur ce processus. Les chercheurs ont découvert que le manteau sous l’Afar n’est ni uniforme ni stationnaire ; il vibre, et ces vibrations portent des signatures chimiques distinctes. L’étude, intitulée « Mantle upwelling at Afar triple junction shaped by overriding plate dynamics », a été publiée dans Nature Geoscience.

Carte tectonique du système de rifts de l’Afar (Source : Wikipedia)

La surface de notre planète connaît un processus de renouvellement constant. Les plaques tectoniques qui divisent la croûte terrestre ne sont pas fixes ; elles se déplacent, entrent en collision et glissent même les unes sous les autres. Leurs points de rencontre sont généralement des points chauds de l’évolution géologique, marqués par une activité volcanique intense qui remodèle la surface par en dessous.
L’Afar est le point de rencontre des plaques arabique, nubienne et somalienne. Chacune s’écarte dans sa direction respective, ce qui laisse place à une brèche de plus en plus grande sous le Triangle de l’Afar. À terme, la croûte deviendra si fine à cet endroit que la surface s’abaissera sous le niveau de la mer, créant un nouveau bassin océanique au large de la mer Rouge.
Les scientifiques pensent que la remontée du magma joue un rôle dans ce processus de rupture continentale, mais ils ont du mal à comprendre son fonctionnement. Il est bien sûr impossible de forer pour l’observer de près ; c’est pourquoi ils ont étudié les matériaux déposés à la surface de la Terre depuis le manteau par l’activité volcanique.
Les auteurs de l’étude ont collecté 130 échantillons de roche volcanique provenant de la région de l’Afar et du rift éthiopien, et ont effectué des analyses chimiques. Ils ont utilisé ces analyses, combinées aux données existantes, pour réaliser une modélisation qui leur permettrait de comprendre l’activité sous le Triangle. Les résultats montrent des bandes ou stries chimiques distinctes qui se répètent à travers le système de rift. Elles sont produites par un panache unique et asymétrique de matière, façonné par son environnement au fur et à mesure qu’il s’élève du manteau. L’un des scientifiques a déclaré que « les stries chimiques montrent que le panache se comporte comme les pulsations d’un cœur ». De plus, « ces pulsations semblent se comporter différemment selon l’épaisseur de la plaque et la vitesse à laquelle elle s’éloigne. Dans les rifts à expansion rapide comme la mer Rouge, les pulsations se propagent plus nettement et plus régulièrement, comme le sang dans une artère étroite.»
Si le modèle réalisé par l’équipe scientifique est correct, il montre que les panaches et les remontées mantelliques peuvent être façonnés par la dynamique des plaques tectoniques situées au-dessus. Cette découverte pourrait favoriser les recherches futures sur l’activité qui remodèle continuellement notre planète.

 

Schéma issu de l’étude et montrant comment le panache mantellique est canalisé par les trois rifts

Les chercheurs ont découvert que l’évolution des remontées mantelliques profondes est intimement liée au mouvement des plaques situées au-dessus. Cela a de profondes implications pour l’interprétation du volcanisme de surface, de l’activité sismique et du processus de rupture continentale. Les recherches montrent que les remontées du manteau profond peuvent circuler sous la base des plaques tectoniques et contribuer à concentrer l’activité volcanique là où la plaque est la plus fine. Des recherches ultérieures tenteront de comprendre comment et à quelle vitesse se produit la circulation de la remontée mantellique sous les plaques.
Source : L’étude dans Nature Geoscience.

————————————————

In Ethiopia, the Afar region lies above the junction between three tectonic plates, and scientists have discovred that molten magma pounds the planet’s crust from below. In that part of the world,, the continent is slowly being torn asunder in the early formation stages of a new ocean basin. By sampling the chemical signatures of volcanoes around this region, a scientific team from Swansea University and the University of Southampton in the UK hoped to learn more about this wild process. They found that the mantle beneath Afar is not uniform or stationary ; it pulses, and these pulses carry distinct chemical signatures. The study, entitled « Mantle upwelling at Afar triple junction shaped by overriding plate dynamics », was published in Nature Geoscience.

Our planet’s surface is in a constant state of renovation. The tectonic plates into which the planetary crust is divided are not fixed in position, but shift and collide and even slip underneath one another. The places at which they meet are usually hotspots of geological evolution, rampant with volcanic activity that is reshaping the surface from below.

The Afar junction is the point at which the Arabian, Nubian, and Somalian plates meet, each departing in their own directions to leave a widening gap under the Afar Triangle. Eventually, the crust will become so thin here that the surface will drop below sea level, creating a new ocean basin off the Red Sea.

Scientists suspect that mantle upwelling is playing a role in this continental breakup process, but our understanding of how it works is limited. We can’t dig down to have a close look, so the researchers looked at material that has been disgorged onto Earth’s surface from the mantle by way of volcano.

They collected 130 samples of volcanic rock from around the Afar region and the Main Ethiopian Rift, and conducted chemical analyses. They used these analyses combined with existing data to conduct advanced modeling to understand the activity under the Triangle. The results show distinct chemical bands or stripes that repeat across the rift system, delivered by a single, asymmetrical plume of material shaped by its environment and pushing upwards from the mantle. One of the scientists said that « the chemical striping suggests the plume is pulsing, like a heartbeat. » Moreover,

« these pulses appear to behave differently depending on the thickness of the plate, and how fast it’s pulling apart. In faster-spreading rifts like the Red Sea, the pulses travel more efficiently and regularly like a pulse through a narrow artery. »

If the team’s model is correct, it suggests that mantle plumes and upwellings can be shaped by the dynamics of the tectonic plates above them. The finding could be used to inform future research into the activity that is continually remodeling our planet.

The researchers have found that the evolution of deep mantle upwellings is intimately tied to the motion of the plates above. This has profound implications for the interpretation of surface volcanism, earthquake activity, and the process of continental breakup. The research shows that deep mantle upwellings can flow beneath the base of tectonic plates and help to focus volcanic activity to where the tectonic plate is thinnest. Follow-on research includes understanding how and at what rate mantle flow occurs beneath plates.

Source : The study in Nature Geoscience.

https://www.nature.com/articles/s41561-025-01717-0

Le Veniaminof (Alaska) pour mieux comprendre le comportement du magma // Veniaminof (Alaska) to better undrestand magma behaviour

Le Veniaminof, l’un des volcans qui se dressent sur la péninsule d’Alaska, présente une longue histoire d’éruptions qui se produisent avec peu ou pas de signes précurseurs détectables. Malgré la présence de huit stations sismiques permanentes et d’une surveillance satellite par radar à synthèse d’ouverture interférométrique (InSAR), la plupart des éruptions depuis 1993 se sont produites sans véritables signes précurseurs. Sur les 13 dernières éruptions, seules deux ont été précédées de signes avant-coureurs détectables. Ce schéma éruptif a incité les chercheurs à examiner le système magmatique sous-jacent du Veniaminof et à étudier le comportement des volcans avant leur éruption.

Vue du Veniaminof (Crédit photo : USGS)

Des chercheurs de deux universités de l’Illinois ont cherché à déterminer si un système magmatique fermé pouvait entrer en éruption sans déclencher d’activité sismique ni de mouvements de terrain notables.
Dans les systèmes volcaniques ouverts, comme le Mauna Loa, le magma et les gaz se déplacent librement vers la surface, ce qui génère parfois peu de signaux avant-coureurs clairs. En revanche, les systèmes fermés, comme les Champs Phlégréens, accumulent généralement de la pression, ce qui peut provoquer un soulèvement du sol et une hausse de la sismicité avant une éruption. Pour comprendre comment des éruptions peuvent se produire sans ces signaux, les chercheurs ont construit des modèles thermomécaniques avec lesquels ils ont testé l’interaction des changements de forme, de taille, de profondeur et de débit de la chambre magmatique avec les propriétés physiques de la roche environnante.
L’équipe scientifique a créé des modèles intégrant le comportement de la roche, dépendant et indépendant de la température. Ils ont simulé le déplacement du magma depuis des sources profondes, à plus de 13 km de profondeur, vers des chambres magmatiques moins profondes, avec diverses géométries.
Pour tester le réalisme de ces modèles, ils ont comparé les résultats aux données InSAR et sismiques de l’éruption de Veniaminof de 2018. L’éruption de 2018 est intéressante car elle n’a montré aucun mouvement de terrain significatif ni aucune activité sismique préalable, ce qui en fait un bon exemple d’éruption ‘silencieuse’, autrement dit sans signes précurseurs.
La principale conclusion est que certains systèmes magmatiques peuvent entrer en éruption sans produire de signaux d’alerte détectables. Plus précisément, les systèmes disposant de petites chambres magmatiques profondes, avec de faibles apports de magma et une roche environnante ramollie par la chaleur peuvent produire des éruptions avec une déformation minimale du sol (moins de 10 mm) et une sismicité faible, voire nulle. Cette dernière est en général liée à la rupture de la roche par cisaillement.
Cependant, les scientifiques ont remarqué que certaines roches continuent à se fracturer suite à des contraintes trop intenses, ce qui est suffisant pour permettre au magma de remonter vers la surface et provoquer une éruption. Dans les modèles où le comportement de la roche évolue avec la température, un flux de magma plus important est nécessaire pour déclencher cette rupture, mais même dans ce cas, les signaux de surface restent faibles.
L’analyse InSAR de 2015 à 2018 n’a révélé aucun schéma cohérent de soulèvement ou d’affaissement du sol autour du Veniaminof, ce qui corrobore les résultats de la modélisation. Même lors de l’éruption de 2018, les signaux de déplacement étaient difficilement détectables et probablement masqués par des interférences atmosphériques ou par le glacier qui recouvre le sommet. Ces facteurs compliquent la détection de signes subtils d’inflation volcanique et étayent la conclusion selon laquelle le Veniaminof peut produire des éruptions avec peu ou pas de signes précurseurs en surface.

References:

Stealthy magma system behavior at Veniaminof Volcano, Alaska – Yuyu Li, Patricia M. Gregg, et al. – Frontiers in Earth Science – June 10, 2025 – DOI https://doi.org/10.3389/feart.2025.1535083 – OPEN ACCESS

The Watchers.

———————————————–

Veniaminof volcano on the Alaska Peninsula has a long record of eruptions that occur with little or no detectable warning. Despite the presence of eight permanent seismic stations and satellite monitoring using Interferometric Synthetic Aperture Radar (InSAR), most eruptions since 1993 have taken place without clear precursory signals. Of the last 13 eruptions, only two were preceded by detectable warning signs. This pattern prompted researchers to examine the underlying magma system at Veniaminof and investigate how volcanoes behave prior to eruption.

Researchers from two Illinois universities set out to test whether a sealed magma system could erupt without triggering any noticeable seismic activity or ground movement.

In open volcanic systems, such as Mauna Loa, magma and gases move more freely toward the surface, sometimes resulting in fewer clear warning signals. In contrast, closed systems, such as Campi Flegrei, typically accumulate pressure, which can cause ground uplift and increased seismicity before an eruption.

To figure out how eruptions might happen without these signals, the researchers built detailed thermomechanical models. They tested how changes in magma chamber shape, size, depth, and magma supply rate interact with the surrounding rock’s physical properties.

The scientific team created models incorporating both temperature-dependent and temperature-independent rock behavior. They simulated magma transport from deep sources, more than 13 km below the surface, into shallower magma chambers with varying geometries.

To test how realistic these models were, they compared the results with InSAR and seismic data from Veniaminof’s 2018 eruption. The 2018 eruption is valuable because it showed no obvious ground movement or any preceding seismic activity, making it a good example of a quiet eruption.

The main finding is that certain magma systems can erupt without producing detectable warning signals. Specifically, systems characterized by small, deep magma chambers, low magma supply rates, and heat-softened surrounding rock can produce eruptions with minimal ground deformation (less than 10 mm and little to no seismicity related to shear failure, which typically causes earthquakes.

However, some rock still fractured through tensile failure, which was enough to allow magma to rise and cause an eruption. In models where the rock’s behavior changed with temperature, a higher magma flux was needed to trigger this failure, but even then the surface signals remained weak.

InSAR analysis from 2015 to 2018 revealed no consistent uplift or subsidence patterns around the volcano, supporting the modeling results. Even during the 2018 eruption, displacement signals were ambiguous and likely masked by atmospheric interference or the glacier covering the summit. These factors complicate the detection of subtle signs of volcanic inflation and support the conclusion that Veniaminof can produce eruptions with little or no surface warning.

References:

Stealthy magma system behavior at Veniaminof Volcano, Alaska – Yuyu Li, Patricia M. Gregg, et al. – Frontiers in Earth Science – June 10, 2025 – DOI https://doi.org/10.3389/feart.2025.1535083 – OPEN ACCESS

The Watchers.