Eruption islandaise: des changements d’activité, mais toute prévision reste impossible ! // Icelandic eruption: changes in activity but no volcanic prediction !

Le Met Office islandais indique que l’éruption de Fagradalsfjall se poursuit au niveau de l’un des principaux cratères. Le cratère actif en ce moment est le cinquième à s’être ouvert sur la fracture le 13 avril 2021. Depuis le 27 avril, l’activité volcanique a été marquée par des fontaines de lave ininterrompues. Toutefois, cette activité s’est modifiée vers minuit le 2 mai ; depuis ce moment, l’éruption procède par impulsions. On observe des périodes d’intense activité d’une durée de 8 à 12 minutes et alternant avec des périodes de calme de 1 à 2 minutes. Les périodes intenses commencent par une forte activité, avec des fontaines de lave atteignant le plus souvent 100-150 m de hauteur, mais parfois 200 ou 300 mètres (voir la vidéo ci-dessous). Ces séquences d’activité intense sont parfaitement visibles sur le tremor dans les stations sismiques réparties autour du site éruptif. Hier soir, le cratère principal avait un comportement qui me rappelait celui d’un geyser, avec de brèves phases actives alternant avec des périodes de repos.

https://youtu.be/JX-H_sRMSUY

Les volcanologues islandais disent qu’il est difficile de déterminer la cause de ces changements intervenus dans l’activité volcanique. Il se pourrait qu’ils soient dus à des modifications dans le flux du magma, sa composition chimique ou celle des gaz, ou éventuellement des changements dans le conduit d’alimentation.

Páll Einarsson pense que les raisons peuvent être multiples et qu’il est trop tôt pour dire exactement ce qui explique ces changements. Il fait remarquer que vers la fin des dernières éruptions de l’Hekla, une activité similaire a été observée, même si les pauses et les séquences éruptives ont duré plus longtemps. Cependant, ces éruptions étaient différentes de l’événement actuel à Fagradalsfjall et elles mettaient en œuvre un type de magma différent. Il est donc difficile de faire une comparaison.

Un autre géophysicien pense que ce changement pourrait indiquer une baisse de l’activité volcanique. Il ajoute que l’éruption pourrait aussi réapparaître sur un autre site.

Un professeur de volcanologie à l’Université d’Islande a remarqué qu’à l’heure actuelle, l’éruption semble être beaucoup plus explosive qu’auparavant. Il explique que des explosions de lave comme celles observées ces dernières heures coïncident généralement avec une diminution de l’activité volcanique, mais il n’a pas précisé si l’éruption était en déclin ou en hausse.

En d’autres termes, personne ne sait ce qui va se passer maintenant… . !

 Compte tenu de ces changements d’activité, la taille de la zone de sécurité sur le site éruptif est en cours de réévaluation. Elle devrait désormais avoir un rayon de 500 mètres autour de l’éruption.

——————————————-

The Icelandic Met Office indicates that the eruption in Fagradalsfjall continues through one main crater. The active crater is the fifth fissure opening that opened in the area on April 13th, 2021. Since April 27th, the volcanic activity was characterized by continuous lava fountains, but activity changed at around midnight on May 2nd, and has since  been showing pulsating behaviour. These pulses have intermittent active periods of 8-12 minutes, with 1-2 minutes of rest periods in between. The active pulses start with a strong fountain activity, with fountains reaching up to 100-150 m above ground level, and some even higher (see video below). These pulses are very apparent in the seismic tremor at seismic stations in a wide area around the eruption site. Last night, the main crater had a behaviour that looked like a geyser, with brief active phases, alternating with quiet periods.

https://youtu.be/JX-H_sRMSUY

Local volcanologists say it is not clear what is causing these changes in volcanic activity, but changes in magma flow, the chemical composition of magma/gas, or possibly changes in the volcanic conduit cannot be ruled out.

Páll Einarsson  states that the reasons for this can be many, and that it’s too early to tell what exactly is causing this transformation. He states that toward the end of the most recent eruptions at Hekla, a similar activity was seen, although the pauses and the bursts of eruption there lasted longer. However, those eruptions were different from the one by Fagradalsfjall mountain and involved a different kind of magma, making it hard to draw any conclusions.

Another geophysicist thinks that this change in the activity could indicate a reduced volcanic activity, but he adds that the eruption may possibly be looking for another place to reach the surface.

A professor of volcanology at the University of Iceland has noticed that at the moment the eruption seems to be much more explosive than before. He explains that explosive high lava jets such as this usually coincide with a decrease in volcanic activity, but did not state whether as a whole, the eruption is declining or increasing.

In other words, nobody knows…..

Considering these changes in activity, the size of the hazard area at the eruption site is being re-evaluated. It should be extended to a 500 metre radius from the eruption, due to a change in the volcanic activity.

L’énergie des volcans sous-marins // The energy of submarine volcanoes

La plus grande partie de l’activité volcanique sur Terre se produit dans les profondeurs de nos océans, souvent à plusieurs kilomètres sous leur surface. Toutefois, contrairement aux volcans terrestres, la détection d’une éruption sur le fond marin se révèle souvent très difficile. Il reste encore beaucoup à apprendre sur le volcanisme sous-marin et ses effets sur le milieu environnant. Comme je l’ai souligné à plusieurs reprises, nous connaissons la surface de la planète Mars,  nous sommes capables d’y faire voler un hélicoptère, mais les abysses de nos océans, là où se produit le phénomène de subduction et où se déclenchent les séismes les plus meurtriers, restent inconnus.

Une nouvelle étude publiée dans Nature Communications explique que les volcans sous-marins en éruption au fond des océans peuvent générer une énergie extrêmement puissante. On croyait auparavant que les volcans sous-marins étaient beaucoup moins puissants que ceux sur terre en raison des coulées de lave relativement lentes qu’ils produisent. Toutefois, des submersibles déployés dans le nord-est du Pacifique ont fourni des données qui montrent que les volcans sous-marins peuvent libérer de puissants panaches – appelés méga panaches – qui distribuent des cendres volcaniques sur de grandes distances sous-marines. Les panaches sont poussés par des colonnes d’eau chauffée à haute température. Ils suivent les mêmes schémas que les panaches générés par les éruptions volcaniques sur terre. Ils se déplacent d’abord verticalement puis s’étalent horizontalement.

Les chercheurs estiment que les méga panaches produits par les grandes éruptions sous-marines produisent suffisamment d’eau pour remplir environ 40 millions de piscines olympiques. Cependant, leur source est restée longtemps ambiguë. La nouvelle étude est la première à relier le phénomène à l’émission de magma d’un énorme volcan sous-marin.

Pour mieux comprendre le processus des éruptions volcaniques sous-marines, les chercheurs ont proposé une simulation qui montre que l’énergie nécessaire pour générer de tels panaches de cendres est énorme. Les éruptions les plus puissantes peuvent libérer suffisamment d’énergie pour alimenter un continent. Le problème est de savoir comment exploiter cette énergie.

La nouvelle étude fournit la preuve que les méga panaches sont directement liés à l’émission de lave et sont responsables du transport des cendres volcaniques dans les profondeurs de l’océan. Les recherches montrent également que ces panaches peuvent se former en quelques heures en libérant une énorme quantité d’énergie.

À l’avenir, les scientifiques espèrent utiliser les technologies de télédétection pour observer en direct l’activité des volcans sous-marins afin de pouvoir mieux l’étudier.

Référence : « Rapid heat discharge during deep-sea eruptions generates megaplumes and disperses tephra » – Pegler, S. S., & Ferguson, D. J. – Nature Communications.

Source : The Watchers.

——————————————–

The majority of Earth’s volcanic activity occurs underwater, mostly at depths of several kilometres, but in contrast to terrestrial volcanoes, detecting that an eruption has occurred on the seafloor can be very difficult. There remains a lot to be done to learn about submarine volcanism and its effects on the marine environment. As I have pointed out several times, we know the surface of Mars, we are able to fly a helicopter there, but the abyss of our oceans, where the phenomenon of subduction occurs and where the the deadliest earthquakes are triggered,  remain unknown.

A new research published in Nature Communications explains that submarine volcanoes erupting at the bottom of the oceans can release extremely powerful energy, high enough to power a continent. It was previously believed that underwater volcanoes were much less powerful than those on land due to relatively slow-moving lava flows. Submersibles operated in the North East Pacific have released data which show that submarine volcanoes can release powerful and huge plumes called megaplumes, distributing volcanic ash across wide underwater distances. The plumes are formed by columns of heated water. They follow the same patterns as plumes generated by volcanic eruptions on land. The plumes move vertically first and then spread out horizontally..

The researchers estimate that the megaplumes produced by large underwater eruptions have enough water to fill about 40 million Olympic-sized swimming pools. However, their source have long remained ambiguous. The new research is the first to link the phenomenon with the release of magma from a huge submarine volcano.

To better understand the process of underwater volcanic eruptions, the researchers came up with a simulation, which showed that the release of energy needed to generate such expansive ash plumes was enormous. The largest eruptions could release energy high enough to power a continent. The problem is how to tap this energy.

The new study provides evidence that megaplumes are directly linked to the eruption of lava and are responsible for transporting volcanic ash in the deep ocean. It also shows that plumes can form in a matter of hours, creating an immense rate of energy release.

In the future, scientists hope to use remote-sensing technologies to livestream activity of underwater volcanoes as they are happening.

Reference : « Rapid heat discharge during deep-sea eruptions generates megaplumes and disperses tephra » – Pegler, S. S., & Ferguson, D. J. – Nature Communications.

Source : The Watchers.

Source : Wikipedia