Aucun lien entre la Montagne Pelée (Martinique) et La Soufrière (Saint Vincent)

Quand on regarde une carte, on s’aperçoit que les Petites Antilles, avec la Martinique, la Guadeloupe, St-Vincen-et-les-Grenadines, forment un arc. Il est façonné par la tectonique des plaques dans la région. La plaque Américaine se rapproche de la plaque Caraïbe à raison d’environ 2 cm/an. A l’aplomb de l’arc volcanique des Petites Antilles, la plaque nord-américaine, dans un processus de subduction, s’enfonce sous la plaque Caraïbe. Cette enfoncement de la plaque lithosphérique dans les profondeurs génère des séismes et participe à l’activité volcanique. Dans les zones de subduction, la répartition des séismes en profondeur permet d’imager la géométrie de la plaque plongeante qui suit le plan de Wadati-Benioff, souvent raccourci en plan de Benioff. Sous l’arc des Antilles, ce plan présente un pendage d’environ 60°.
A côté d’autres zones de subduction, comme au Japon ou au Chili, les Petites Antilles ont une activité sismique relativement réduite. Les derniers séismes importants datent de 1839 pour la Martinique et 1843 pour la Guadeloupe. Les sismologues pensent que cela s’explique par le fait que la subduction est lente dans cette région.

En revanche, l’activité volcanique est plus soutenue. On dénombre une vingtaine de volcans actifs dans les Petites Antilles dont 9 dans la seule île de Dominique. Soufrière Hills à Montserrat a connu une éruption dévastatrice en 1997. Le volcan sous marin Kick’Em Jenny à Grenade est sûrement le plus actif de la région avec près de onze éruption durant les 50 dernières années. La Soufrière de Guadeloupe est le volcan qui a connu le plus de manifestations éruptives depuis le 17ème siècle. Je ne reviendrai pas sur l’éruption phréatique de 1976 et la polémique qui l’a accompagnée.

L’éruption la plus meurtrière a été celle de la Montagne Pelée à la Martinique. Elle a causé le mort de 29 000 personnes. Au cours de cette même année, la Soufrière de St Vincent a tué 1565 personnes.

Le 4 décembre 2020, suite à une intensification de l’activité sismique et des remontées de gaz au cours des mois précédents, l’Observatoire Volcanologique et Sismologique de la Martinique (OVSM) a demandé à la Préfecture le placement de la Montagne Pelée en vigilance Jaune (niveau 3 sur une échelle de 5). Malgré tout, L’OVSM a précisé qu’une éruption n’est pas à l’ordre du jour dans le court terme.

Le 29 décembre 2020, c’était autour de la Soufrière de St Vincent de passer en vigilance Orange suite à l’apparition d’un dôme de lave à l’intérieur du cratère

Suite à ces des deux hausses des niveaux d’alerte, de nombreuses personnes se sont demandé s’il n’existait pas en lien entre le regain d’activité de ces deux volcans des Petites Antilles.

Jean-Christophe Komorowski, directeur scientifique des observatoires volcanologiques et sismologiques de l’Institut physique du globe de Paris est très clair à ce sujet. Il explique sur le site web Orange qu’il n’existe aucune relation entre l’activité de la Montagne Pelée et celle de la Soufrière : « Il n’y a aucun lien entre les différents volcans de l’arc des Petites Antilles. Il n’y a pas de connexion entre les réservoirs de stockage du magma de La Soufrière et celui de la Montagne Pelée. On ne peut pas craindre le déclenchement d’une éruption à la Montagne Pelée suite à l’activité en cours à Saint-Vincent, ou inversement. »

L’arc des Petite Antilles (Source : Google Maps)

L’archipel des Petites Antilles dans le contexte de la tectonique des plaques (Source : Centre de Données Sismologique des Antilles)

Modèle de la structure profonde de la zone de subduction au niveau des Petites Antilles, à partir des données sismiques (Source : IFREMER)

Japon: Exploration des zones de subduction // Japan: Exploring subduction zones

Comme je l’ai écrit à plusieurs reprises, nous sommes capables d’explorer la surface de la planète Mars, mais nous ne savons que très peu de choses sur les profondeurs de nos propres océans, en particulier sur les zones de subduction où se déclenchent les séismes les plus puissants et les plus dévastateurs.

Il y a quelques jours, je regardais sur la chaîne de télévision française France 5 l’émission très intéressante «Science Grand format» qui était consacrée à deux «terres extrêmes»: le Japon et la Californie.

Le Japon doit régulièrement faire face à des événements extrêmes tels que des éruptions volcaniques, des séismes, des lahars, des tsunamis et des typhons. D’un point de vue géologique, le pays se trouve à l’intersection de 4 grandes plaques tectoniques: la plaque d’Okhotsk au nord, la plaque du Pacifique à l’est, la plaque Philippine au sud et la plaque Eurasienne à l’ouest. Les séismes sont le plus souvent provoqués par la subduction des plaques Pacifique et Philippine qui plongent sous les plaques d’Okhotsk et Eurasienne.

Un épisode du documentaire sur le Japon nous explique que le Chikyu, un navire de recherche spécialisé en forage océanique, a foré le plancher océanique dans l’espoir d’atteindre la zone de subduction. Cependant, la mission n’a pas réussi à atteindre son objectif ultime : forer jusqu’à 5 200 mètres sous le fond marin, là où la plaque Philippine plonge sous la plaque Eurasienne, en provoquant de puissants tremblements de terre. En mai 2019, les ingénieurs ont arrêté le processus de forage à cause d’effondrements dans le puits de forage, à une profondeur d’un peu plus de 3250 mètres sous le plancher océanique.

Cet échec marquait la fin de près de dix ans d’efforts pour s’enfoncer à l’intérieur de la Fosse de Nankai, au large de la côte sud-est du Japon. Dans cette région, le processus de subduction déclenche des séismes dévastateurs tous les 100 à 150 ans environ. Par exemple, deux événements d’une magnitude supérieure à M 8 ont été enregistrés en 1944 et 1946.

Atteindre les profondeurs de la zone de subduction n’est pas une tâche facile. La limite entre les plaques tectoniques est si profonde que le Chikyu est le seul navire de forage océanique capable de l’atteindre. Pour stabiliser son équipement de forage et pénétrer le plancher océanique, le navire dispose d’une technologie semblable à celle utilisée sur une plate-forme pétrolière.

En octobre 2018, le Chikyu a effectué sa quatrième mission sur un site de la Fosse de Nankai connu sous le nom de C0002, où il avait déjà effectué le forage le plus profond jamais réalisé. Les ingénieurs savaient que cette mission serait délicate, car le forage devait s’effectuer dans des roches fracturées et litées. L’équipe de forage a pu s’enfoncer jusqu’à 3262 mètres, battant ainsi son propre record de forage océanique à but scientifique. Mais les chercheurs n’ont pas pu descendre davantage à cause des effondrements dans le puits de forage. Grosse déception à bord du navire de recherche !

Après l’échec du forage C0002, le Chikyu a effectué des missions moins profondes. En particulier, les scientifiques ont exploré la géologie de la faille qui a déclenché le séisme dévastateur de Tohoku en 2011 qui s’est accompagné de la destruction de la centrale nucléaire de Fukushima. A côté de ces événements meurtriers, les scientifiques à bord du navire ont également étudié les séismes ‘lents’ que l’on enregistre le long de la Fosse de Nankai.

Source: Nature.

Espérons que le Japon – et d’autres pays – pourront mettre en place dans les prochaines années d’autres initiatives comme la mission dans la Fosse de Nankai. Elles nous permettront de mieux comprendre le comportement de notre planète.

————————————————-

As I put it several times, we are able to explore the surface of Mars, but we know very little about the depths of our own oceans, especially the subduction zones that trigger the most powerful and devastating earthquakes.

A few days ago, I was watching on the French TV channel France 5 the very interesting programme “Science Grand format” that was dedicated to two “extreme lands”: Japan and California.

Japan regularly has to face extreme events such as volcanic eruptions, earthquakes, lahars, tsunamis and typhoons. From a geological point of view, the country is located at the intersection of 4 major tectonic plates: the Okhotsk Plate to the north, the Pacific Plate to the east, the Philippine Plate to the south and the Eurasian Plate to the west. Earthquakes are usually caused by the subduction of the Pacific and Philippine plates, which dive beneath the Okhotsk and Eurasian plates.

An episode of the documentary about Japan informs us that the nation’s ocean-drilling research vessel, Chikyu, has drilled the ocean floor deeper than ever before in the hope to reach the subduction zone. However, the mission failed to achieve its ultimate goal of penetrating 5,200 metres beneath the sea floor, into the area where the Philippine Sea plate  plunges beneath the Eurasian plate, causing powerful earthquakes. In May 2019, engineers stopped the drilling process after the drill hole kept collapsing, just over 3,250 metres beneath the sea floor.

It was the end to an almost decade-long effort to drill deep into the Nankai Trough off Japan’s southeast coast. In this region, the plate subduction triggers devastating earthquakes roughly every 100 to 150 years. For instance, a pair of earthquakes with magnitudes above M 8 struck in 1944 and 1946.

Reaching the depths of the subduction zone is not an easy job. The plate boundary is so deep that Chikyu is the only scientific ocean-drilling vessel capable of reaching it. The ship uses a structure similar to the technology used on an oil rig, to stabilize its drilling equipment and penetrate the sea floor.

In October 2018, Chikyu made its fourth trip to a site on the Nankai Trough known as C0002, where it had already drilled the deepest-ever hole beneath the sea floor. Engineers knew that the next phase of drilling would be difficult, because the hole penetrates rocks that are fractured and folded. The drilling team was able to deepen the hole from just over 2,900 metres beneath the sea floor to 3,262 metres, breaking its own record for the deepest scientific ocean drilling. But the researchers could not go any farther because the hole kept collapsing at the bottom. There was a general disappointment aboard the research vessel.

After the C0002 hole failed, Chikyu moved on to drill in shallower holes nearby. In particular, scientists explored the geology of the shallow fault that triggered the devastating 2011 Tohoku earthquake that destroyed the Fukushima nuclear plant.. The ship also investigated the many small, slow-motion earthquakes that are recorded along the Nankai Trough, in addition to the large, devastating ones.

Source : Nature.

Let’s hope more initiatives like the Japanese mission in the Nankai Trough will be set up in the next years. They will help us understand better the behaviour of our planet.

Le Chikyu est un navire japonais de forage en haute mer. Il mesure 210 mètres de longueur, 38 mètres de large, 16,2 mètres de haut pour un tonnage de 57000 tonnes. La partie la plus originale du navire est son derrick de 121 mètres au dessus du niveau de la mer. Il a un équipage de 150 hommes, divisé en 50 scientifiques et 100 opérateurs. (Source : Wikipedia)

Au fond de la Fosse des Mariannes…

La Chine a diffusé en direct le 20 novembre 2020 des images de son nouveau submersible habité au fond de la Fosse des Mariannes dans le cadre d’une mission dans les eaux les plus profondes de la planète.

La Fosse des Mariannes est actuellement l’endroit le plus profond de la croûte terrestre. Elle se trouve dans la partie nord-ouest de l’Océan Pacifique, à l’est des Îles Mariannes et à proximité de l’île de Guam. Le point le plus bas connu de la fosse se situerait selon les relevés à 10 984 ± 25 m. Des organismes piézophiles vivent à cette profondeur, malgré des pressions atteignant l’équivalent de 1 100 atmosphères.

D’un point de vue géologique – le plus important à mes yeux – la Fosse des Mariannes se situe sur une zone de subduction où la plaque Pacifique s’enfonce sous la plaque Philippine.

Le submersible chinois qui répond au nom de « Fendouzhe » – le « lutteur » – est descendu à plus de 10.000 mètres dans la fosse avec trois chercheurs à son bord.

Très peu de personnes ont déjà visité la Fosse des Mariannes. Les premiers explorateurs ont atteint la fosse en 1960 lors d’une brève expédition. Il a ensuite fallu attendre 2012 et la descente effectuée par le cinéaste américain James Cameron, réalisateur de « Titanic », qui a parlé d’un environnement « désolé » et « extraterrestre ».

Les vidéos tournées cette semaine par une caméra sous-marine montrent le submersible chinois vert et blanc se déplaçant dans les eaux obscures, entouré de nuages de sédiments alors qu’il se pose lentement sur le fond marin.

Le but des missions du Fendouzhe est d’observer « les nombreuses espèces et la répartition des êtres vivants dans les fonds marins » et les chercheurs chinois vont collecter des spécimens pour leurs recherches. Des études antérieures ont permis de trouver des communautés florissantes d’organismes unicellulaires survivant sur des déchets organiques qui s’étaient installés sur le fond de l’océan, mais très peu de gros animaux.

La mission actuelle du Fendouzhe permettra également d’effectuer des recherches sur les « matériaux des eaux profondes », alors que la Chine progresse dans l’exploitation minière à grande profondeur. Pékin a mis en place en novembre un centre de formation et de recherche qui initiera les professionnels à la technologie des grands fonds marins et mènera des recherches sur l’exploitation de minéraux précieux au fond de l’océan.

Sources : Médias internationaux.

Comme je l’ai écrit à plusieurs reprises, l’Homme n’a jamais été vraiment attiré par les grandes profondeurs océaniques, endroits obscurs où il n’y a guère de vie. Il est davantage fasciné par les autres planètes du système solaire comme le montre l’attrait exercé par les images envoyées par les robots martiens où les sondes qui voyagent à proximité d’autres planètes.

Pourtant, les abysses de nos océans présentent un intérêt certain. Les Chinois espèrent y découvrir – et un jour y extraire – des minéraux précieux. A côté de cela, il ne faudrait pas oublier que les fosses océaniques comme celle des Mariannes sont des zones de subduction où se déclenchent les séismes les plus puissants et les plus destructeurs sur Terre. Des missions à l’aide de submersibles comme le Fendouzhe permettraient d’y installer des capteurs et autres instruments afin d’étudier le comportement de la croûte terrestre à grande profondeur. Mais bien sûr, les images rapportées par de telles missions ne nous feraient pas rêver….

Source : Wikipedia

Pour une meilleure compréhension du processus de subduction // For a better understanding of the subduction process

Comme je l’ai écrit à maintes reprises, nous sommes capables d’envoyer des sondes et des véhicules télécommandés sur la planète Mars afin d’explorer sa surface, mais nous savons très peu de choses sur les profondeurs de nos propres océans, et plus particulièrement sur les fosses sous-marines, les zones de subduction où se déclenchent les séismes les plus puissants et les plus destructeurs. C’est dans ces zones de subduction que se produit le recyclage de la couche externe de la Terre vers son intérieur
J’ai été heureux d’apprendre qu’une équipe internationale de chercheurs venait de publier une étude (voir référence ci-dessous) fournissant de nouveaux éléments sur le processus et les origines de la subduction sur Terre. Ce travail de recherche a été conduit par le Center for Earth Evolution and Dynamics de l’Université d’Olso, avec une équipe de 14 chercheurs de différentes provenances à travers le monde.
Ces scientifiques ont pu compiler 100 millions d’années de preuves existantes sur l’initiation des zones de subduction (Subduction Zone Initiation – SZI). L’une des conclusions les plus importantes de leurs recherches est que la subduction engendre la subduction.
Les résultats de l’étude ont conduit à l’élaboration d’une nouvelle base de données sur la SZI ; cette base de données est accessible à l’ensemble de la communauté scientifique. Elle est ouverte à une actualisation et une meilleure compréhension de la SZI. Elle deviendra une plate-forme permettant une bonne communication dans la communauté des Sciences de la Terre.
La base de données est transdisciplinaire et présente une analyse détaillée de plus d’une douzaine d’événements SZI analysés au cours des cent derniers millions d’années. Les premiers résultats révèlent que la SZI horizontale est majoritaire au cours des 100 derniers Ma, et que la plupart des SZI sont proximaux aux zones de subduction préexistantes. En examinant plusieurs événements, les scientifiques ont découvert que les événements de SZI se regroupaient autour de deux principales périodes – il y a six à 16 millions d’années et il y a 40 à 55 millions d’années.
À l’avenir, des chercheurs de l’Université Nationale Australienne (ANU) déploieront des sismomètres au fond de l’océan autour de l’île Macquarie, au sud-ouest de l’Océan Pacifique, environ à mi-chemin entre la Nouvelle-Zélande et l’Antarctique. Le site a été choisi en raison de son potentiel de SZI pour les prochaines années.
La nouvelle base de données SZI se trouve à cette adresse: https://www.szidatabase.org/

L’étude est intitulée « A transdisciplinary and community-driven database to unravel subduction zone initiation » [« Une base de données transdisciplinaire et communautaire pour expliquer l’initiation de la zone de subduction »] – Crameri, F. et al. – Nature  
Source: The Watchers.

———————————————–

As I put it many times, we are able to send rovers on Mars to explore its surface, but we know very little about the depths of our own oceans, and more particularly the abysses, the subduction zones where major destructive earthquakes are triggered. These zones are pivotal for the recycling of Earth’s outer layer into its interior

I was pleased to learn that an international team of researchers published a new study providing new clues about how and where subduction begins on Earth. It was led by the Centre for Earth Evolution and Dynamics at the University of Olso, with a team of 14 researchers around the world.

The researchers have been able to compile 100 million years of existing evidence for Subduction Zone Initiation (SZI). One of the biggest things they observed was that subduction breeds subduction.

The findings led to a new database on Subduction Zone Initiation, which is open for community input. This database is expandable to facilitate access to the most current understanding of SZI as research progresses, providing a community platform that establishes a common language to sharpen discussion across the Earth Science community.

The database is transdisciplinary and features detailed analysis of more than a dozen documented SZI events from the last hundred million years. The initial findings reveal that horizontally forced subduction zone initiation is dominant over the last 100 Ma, and that most initiation events are proximal to pre-existing subduction zones. By looking at multiple events, the scientists found SZI clustering around two time periods– six to 16 million years ago and 40 to 55 million years ago.

Going forward, researchers from the Australian National University (ANU) will also be deploying ocean-bottom seismometers around Macquarie Island, a location chosen due to its potential for future Subduction Zone Initiation.

The new SZI database can be found at this address: https://www.szidatabase.org/

The research is entitled « A transdisciplinary and community-driven database to unravel subduction zone initiation » – Crameri, F. et al. – Nature Communications.

Source: The Watchers.

Source : Wikipedia