Plusieurs paramètres sont à prendre en compte pour analyser le comportement des volcans et tenter de prévoir les éruptions : sismicité, température et composition des gaz, déformation du sol… Ce dernier paramètre est le domaine de la géodésie qui consiste à mesurer la déformation et l’évolution de la surface de la Terre. Un article récemment publié par le Hawaiian Volcano Observatory (HVO) nous donne plus de détails sur cette technologie.
Les principales données géodésiques actuellement utilisées par les scientifiques du HVO pour mesurer la déformation de surface sur le Kilauea sont fournies par les images GNSS (système global de navigation par satellite, qui comprend le GPS), l’inclinaison du sol (tilt en anglais) et l’interférométrie radar (InSAR).
Sur le Kilauea, le réseau de surveillance géodésique comprend plus de 70 stations GNSS et 15 inclinomètres qui enregistrent et transmettent des données en continu. Ces instruments nécessitent une maintenance; de plus, ils doivent être réactualisés périodiquement en raison de leur âge et doivent être remplacés s’ils sont détruits par l’activité volcanique comme en 2018.
A l’heure actuelle à Hawaii, le travail des scientifiques se focalise sur la reconstruction et l’amélioration du réseau géodésique afin de mieux détecter les risques liés à l’activité volcanique. Une partie du travail consiste à remplacer les instruments obsolètes et à améliorer le fonctionnement des instruments de surveillance en temps quasi réel dans des zones les plus sensibles du sommet du Kilauea et des zones de rift. Le rôle de ces instruments est de pouvoir détecter rapidement les mouvements du magma.
En 2018, des coulées de lave ont détruit 3 stations GNSS dans la Lower East Rift Zone (LERZ). Trois autres stations GNSS ont été détruites lors de l’effondrement de la caldeira sommitale du Kilauea. De nouvelles stations GNSS ont été rapidement déployées à proximité pour permettre une surveillance continue pendant la crise éruptive de 2018. Ces stations déployées rapidement comprennent des antennes GNSS montées sur trépied et qui appartiennent à la configuration utilisée pour les situations temporaires d’une durée de plusieurs jours à plusieurs semaines.
Bon nombre de ces sites où des antennes ont été installées rapidement ont été supprimés après 2018. Cependant, environ 13 d’entre eux sont toujours utilisés pour la surveillance en cas d’urgence et restent sur des trépieds temporaires. Ces sites seront modernisés et de nouveaux sites seront également mis en place pour remplacer ceux détruits en 2018.
Le HVO a déployé 3 nouvelles stations GNSS à fonctionnement semi-continu suite à l’éruption du Kilauea en décembre 2020. Ces stations ont permis aux scientifiques d’avoir une vue plus complète du retour du magma vers le sommet.
De même, le HVO a déployé un équipement GNSS à réponse rapide sur 2 repères préexistants lors de l’intrusion magmatique au niveau de la caldeira sud du Kilauea en août 2021. Cela a permis aux scientifiques de suivre la migration du magma depuis la caldeira vers le sud.
Dans l’article, l’Observatoire explique que le réseau géodésique permet aux scientifiques de surveiller les déformations du sol sur les volcans, de réagir face aux éruptions et de mieux comprendre le stockage et le mouvement du magma sous terre.
Source : USGS, HVO.
———————————————–
Several parameters need to be taken into account to analyse the behaviour of volcanoes and try to predict eruptions: seismicity, gas temperature and composition, ground deformation… This last parameter is the domain of geodesy which is the study of measuring and understanding how the Earth’s surface deforms and changes. As article recently published by the Hawaiian Volcano Observatory (HVO) gives us more details about this technology.
The main geodetic datasets currently used by HVO scientists to measure surface deformation on Kilauea Volcano are GNSS (global navigation satellite system, which includes GPS), tilt, and satellite radar (InSAR) imagery.
On Kilauea, geodetic monitoring network includes over 70 GNSS stations and 15 tiltmeters that continuously record and transmit data. These instruments require routine maintenance, must be upgraded periodically due to age, and must be replaced if destroyed by volcanic activity such as in 2018.
Current upgrades focus on rebuilding and improving HVO’s geodetic network in order to better detect and respond to volcanic hazards related to Hawaiian Volcanoes. Some of the network upgrades include replacing out-of-date instruments and improving the network of near real-time monitoring instruments at critical areas on Kilauea’s summit and rift zones to support early detection of magma movement.
In 2018, lava flows destroyed 3 GNSS stations in the lower East Rift Zone. Another 3 GNSS stations were destroyed in the caldera collapses at Kilauea’s summit. New GNSS stations were rapidly deployed at nearby locations to allow for continued monitoring during the 2018 crisis. These rapidly deployed stations included GNSS antennas mounted on surveys tripods, which is a set-up used for temporary deployments that last several days to weeks.
Many of these rapidly deployed sites were removed after 2018. However, approximately 13 of them are still being used for emergency monitoring and remain on temporary tripods. These sites will be upgraded and new sites will also be installed to replace those destroyed in 2018.
HVO has deployed 3 new semi-continuous GNSS stations in response to the December 2020 Kilauea eruption. These stations gave scientists a more complete view of magma returning to the summit.
Similarly, HVO deployed rapid-response GNSS equipment at 2 pre-existing benchmarks during the Kilauea south caldera intrusion event in August 2021, allowing scientists to track the migration of magma from the south caldera to farther south.
In the article, the Observatory explains that the geodetic network ensures that scientists can monitor changes in the shape of volcanoes, respond to eruptions, and understand magma storage and movement underground.
Source: USGS, HVO.
Station géodésique GNSS sur le plancher de la caldeira du Kilauea (Crédit photo : HVO)
Exemple d’interférogramme InSAR du Kilauea pendant l’éruption de 2018 (Source: NASA / Université de Liverpool).