Tectonique et calottes glaciaires déforment le Groenland // Tectonics and ice sheets distort Greenland

Une étude publiée en août 2025 dans le Journal of Geophysical Research: Solid Earth explique que les processus tectoniques en cours et le comportement des anciennes calottes glaciaires déforment, soulèvent et tirent le Groenland dans différentes directions.

Photo: C. Grandpey

Le Groenland repose sur la plaque tectonique nord-américaine, qui a entraîné l’île vers le nord-ouest à raison de 23 millimètres par an au cours des deux dernières décennies. Les chercheurs observent cette dérive depuis un certain temps. Toutefois, la nouvelle étude analyse des données satellitaires, ce qui montre que ce mouvement et les autres déformations sont bien plus complexes que la simple tectonique des plaques. Par conséquent, la carte du Groenland perdra progressivement en précision si elle n’est pas mise à jour.

Source: Longfors Berg et al. (2025)

Les auteurs de l’étude ont analysé les données de 58 stations GNSS au Groenland, qui enregistrent les mouvements horizontaux et verticaux de l’île, et de près de 2 900 stations GNSS installées autour de la plaque nord-américaine. Les chercheurs ont intégré ces données dans un modèle et, après avoir neutralisé l’influence de la plaque nord-américaine sur le Groenland, ils ont constaté des déformations du socle rocheux qui ne correspondaient pas aux modélisations précédentes.
Dans la plupart des régions analysées par les stations, les mouvements des masses continentales sont principalement dus aux processus tectoniques, mais le Groenland fait exception. En effet, l’île est recouverte d’une immense calotte glaciaire et a connu un passé glaciaire tumultueux.
Les calottes glaciaires exercent une pression considérable sur la croûte terrestre – à l’instar du volcan Mauna Loa à Hawaï – ce qui induit aussi une compression du manteau terrestre. Les matériaux déplacés dans le manteau suite à la pression exercée par la croûte sont repoussés latéralement, créant un bombement périphérique.
Lorsqu’une calotte glaciaire se retire, le manteau ne retrouve pas immédiatement sa forme initiale. Du fait de sa consistance visqueuse, il faut des milliers d’années pour que les matériaux comblent à nouveau le creux créé par la compression exercée par la croûte. Les auteurs de l’étude expliquent que le manteau « possède une mémoire très longue ». Ainsi, le manteau sous et autour du Groenland continue de s’adapter aux variations de la couverture glaciaire depuis le pic de la dernière période glaciaire, il y a environ 20 000 ans, ce qui explique la déformation observée. Plus précisément, il semble que le Groenland réagisse au retrait de la calotte glaciaire Laurentide qui recouvrait de vastes étendues d’Amérique du Nord jusqu’à il y a environ 8 000 ans.

Retrait de la calotte glaciaire Laurentide il y a 8200 ans (Sourve: Glacier-climats.com)

La calotte glaciaire Laurentide a créé un bombement glaciaire périphérique sous certaines parties du Groenland. Ce bombement s’aplatit progressivement, ce qui entraîne des zones du sud du Groenland vers le Canada. Les chercheurs le savaient déjà, mais les nouveaux résultats révèlent que le taux de déformation est plus élevé que ne le montrent la plupart des modèles.
La calotte glaciaire du Groenland contribue également aux mouvements de torsion de l’île. L’eau de fonte de cette calotte glaciaire a contribué à hauteur de 4,10 mètres aux 130 mètres d’élévation du niveau de la mer enregistrés au cours des 20 000 dernières années. Cela signifie que le Groenland a perdu une quantité incroyable de glace, ce qui a déclenché une réaction du manteau terrestre distincte de l’effet de la calotte glaciaire Laurentide.
Source : Live Science.

—————————————-

A study published in August 2025 in the Journal of Geophysical Research: Solid Earth explains that tectonic processes and the behaviourof past ice sheets are contorting, lifting and pulling Greenland in different directions.

Greenland sits on the North American tectonic plate, which has dragged the island northwest by 23 millimeters per year over the past two decades. Researchers have been monitoring this drift for some time, but the new study analyzing satellite data has found that there is far more to the movement and to other deformations than just plate tectonics. As a consequence, the Greenlandic map will slowly lose its accuracy if it is not updated.

The authors of the study analyzed data from 58 Global Network Satellite System (GNSS) stations in Greenland that record the island’s horizontal and vertical movements, and nearly 2,900 GNSS stations around the North American plate. The researchers entered these data into a model, and when they removed the effect on Greenland of the North American plate, they were left with bedrock deformations that di not match previous modeling.

In most regions, the movement of landmasses is overwhelmingly controlled by tectonic processes, but Greenland is different. Indeed, the island is covered by a giant ice sheet and has a tumultuous glacial past.

Ice sheets pile enormous weight onto Earth’s crust – just like Mauna Loa volcano in Hawaii – pressing it down into Earth’s mantle. The material displaced in the mantle by the sinking crust is pushed out to the sides, creating what is known as a peripheral forebulge.

When an ice sheet retreats, the mantle does not return to its original shape immediately. Due to the mantle’s gooey consistency, it takes thousands of years for material to flow back into the dent created by the loaded crust. The authors of the study explain that the mantle « has a very long memory. »

The mantle beneath and around Greenland is still adjusting to changes in ice cover since the peak of the last ice age about 20,000 years ago, which explains why data show the island deforming. Specifically, it appears that Greenland is reacting to the retreat of the Laurentide Ice Sheet, which covered large swathes of North America until about 8,000 years ago.

The Laurentide Ice Sheet created a peripheral forebulge beneath parts of Greenland. This forebulge is gradually flattening, pulling areas of southern Greenland downward and towards Canada. Researchers already knew this, but the new results reveal that the rate of deformation is higher than most modeling suggests.

The Greenland Ice Sheet also plays a role in the island’s twisting motions. Meltwater from the ice sheet has contributed 4.1 meters of the 130 meters of sea level rise recorded over the past 20,000 years. That means Greenland has lost an incredible amount of ice, which in turn has triggered a response in the mantle that is separate from the effect of the Laurentide Ice Sheet.

Source : Live Science.

La géodésie sur les volcans // Volcano geodesy

Plusieurs paramètres sont à prendre en compte pour analyser le comportement des volcans et tenter de prévoir les éruptions : sismicité, température et composition des gaz, déformation du sol… Ce dernier paramètre est le domaine de la géodésie qui consiste à mesurer la déformation et l’évolution de la surface de la Terre. Un article récemment publié par le Hawaiian Volcano Observatory (HVO) nous donne plus de détails sur cette technologie.
Les principales données géodésiques actuellement utilisées par les scientifiques du HVO pour mesurer la déformation de surface sur le Kilauea sont fournies par les images GNSS (système global de navigation par satellite, qui comprend le GPS), l’inclinaison du sol (tilt en anglais) et l’interférométrie radar (InSAR).

Sur le Kilauea, le réseau de surveillance géodésique comprend plus de 70 stations GNSS et 15 inclinomètres qui enregistrent et transmettent des données en continu. Ces instruments nécessitent une maintenance; de plus, ils doivent être réactualisés périodiquement en raison de leur âge et doivent être remplacés s’ils sont détruits par l’activité volcanique comme en 2018.
A l’heure actuelle à Hawaii, le travail des scientifiques se focalise sur la reconstruction et l’amélioration du réseau géodésique afin de mieux détecter les risques liés à l’activité volcanique. Une partie du travail consiste à remplacer les instruments obsolètes et à améliorer le fonctionnement des instruments de surveillance en temps quasi réel dans des zones les plus sensibles du sommet du Kilauea et des zones de rift. Le rôle de ces instruments est de pouvoir détecter rapidement les mouvements du magma.
En 2018, des coulées de lave ont détruit 3 stations GNSS dans la Lower East Rift Zone (LERZ). Trois autres stations GNSS ont été détruites lors de l’effondrement de la caldeira sommitale du Kilauea. De nouvelles stations GNSS ont été rapidement déployées à proximité pour permettre une surveillance continue pendant la crise éruptive de 2018. Ces stations déployées rapidement comprennent des antennes GNSS montées sur trépied et qui appartiennent à la configuration utilisée pour les situations temporaires d’une durée de plusieurs jours à plusieurs semaines.
Bon nombre de ces sites où des antennes ont été installées rapidement ont été supprimés après 2018. Cependant, environ 13 d’entre eux sont toujours utilisés pour la surveillance en cas d’urgence et restent sur des trépieds temporaires. Ces sites seront modernisés et de nouveaux sites seront également mis en place pour remplacer ceux détruits en 2018.
Le HVO a déployé 3 nouvelles stations GNSS à fonctionnement semi-continu suite à l’éruption du Kilauea en décembre 2020. Ces stations ont permis aux scientifiques d’avoir une vue plus complète du retour du magma vers le sommet.
De même, le HVO a déployé un équipement GNSS à réponse rapide sur 2 repères préexistants lors de l’intrusion magmatique au niveau de la caldeira sud du Kilauea en août 2021. Cela a permis aux scientifiques de suivre la migration du magma depuis la caldeira vers le sud.
Dans l’article, l’Observatoire explique que le réseau géodésique permet aux scientifiques de surveiller les déformations du sol sur les volcans, de réagir face aux éruptions et de mieux comprendre le stockage et le mouvement du magma sous terre.
Source : USGS, HVO.

———————————————–

Several parameters need to be taken into account to analyse the behaviour of volcanoes and try to predict eruptions: seismicity, gas temperature and composition, ground deformation… This last parameter is the domain of geodesy which is the study of measuring and understanding how the Earth’s surface deforms and changes. As article recently published by the Hawaiian Volcano Observatory (HVO) gives us more details about this technology.

The main geodetic datasets currently used by HVO scientists to measure surface deformation on Kilauea Volcano are GNSS (global navigation satellite system, which includes GPS), tilt, and satellite radar (InSAR) imagery.

On Kilauea, geodetic monitoring network includes over 70 GNSS stations and 15 tiltmeters that continuously record and transmit data. These instruments require routine maintenance, must be upgraded periodically due to age, and must be replaced if destroyed by volcanic activity such as in 2018.

Current upgrades focus on rebuilding and improving HVO’s geodetic network in order to better detect and respond to volcanic hazards related to Hawaiian Volcanoes. Some of the network upgrades include replacing out-of-date instruments and improving the network of near real-time monitoring instruments at critical areas on Kilauea’s summit and rift zones to support early detection of magma movement.

In 2018, lava flows destroyed 3 GNSS stations in the lower East Rift Zone. Another 3 GNSS stations were destroyed in the caldera collapses at Kilauea’s summit. New GNSS stations were rapidly deployed at nearby locations to allow for continued monitoring during the 2018 crisis. These rapidly deployed stations included GNSS antennas mounted on surveys tripods, which is a set-up used for temporary deployments that last several days to weeks.

Many of these rapidly deployed sites were removed after 2018. However, approximately 13 of them are still being used for emergency monitoring and remain on temporary tripods. These sites will be upgraded and new sites will also be installed to replace those destroyed in 2018.

HVO has deployed 3 new semi-continuous GNSS stations in response to the December 2020 Kilauea eruption. These stations gave scientists a more complete view of magma returning to the summit.

Similarly, HVO deployed rapid-response GNSS equipment at 2 pre-existing benchmarks during the Kilauea south caldera intrusion event in August 2021, allowing scientists to track the migration of magma from the south caldera to farther south.

In the article, the Observatory explains that the geodetic network ensures that scientists can monitor changes in the shape of volcanoes, respond to eruptions, and understand magma storage and movement underground.

Source: USGS, HVO.

Station géodésique GNSS sur le plancher de la caldeira du Kilauea (Crédit photo : HVO)

Exemple d’interférogramme InSAR du Kilauea pendant l’éruption de 2018 (Source: NASA / Université de Liverpool).

Satellites et prévision sismique // Satellites and seismic prediction

Les séismes font partie des phénomènes naturels les plus destructeurs, mais aussi des difficiles à prévoir. Il faut bien admettre que, pour le moment, nous ne sommes pas en mesure de dire quand ils se produiront. Nous connaissons les régions susceptibles d’être secouées, mais nous ne savons pas quand, ni avec quelle intensité.

Pour essayer d’améliorer cette situation, des chercheurs ont récemment mis au point un système de surveillance qui utilise le système mondial de navigation par satellite – Global Navigation Satellite System (GNSS) – pour mesurer les déformations de la croûte terrestre. Le système peut fournir des indications utiles dans la prévision des séismes et des tsunamis. Le titre de l’étude, publiée dans le bulletin de la Seismological Society of America est « Global Navigational Satellite System Seismic Monitoring, » autrement dit «Surveillance sismique par le système mondial de navigation par satellite».

Les chercheurs expliquent que les systèmes GNSS envoient des signaux à 2000 récepteurs sur Terre. Ces signaux permettent d’identifier la position exacte des récepteurs. Les séismes déforment la croûte sous les récepteurs et modifie donc leur emplacement.

La surveillance sismique par GNSS n’est pas aussi précise que celle effectuée par les réseaux de sismomètres capables de détecter les moindres ondes sismiques. Le système GNSS  ne peut détecter que des déplacements de quelques centimètres ou plus. En revanche, il est également capable de détecter la vitesse d’ondes sismiques de seulement quelques dizaines de nanomètres par seconde.

Pour déterminer avec précision la distribution et la magnitude des mouvements de failles, les sismologues doivent généralement attendre que les données concernant les ondes sismiques atteignent des stations éloignées les unes des autres. Cela prend parfois des dizaines de minutes, le temps que les ondes se propagent sur la Terre.

Le système GNSS prend en compte les données brutes acquises par n’importe quel récepteur connecté à Internet sur la planète, positionne les données et les retransmet dans la seconde vers n’importe quel appareil connecté à Internet. En utilisant les données fournies par 1270 stations de réception à travers le monde, les chercheurs ont constaté qu’il fallait environ une demi seconde (exactement 0,52 s) pour la transmission d’un récepteur au centre de traitement de l’Université Centrale de Washington, indépendamment de la distance de la station.

Le réseau sismique conventionnel prend parfois 15 minutes ou plus pour identifier la magnitude d’un séisme qui provoque un tsunami. De plus, les marégraphes prennent parfois jusqu’à une heure pour fournir des données, en fonction de leur proximité par rapport au séisme. S’agissant des tsunamis, le système GNSS permettra de gagner du temps et offrira une plus grande précision pour alerter les populations.

Source: The Watchers.

Voici une petite vidéo (en anglais) qui explique le principe de fonctionnement du GNSS :

https://youtu.be/gffG5sTegT4

——————————————–

Earthquakes are among the most destructive natural phenomena. They are the most difficult to predict and we have to admit that for the time being we are unable to predict them. We know the areas where they are likely to happen, but we don’t know when and how powerful they will be.

To try and make things better, researchers have recently developed a monitoring system that uses the Global Navigational Satellite System (GNSS) to measure crustal deformation, which can provide seismic monitoring for large earthquakes and tsunamis. The title of the study, published in the Bulletin of the Seismological Society of America is « Global Navigational Satellite System Seismic Monitoring. »

The researchers explain that GNSS systems send signals to 2,000 receivers on Earth. These signals are used to identify the receivers’ exact locations. Earthquakes deform the crust underneath the receivers, changing their locations.

The seismic monitoring by GNSS is not as accurate as seismometer-based networks capable of detecting minute seismic waves. It can only spot displacements of centimetres or larger, but it is also able to detect seismic wave velocities as small as tens of nanometers per second.

To precisely determine fault slip distribution and magnitude, seismologists usually have to wait for the seismic wave data to reach distant stations, which sees tens of minutes of delay while the waves spread across the Earth. The GNSS system takes in raw data acquired by any internet-connected receiver on the planet, positions the data, and retransmits the data back to any internet-connected device within a second. Using data from 1 270 receiver stations across the world, the researchers found that it took the data roughly half a second (0.52 s) to travel from a receiver to the processing centre at Central Washington University, independently of station distance

The conventional seismic network could take 15 minutes or more to identify the magnitude of an earthquake that causes a tsunami. The tidal gauges would take up to an hour to deliver data, depending on their proximity to the quake. The GNSS for the tsunami will be faster ; it will save time and provide greater accuracy to warn the populations.

Source : The Watchers.

Here is a short video showing how GNSS works :

https://youtu.be/gffG5sTegT4