Aucun lien entre la Montagne Pelée (Martinique) et La Soufrière (Saint Vincent)

Quand on regarde une carte, on s’aperçoit que les Petites Antilles, avec la Martinique, la Guadeloupe, St-Vincen-et-les-Grenadines, forment un arc. Il est façonné par la tectonique des plaques dans la région. La plaque Américaine se rapproche de la plaque Caraïbe à raison d’environ 2 cm/an. A l’aplomb de l’arc volcanique des Petites Antilles, la plaque nord-américaine, dans un processus de subduction, s’enfonce sous la plaque Caraïbe. Cette enfoncement de la plaque lithosphérique dans les profondeurs génère des séismes et participe à l’activité volcanique. Dans les zones de subduction, la répartition des séismes en profondeur permet d’imager la géométrie de la plaque plongeante qui suit le plan de Wadati-Benioff, souvent raccourci en plan de Benioff. Sous l’arc des Antilles, ce plan présente un pendage d’environ 60°.
A côté d’autres zones de subduction, comme au Japon ou au Chili, les Petites Antilles ont une activité sismique relativement réduite. Les derniers séismes importants datent de 1839 pour la Martinique et 1843 pour la Guadeloupe. Les sismologues pensent que cela s’explique par le fait que la subduction est lente dans cette région.

En revanche, l’activité volcanique est plus soutenue. On dénombre une vingtaine de volcans actifs dans les Petites Antilles dont 9 dans la seule île de Dominique. Soufrière Hills à Montserrat a connu une éruption dévastatrice en 1997. Le volcan sous marin Kick’Em Jenny à Grenade est sûrement le plus actif de la région avec près de onze éruption durant les 50 dernières années. La Soufrière de Guadeloupe est le volcan qui a connu le plus de manifestations éruptives depuis le 17ème siècle. Je ne reviendrai pas sur l’éruption phréatique de 1976 et la polémique qui l’a accompagnée.

L’éruption la plus meurtrière a été celle de la Montagne Pelée à la Martinique. Elle a causé le mort de 29 000 personnes. Au cours de cette même année, la Soufrière de St Vincent a tué 1565 personnes.

Le 4 décembre 2020, suite à une intensification de l’activité sismique et des remontées de gaz au cours des mois précédents, l’Observatoire Volcanologique et Sismologique de la Martinique (OVSM) a demandé à la Préfecture le placement de la Montagne Pelée en vigilance Jaune (niveau 3 sur une échelle de 5). Malgré tout, L’OVSM a précisé qu’une éruption n’est pas à l’ordre du jour dans le court terme.

Le 29 décembre 2020, c’était autour de la Soufrière de St Vincent de passer en vigilance Orange suite à l’apparition d’un dôme de lave à l’intérieur du cratère

Suite à ces des deux hausses des niveaux d’alerte, de nombreuses personnes se sont demandé s’il n’existait pas en lien entre le regain d’activité de ces deux volcans des Petites Antilles.

Jean-Christophe Komorowski, directeur scientifique des observatoires volcanologiques et sismologiques de l’Institut physique du globe de Paris est très clair à ce sujet. Il explique sur le site web Orange qu’il n’existe aucune relation entre l’activité de la Montagne Pelée et celle de la Soufrière : « Il n’y a aucun lien entre les différents volcans de l’arc des Petites Antilles. Il n’y a pas de connexion entre les réservoirs de stockage du magma de La Soufrière et celui de la Montagne Pelée. On ne peut pas craindre le déclenchement d’une éruption à la Montagne Pelée suite à l’activité en cours à Saint-Vincent, ou inversement. »

L’arc des Petite Antilles (Source : Google Maps)

L’archipel des Petites Antilles dans le contexte de la tectonique des plaques (Source : Centre de Données Sismologique des Antilles)

Modèle de la structure profonde de la zone de subduction au niveau des Petites Antilles, à partir des données sismiques (Source : IFREMER)

Japon: Exploration des zones de subduction // Japan: Exploring subduction zones

Comme je l’ai écrit à plusieurs reprises, nous sommes capables d’explorer la surface de la planète Mars, mais nous ne savons que très peu de choses sur les profondeurs de nos propres océans, en particulier sur les zones de subduction où se déclenchent les séismes les plus puissants et les plus dévastateurs.

Il y a quelques jours, je regardais sur la chaîne de télévision française France 5 l’émission très intéressante «Science Grand format» qui était consacrée à deux «terres extrêmes»: le Japon et la Californie.

Le Japon doit régulièrement faire face à des événements extrêmes tels que des éruptions volcaniques, des séismes, des lahars, des tsunamis et des typhons. D’un point de vue géologique, le pays se trouve à l’intersection de 4 grandes plaques tectoniques: la plaque d’Okhotsk au nord, la plaque du Pacifique à l’est, la plaque Philippine au sud et la plaque Eurasienne à l’ouest. Les séismes sont le plus souvent provoqués par la subduction des plaques Pacifique et Philippine qui plongent sous les plaques d’Okhotsk et Eurasienne.

Un épisode du documentaire sur le Japon nous explique que le Chikyu, un navire de recherche spécialisé en forage océanique, a foré le plancher océanique dans l’espoir d’atteindre la zone de subduction. Cependant, la mission n’a pas réussi à atteindre son objectif ultime : forer jusqu’à 5 200 mètres sous le fond marin, là où la plaque Philippine plonge sous la plaque Eurasienne, en provoquant de puissants tremblements de terre. En mai 2019, les ingénieurs ont arrêté le processus de forage à cause d’effondrements dans le puits de forage, à une profondeur d’un peu plus de 3250 mètres sous le plancher océanique.

Cet échec marquait la fin de près de dix ans d’efforts pour s’enfoncer à l’intérieur de la Fosse de Nankai, au large de la côte sud-est du Japon. Dans cette région, le processus de subduction déclenche des séismes dévastateurs tous les 100 à 150 ans environ. Par exemple, deux événements d’une magnitude supérieure à M 8 ont été enregistrés en 1944 et 1946.

Atteindre les profondeurs de la zone de subduction n’est pas une tâche facile. La limite entre les plaques tectoniques est si profonde que le Chikyu est le seul navire de forage océanique capable de l’atteindre. Pour stabiliser son équipement de forage et pénétrer le plancher océanique, le navire dispose d’une technologie semblable à celle utilisée sur une plate-forme pétrolière.

En octobre 2018, le Chikyu a effectué sa quatrième mission sur un site de la Fosse de Nankai connu sous le nom de C0002, où il avait déjà effectué le forage le plus profond jamais réalisé. Les ingénieurs savaient que cette mission serait délicate, car le forage devait s’effectuer dans des roches fracturées et litées. L’équipe de forage a pu s’enfoncer jusqu’à 3262 mètres, battant ainsi son propre record de forage océanique à but scientifique. Mais les chercheurs n’ont pas pu descendre davantage à cause des effondrements dans le puits de forage. Grosse déception à bord du navire de recherche !

Après l’échec du forage C0002, le Chikyu a effectué des missions moins profondes. En particulier, les scientifiques ont exploré la géologie de la faille qui a déclenché le séisme dévastateur de Tohoku en 2011 qui s’est accompagné de la destruction de la centrale nucléaire de Fukushima. A côté de ces événements meurtriers, les scientifiques à bord du navire ont également étudié les séismes ‘lents’ que l’on enregistre le long de la Fosse de Nankai.

Source: Nature.

Espérons que le Japon – et d’autres pays – pourront mettre en place dans les prochaines années d’autres initiatives comme la mission dans la Fosse de Nankai. Elles nous permettront de mieux comprendre le comportement de notre planète.

————————————————-

As I put it several times, we are able to explore the surface of Mars, but we know very little about the depths of our own oceans, especially the subduction zones that trigger the most powerful and devastating earthquakes.

A few days ago, I was watching on the French TV channel France 5 the very interesting programme “Science Grand format” that was dedicated to two “extreme lands”: Japan and California.

Japan regularly has to face extreme events such as volcanic eruptions, earthquakes, lahars, tsunamis and typhoons. From a geological point of view, the country is located at the intersection of 4 major tectonic plates: the Okhotsk Plate to the north, the Pacific Plate to the east, the Philippine Plate to the south and the Eurasian Plate to the west. Earthquakes are usually caused by the subduction of the Pacific and Philippine plates, which dive beneath the Okhotsk and Eurasian plates.

An episode of the documentary about Japan informs us that the nation’s ocean-drilling research vessel, Chikyu, has drilled the ocean floor deeper than ever before in the hope to reach the subduction zone. However, the mission failed to achieve its ultimate goal of penetrating 5,200 metres beneath the sea floor, into the area where the Philippine Sea plate  plunges beneath the Eurasian plate, causing powerful earthquakes. In May 2019, engineers stopped the drilling process after the drill hole kept collapsing, just over 3,250 metres beneath the sea floor.

It was the end to an almost decade-long effort to drill deep into the Nankai Trough off Japan’s southeast coast. In this region, the plate subduction triggers devastating earthquakes roughly every 100 to 150 years. For instance, a pair of earthquakes with magnitudes above M 8 struck in 1944 and 1946.

Reaching the depths of the subduction zone is not an easy job. The plate boundary is so deep that Chikyu is the only scientific ocean-drilling vessel capable of reaching it. The ship uses a structure similar to the technology used on an oil rig, to stabilize its drilling equipment and penetrate the sea floor.

In October 2018, Chikyu made its fourth trip to a site on the Nankai Trough known as C0002, where it had already drilled the deepest-ever hole beneath the sea floor. Engineers knew that the next phase of drilling would be difficult, because the hole penetrates rocks that are fractured and folded. The drilling team was able to deepen the hole from just over 2,900 metres beneath the sea floor to 3,262 metres, breaking its own record for the deepest scientific ocean drilling. But the researchers could not go any farther because the hole kept collapsing at the bottom. There was a general disappointment aboard the research vessel.

After the C0002 hole failed, Chikyu moved on to drill in shallower holes nearby. In particular, scientists explored the geology of the shallow fault that triggered the devastating 2011 Tohoku earthquake that destroyed the Fukushima nuclear plant.. The ship also investigated the many small, slow-motion earthquakes that are recorded along the Nankai Trough, in addition to the large, devastating ones.

Source : Nature.

Let’s hope more initiatives like the Japanese mission in the Nankai Trough will be set up in the next years. They will help us understand better the behaviour of our planet.

Le Chikyu est un navire japonais de forage en haute mer. Il mesure 210 mètres de longueur, 38 mètres de large, 16,2 mètres de haut pour un tonnage de 57000 tonnes. La partie la plus originale du navire est son derrick de 121 mètres au dessus du niveau de la mer. Il a un équipage de 150 hommes, divisé en 50 scientifiques et 100 opérateurs. (Source : Wikipedia)

Au fond de la Fosse des Mariannes…

La Chine a diffusé en direct le 20 novembre 2020 des images de son nouveau submersible habité au fond de la Fosse des Mariannes dans le cadre d’une mission dans les eaux les plus profondes de la planète.

La Fosse des Mariannes est actuellement l’endroit le plus profond de la croûte terrestre. Elle se trouve dans la partie nord-ouest de l’Océan Pacifique, à l’est des Îles Mariannes et à proximité de l’île de Guam. Le point le plus bas connu de la fosse se situerait selon les relevés à 10 984 ± 25 m. Des organismes piézophiles vivent à cette profondeur, malgré des pressions atteignant l’équivalent de 1 100 atmosphères.

D’un point de vue géologique – le plus important à mes yeux – la Fosse des Mariannes se situe sur une zone de subduction où la plaque Pacifique s’enfonce sous la plaque Philippine.

Le submersible chinois qui répond au nom de « Fendouzhe » – le « lutteur » – est descendu à plus de 10.000 mètres dans la fosse avec trois chercheurs à son bord.

Très peu de personnes ont déjà visité la Fosse des Mariannes. Les premiers explorateurs ont atteint la fosse en 1960 lors d’une brève expédition. Il a ensuite fallu attendre 2012 et la descente effectuée par le cinéaste américain James Cameron, réalisateur de « Titanic », qui a parlé d’un environnement « désolé » et « extraterrestre ».

Les vidéos tournées cette semaine par une caméra sous-marine montrent le submersible chinois vert et blanc se déplaçant dans les eaux obscures, entouré de nuages de sédiments alors qu’il se pose lentement sur le fond marin.

Le but des missions du Fendouzhe est d’observer « les nombreuses espèces et la répartition des êtres vivants dans les fonds marins » et les chercheurs chinois vont collecter des spécimens pour leurs recherches. Des études antérieures ont permis de trouver des communautés florissantes d’organismes unicellulaires survivant sur des déchets organiques qui s’étaient installés sur le fond de l’océan, mais très peu de gros animaux.

La mission actuelle du Fendouzhe permettra également d’effectuer des recherches sur les « matériaux des eaux profondes », alors que la Chine progresse dans l’exploitation minière à grande profondeur. Pékin a mis en place en novembre un centre de formation et de recherche qui initiera les professionnels à la technologie des grands fonds marins et mènera des recherches sur l’exploitation de minéraux précieux au fond de l’océan.

Sources : Médias internationaux.

Comme je l’ai écrit à plusieurs reprises, l’Homme n’a jamais été vraiment attiré par les grandes profondeurs océaniques, endroits obscurs où il n’y a guère de vie. Il est davantage fasciné par les autres planètes du système solaire comme le montre l’attrait exercé par les images envoyées par les robots martiens où les sondes qui voyagent à proximité d’autres planètes.

Pourtant, les abysses de nos océans présentent un intérêt certain. Les Chinois espèrent y découvrir – et un jour y extraire – des minéraux précieux. A côté de cela, il ne faudrait pas oublier que les fosses océaniques comme celle des Mariannes sont des zones de subduction où se déclenchent les séismes les plus puissants et les plus destructeurs sur Terre. Des missions à l’aide de submersibles comme le Fendouzhe permettraient d’y installer des capteurs et autres instruments afin d’étudier le comportement de la croûte terrestre à grande profondeur. Mais bien sûr, les images rapportées par de telles missions ne nous feraient pas rêver….

Source : Wikipedia

Pour une meilleure compréhension du processus de subduction // For a better understanding of the subduction process

Comme je l’ai écrit à maintes reprises, nous sommes capables d’envoyer des sondes et des véhicules télécommandés sur la planète Mars afin d’explorer sa surface, mais nous savons très peu de choses sur les profondeurs de nos propres océans, et plus particulièrement sur les fosses sous-marines, les zones de subduction où se déclenchent les séismes les plus puissants et les plus destructeurs. C’est dans ces zones de subduction que se produit le recyclage de la couche externe de la Terre vers son intérieur
J’ai été heureux d’apprendre qu’une équipe internationale de chercheurs venait de publier une étude (voir référence ci-dessous) fournissant de nouveaux éléments sur le processus et les origines de la subduction sur Terre. Ce travail de recherche a été conduit par le Center for Earth Evolution and Dynamics de l’Université d’Olso, avec une équipe de 14 chercheurs de différentes provenances à travers le monde.
Ces scientifiques ont pu compiler 100 millions d’années de preuves existantes sur l’initiation des zones de subduction (Subduction Zone Initiation – SZI). L’une des conclusions les plus importantes de leurs recherches est que la subduction engendre la subduction.
Les résultats de l’étude ont conduit à l’élaboration d’une nouvelle base de données sur la SZI ; cette base de données est accessible à l’ensemble de la communauté scientifique. Elle est ouverte à une actualisation et une meilleure compréhension de la SZI. Elle deviendra une plate-forme permettant une bonne communication dans la communauté des Sciences de la Terre.
La base de données est transdisciplinaire et présente une analyse détaillée de plus d’une douzaine d’événements SZI analysés au cours des cent derniers millions d’années. Les premiers résultats révèlent que la SZI horizontale est majoritaire au cours des 100 derniers Ma, et que la plupart des SZI sont proximaux aux zones de subduction préexistantes. En examinant plusieurs événements, les scientifiques ont découvert que les événements de SZI se regroupaient autour de deux principales périodes – il y a six à 16 millions d’années et il y a 40 à 55 millions d’années.
À l’avenir, des chercheurs de l’Université Nationale Australienne (ANU) déploieront des sismomètres au fond de l’océan autour de l’île Macquarie, au sud-ouest de l’Océan Pacifique, environ à mi-chemin entre la Nouvelle-Zélande et l’Antarctique. Le site a été choisi en raison de son potentiel de SZI pour les prochaines années.
La nouvelle base de données SZI se trouve à cette adresse: https://www.szidatabase.org/

L’étude est intitulée « A transdisciplinary and community-driven database to unravel subduction zone initiation » [« Une base de données transdisciplinaire et communautaire pour expliquer l’initiation de la zone de subduction »] – Crameri, F. et al. – Nature  
Source: The Watchers.

———————————————–

As I put it many times, we are able to send rovers on Mars to explore its surface, but we know very little about the depths of our own oceans, and more particularly the abysses, the subduction zones where major destructive earthquakes are triggered. These zones are pivotal for the recycling of Earth’s outer layer into its interior

I was pleased to learn that an international team of researchers published a new study providing new clues about how and where subduction begins on Earth. It was led by the Centre for Earth Evolution and Dynamics at the University of Olso, with a team of 14 researchers around the world.

The researchers have been able to compile 100 million years of existing evidence for Subduction Zone Initiation (SZI). One of the biggest things they observed was that subduction breeds subduction.

The findings led to a new database on Subduction Zone Initiation, which is open for community input. This database is expandable to facilitate access to the most current understanding of SZI as research progresses, providing a community platform that establishes a common language to sharpen discussion across the Earth Science community.

The database is transdisciplinary and features detailed analysis of more than a dozen documented SZI events from the last hundred million years. The initial findings reveal that horizontally forced subduction zone initiation is dominant over the last 100 Ma, and that most initiation events are proximal to pre-existing subduction zones. By looking at multiple events, the scientists found SZI clustering around two time periods– six to 16 million years ago and 40 to 55 million years ago.

Going forward, researchers from the Australian National University (ANU) will also be deploying ocean-bottom seismometers around Macquarie Island, a location chosen due to its potential for future Subduction Zone Initiation.

The new SZI database can be found at this address: https://www.szidatabase.org/

The research is entitled « A transdisciplinary and community-driven database to unravel subduction zone initiation » – Crameri, F. et al. – Nature Communications.

Source: The Watchers.

Source : Wikipedia

Un bébé volcan dans le Pacifique ! // Baby volcano in the Pacific Ocean !

Des chercheurs japonais de l’université de Tohoku ont découvert un nouveau petit volcan dans la partie occidentale de l’Océan Pacifique, au large du Japon, près de l’île Minamitori. Il appartient à la famille des volcans «petit-spot», ainsi appelés en raison de leur petite taille. L’étude a été publiée dans la revue Deep-Sea Research Part I.
Un chercheur a expliqué que les volcans «petit-spot» sont des structures découvertes relativement récemment. Ce sont de petits volcans très jeunes qui se forment le long de fractures à la base des plaques tectoniques. Lorsque les plaques tectoniques s’enfoncent dans le manteau supérieur de la Terre, des fractures apparaissent à l’endroit où la plaque commence à se courber, ce qui provoque l’éruption de petits volcans.
Les scientifiques pensent que le volcan qu’ils ont découvert est entré en éruption il y a moins de 3 millions d’années. Les premiers volcans de ce type ont été découverts en 2006 près de la Fosse du Japon, au nord-est du pays. Jusqu’à présent, les chercheurs étaient persuadés que la région ne recélait que des formations géologiques âgées de 70 à 140 millions d’années.
La découverte de ce nouveau volcan est l’occasion d’explorer davantage cette région qui pourrait bien révéler d’autres volcans petit-spot. Il est important de mieux comprendre les mécanismes en jeu dans les profondeurs de la Terre. En effet, ces structures émettent du magma provenant de l’asthénosphère qui se situe dans le manteau supérieur et offre une faible résistance. De plus, c’est cette zone qui génère le mouvement des plaques tectoniques.
Source: Presse scientifique internationale.

———————————————-

Japanese researchers from Tohoku University have discovered a new, small volcano in the western part of the Pacific Ocean off Japan, near Minamitorishima Island. It belongs ro the family of “petit-spot” volcanoes, so called on account of their small size.. The research has been published in the journal Deep-Sea Research Part I.

One researcher explained that “petit-spot” volcanoes are a relatively new phenomenon on Earth. They are young, small volcanoes that come about along fissures from the base of tectonic plates. As the tectonic plates sink deeper into the Earth’s upper mantle, fissures occur where the plate begins to bend causing small volcanoes to erupt.

Experts think that the volcano erupted less than 3 million years ago. Petit-spot volcanoes were first discovered in 2006 near the Japan Trench, to the northeast of Japan. Up to now, researchers believed that the region only contained geological formations aged between 70 and 140 million years.

The discovery of this new Volcano provides an opportunity to explore this area further, and hopefully reveal further petit-spot volcanoes. It is also important to better understand the mechanisms at stake in the depths of Earth. Indeed, these structures emit magma coming from the asthenosphere which is located in the upper mantle and offers a small resistance. It generates the movement of tectonic plates.

Source: International scientific press.

  Position géographique de l’île Minamitori, en bas à droite sur la carte (Source: Wikipedia)

Une balise pour prévoir séismes, tsunamis et éruptions // A buoy to predict earthquakes, tsunamis and eruptions

Des géophysiciens de l’Université de Floride du Sud (USF) ont mis au point et testé avec succès une balise de haute technologie, utilisable en eau peu profonde, capable de détecter les moindres variations du plancher océanique, souvent annonciateurs de catastrophes naturelles dévastatrices, telles que les séismes, les tsunamis et les éruptions volcaniques.

Le système flottant, mis au point avec l’aide d’une subvention de 822 000 dollars allouée par la National Science Foundation, a été installé à Egmont Key dans le Golfe du Mexique en 2018 et a déjà livré des données sur le mouvement tridimensionnel du plancher océanique. Ainsi, il sera capable de détecter de petites variations de contrainte dans la croûte terrestre.
En attente de brevet, ce système de géodésie présente l’aspect d’une balise ancrée au fond de la mer et surmontée d’un GPS de haute précision. L’orientation de la balise est mesurée à l’aide d’une boussole numérique fournissant des informations sur le cap, le tangage et le roulis, ce qui permet de mesurer latéralement  les mouvements de la Terre et diagnostiquer les principaux séismes déclencheurs de tsunamis.
Bien que plusieurs autres techniques de surveillance des fonds marins soient actuellement disponibles, la technologie mise au point en Floride fonctionne généralement mieux dans les milieux océaniques profonds où les interférences sonores sont moindres. Les eaux côtières peu profondes (moins de quelques centaines de mètres de profondeur) constituent un environnement plus difficile à analyser, mais également important pour de nombreuses applications, notamment certains types de séismes dévastateurs. Les processus d’accumulation et de libération de contraintes au niveau de la croûte terrestre au large sont essentiels à la compréhension des puissants séismes et des tsunamis.
Le système flottant est relié au fond de la mer à l’aide d’un lest en béton et il a pu résister à plusieurs tempêtes, dont l’ouragan Michael dans le Golfe du Mexique. Le système est capable de détecter des mouvements du plancher océanique de seulement deux centimètres.
La technologie a plusieurs applications potentielles dans l’industrie pétrolière et gazière en mer et pourra être utilisée pour la surveillance de certains volcans. Toutefois, la principale application concerne l’amélioration de la prévision des séismes et des tsunamis dans les zones de subduction. Les puissants séismes et tsunamis qui ont frappé Sumatra en 2004 et le Japon en 2011 sont des événements que les scientifiques souhaiteraient mieux comprendre et prévoir.
Le système mis au point par l’Université de Floride est conçu pour les applications de zones de subduction de la Ceinture de Feu du Pacifique, où les processus d’accumulation et de libération de contraintes de l’écorce terrestre en mer sont actuellement mal connus. Les scientifiques espèrent pouvoir installer le nouveau système dans les eaux côtières peu profondes de l’Amérique Centrale, où se produisent souvent des tremblements de terre.
Le site d’Egmont Key où le système a été testé présente une profondeur de 23 mètres. Bien que la Floride ne soit pas sujette aux séismes, les eaux au large d’Egmont Key se sont avérées un excellent site de test. Ce lieu est exposé à de forts courants de marée qui ont permis de tester le système de correction de la stabilité et de l’orientation de la balise. La prochaine étape consistera à installer un système semblable dans les eaux plus profondes du Golfe du Mexique, au large de la côte ouest de la Floride.
Source: Université de Floride du Sud.

—————————————

University of South Florida (USF) geoscientists have successfully developed and tested a new high-tech shallow water buoy that can detect the small movements and changes in the Earth’s seafloor that are often a precursor to deadly natural hazards, like earthquakes, volcanoes and tsunamis.

The buoy, created with the assistance of an $822,000 grant from the National Science Foundation, was installed off Egmont Key in the Gulf of Mexico in 2018 and has been producing data on the three-dimensional motion of the sea floor.  Ultimately the system will be able to detect small changes in the stress and strain the Earth’s crust.

The patent-pending seafloor geodesy system is an anchored spar buoy topped by high precision Global Positioning System (GPS). The buoy’ orientation is measured using a digital compass that provides heading, pitch, and roll information – helping to capture the crucial side-to-side motion of the Earth that can be diagnostic of major tsunami-producing earthquakes.

While there are several techniques for seafloor monitoring currently available, that technology typically works best in the deeper ocean where there is less noise interference. Shallow coastal waters (less than a few hundred metres deep) are a more challenging environment but also an important one for many applications, including certain types of devastating earthquakes. Offshore strain accumulation and release processes are critical for understanding powerful earthquakes and tsunamis.

The experimental buoy rests on the sea bottom using a heavy concrete ballast and has been able to withstand several storms, including Hurricane Michael up the Gulf of Mexico. The system is capable of detecting movements as small as one to two centimetres.

The technology has several potential applications in the offshore oil and gas industry and volcano monitoring in some places, but the big one is for improved forecasting of earthquakes and tsunamis in subduction zones. The giant earthquakes and tsunamis in Sumatra in 2004 and in Japan in 2011 are examples of the kind of events scientists would like to better understand and forecast in the future.

The system is designed for subduction zone applications in the Pacific Ocean’s “Ring of Fire” where offshore strain accumulation and release processes are currently poorly monitored. One example where the group hopes to deploy the new system is the shallow coastal waters of earthquake prone Central America.

The Egmont Key test location sits in just 23 metres depth.  While Florida is not prone to earthquakes, the waters off Egmont Key proved an excellent test location for the system. It experiences strong tidal currents that tested the buoy’s stability and orientation correction system. The next step in the testing is to deploy a similar system in deeper water of the Gulf of Mexico off Florida’s west coast.

Source: University of South Florida.

Vue de la balise haute technologie mise au point par l’Université de Floride (Source : USF)

Vue du site d’Egmont Key, sur la côte ouest de la Floride, où la balise a été testée (Source : Google maps)

L’éruption sous-marine la plus profonde jamais observée sur Terre // The deepest known undersea eruption en Earth

Une équipe de chercheurs issus de plusieurs universités américaine, canadienne et allemande a effectué une étude sur une récente éruption volcanique sur le bassin arrière-arc des Mariannes dans le Pacifique occidental, à environ 4480 mètres sous la surface de l’océan, ce qui en fait l’éruption la plus profonde jamais observée à ce jour. À titre de comparaison, cette profondeur sous la surface de l’océan est supérieure à la hauteur du Mont Rainier au-dessus du niveau de la mer.
L’éruption a été découverte par des chercheurs qui exploraient de nouveaux sites hydrothermaux dans un secteur où la plaque tectonique Pacifique glisse sous la plaque Philippine dans le processus bien connu de subduction qui donne naissance à la Fosse des Mariannes et l’arc volcanique actif composé de neuf îles et de plus de 60 volcans sous-marins. Le bassin arrière-arc des Mariannes est une zone d’extension du plancher océanique et de volcanisme actif dans la partie supérieure de la plaque derrière l’arc volcanique. Les résultats de l’étude ont été publiés dans un numéro spécial de Frontiers in Earth Science.
Grâce à des technologies de pointe et de nouvelles méthodes d’exploration, les scientifiques ont détecté au cours des 30 dernières années des preuves d’une quarantaine d’éruptions sous-marines. Avant 1990, aucune éruption n’avait été observée. L’éruption d’arrière-arc des Mariannes a été découverte pour la première fois en décembre 2015 par des caméras à bord d’un véhicule autonome appelé Sentry. Les photos ont révélé la présence d’une coulée de lave intacte, sombre et vitreuse, sur le fond de l’océan, sans couverture de sédiments. Les fluides hydrothermaux de couleur laiteuse qui s’en échappaient prouvaient que la coulée était encore chaude et donc très jeune.
Les données bathymétriques récemment recueillies indiquent d’importants changements de profondeur dans la zone entre les relevés de 2013 et 2015, signe qu’une éruption s’est produite. La nouvelle coulée de lave présente une longueur d’environ 7,2 kilomètres et une épaisseur variant entre 40 et 135 mètres.
Les scientifiques sont revenus sur le site en avril et en décembre 2016 et ont utilisé les véhicules télécommandés Deep Discoverer et SuBastian lors de plusieurs expéditions. Les nouvelles observations ont montré un système hydrothermal en déclin rapide sur les coulées de lave, signe que l’éruption a eu lieu seulement quelques mois avant sa découverte l’année précédente.
La dernière étude est importante. En effet, les volcans sous-marins peuvent aider à expliquer le fonctionnement des volcans terrestres et leur impact sur la chimie des océans, ce qui peut avoir une incidence importante sur les écosystèmes locaux.
Source: Oregon State University.

A team of researchers from U.S, Canadian and German universities has documented a recent volcanic eruption on the Mariana back-arc in the western Pacific Ocean, about 4480 metres below the ocean surface, making it the deepest known eruption on Earth. As a comparison, this is deeper below the ocean surface than Mount Rainier’s height above sea level.
The eruption was discovered by researchers searching for new hydrothermal vent sites where the Pacific tectonic plate subducts beneath the Philippine Sea plate, forming the Mariana trench and the active volcano arc, which is made up of nine islands and more than 60 seamounts. The Mariana back-arc is a zone of seafloor spreading and active volcanism in the upper plate behind the volcanic arc. Results of the research were published in a special issue of Frontiers in Earth Science.
Thanks to new technologies and new exploration methods, in the last 30 years scientists have detected evidence of about 40 undersea eruptions. Before 1990, there were zero. The Mariana back-arc eruption was first discovered in December 2015 by cameras aboard an autonomous underwater vehicle called Sentry. Photos revealed the presence of a pristine dark, glassy lava flow on the seafloor with no sediment cover. Venting of milky hydrothermal vent fluid indicated that the lava flow was still warm, and therefore very young.
Newly collected bathymetric data indicated major depth changes in the area between surveys in 2013 and 2015, consistent with an eruption. The new lava flows stretched over an area about 7.2 kilometres long and ranged in thickness between 40 and 135 metres.
The scientists returned to the site in April and December of 2016 and used remotely operated vehicles Deep Discoverer and SuBastian during several expeditions. The new observations showed a rapidly declining hydrothermal system on the lava flows, suggesting the eruption had taken place only months before its discovery the previous year.
The research is important for several reasons. Undersea volcanoes can help inform about how terrestrial volcanoes work and how they impact ocean chemistry, which can significantly affect local ecosystems.
Source: Oregon Sate University.

Vue du Deep Discoverer utilisé pendant la mission (Crédit photo : Oregon State University)