Et si le Gulf Stream s’arrêtait ? // What if the Gulf Sream stopped ?

Une nouvelle étude publiée dans la revue Nature Geoscience envoie un avertissement et explique que le Gulf Stream, courant de l’Océan Atlantique qui joue un rôle essentiel dans la redistribution de la chaleur dans le système climatique de notre planète, se déplace maintenant plus lentement qu’auparavant.

Les scientifiques pensent que ce ralentissement est en partie lié au réchauffement climatique car la fonte de la glace dans l’Arctique modifie l’équilibre des eaux dans le nord du globe. Son impact peut être observé dans les tempêtes, les vagues de chaleur et l’élévation du niveau de la mer.

Le Gulf Stream fait partie intégrante de la circulation océanique méridienne dans l’Atlantique – Atlantic Meridional Overturning Circulation, ou AMOC. L’auteur de l’article paru dans Yahoo News nous rappelle que le phénomène a été porté à l’attention du public par le film « The Day After Tomorrow » – « Le Jour d’Après » – sorti en 2004 dans lequel le courant océanique s’arrête brusquement, provoquant d’effroyables tempêtes dans le monde, une super tornade à Los Angeles et un mur d’eau qui vient s’écraser sur New York. Il faut toutefois ajouter que si le Gulf Stream devait s’arrêter, le résultat ne serait pas aussi soudain ; les impacts s’étaleraient probablement sur des années, voire des décennies, mais seraient certainement dévastateurs pour notre planète.

Des recherches récentes ont montré que la circulation thermohaline a ralenti d’au moins 15% depuis 1950. Ce ralentissement a probablement déjà un impact sur les systèmes terrestres et on estime que d’ici la fin du siècle la circulation pourrait ralentir de 34% à 45% si la hausse des températures persiste à l’échelle de la planète. Les scientifiques craignent qu’un tel ralentissement fasse atteindre un point de basculement qui rendra la situation irréversible.

La circulation thermohaline dans l’Atlantique est facile à expliquer. Comme l’équateur reçoit beaucoup plus de lumière directe du soleil que les pôles qui sont plus froids, la chaleur s’accumule sous les tropiques. Dans un effort d’équilibre, la Terre envoie cette chaleur vers le nord depuis les tropiques et envoie du froid vers le sud depuis les pôles. C’est comme cela que le vent souffle et que les tempêtes se forment. La plus grande partie de cette chaleur est redistribuée par l’atmosphère, mais le reste est déplacé plus lentement par les océans par le biais de la circulation thermohaline, cet ensemble de courants qui relient les océans du monde. (voir carte ci-dessous)

Grâce à la recherche scientifique, on sait que l’AMOC est le moteur qui pilote cette circulation globale. Il déplace l’eau avec un débit 100 fois supérieur à celui de l’Amazone. Dans l’AMOC, une bande étroite d’eau chaude et salée dans les tropiques près de la Floride – le Gulf Stream – est transportée vers le nord, près de la surface, dans l’Atlantique Nord. Lorsqu’il atteint la région du Groenland, le Gulf Stream se refroidit suffisamment pour devenir plus dense et plus lourd que les eaux environnantes, de sorte qu’il s’enfonce dans les profondeurs océaniques. Cette eau froide est ensuite transportée vers le sud par des courants profonds.

La fonte de la glace et l’afflux d’eau douce qui en résulte dans l’Atlantique Nord constituent un facteur important qui contrôle la vitesse de l’AMOC. En effet, l’eau douce est moins salée, donc moins dense, que l’eau de mer, et elle ne coule pas aussi facilement. S‘il y a trop d’eau douce, l’AMOC perd de son énergie. Selon les scientifiques, c’est probablement ce qui se passe à l’heure actuelle. La cause se trouve dans l’Arctique où la glace fond plus vite à cause du réchauffement climatique d’origine anthropique..

Afin d’évaluer le ralentissement spectaculaire de l’AMOC, les chercheurs ont compilé des données fournies par la nature comme les sédiments océaniques et les carottes de glace remontant à plus de 1000 ans. Ils ont pu ainsi reconstruire l’historique de l’AMOC.

La mutualisation de trois types différents de données a été mise en œuvre pour obtenir des informations sur l’histoire des courants océaniques: 1) les modèles de température dans l’Océan Atlantique, 2) les propriétés de la masse de l’eau sous la surface de l’océan et 3) la taille des grains des sédiments des grands fonds datant de 1600 ans.

Bien que chaque élément de ces données ne soit pas une représentation parfaite de l’évolution de l’AMOC, leur mutualisation a donné une bonne image de la circulation océanique méridienne dans l’Atlantique.

Les résultats de l’étude montrent que l’AMOC a été relativement stable jusqu’à la fin du 19ème siècle. Le premier changement important est intervenu au milieu des années 1800, après le Petit Age Glaciaire entre les années 1400 et 1800.

A la fin du Petit Age Glaciaire vers 1850, les courants océaniques ont commencé à s’affaiblir, avec un deuxième déclin plus marqué après le milieu du 20ème siècle, probablement en raison du réchauffement climatique provoqué par la combustion de combustibles fossiles. Neuf des 11 ensembles de données utilisés dans l’étude ont montré que l’affaiblissement de l’AMOC au 20ème siècle est statistiquement significatif, ce qui prouve que le ralentissement est sans précédent à l’ère moderne.

L’affaiblissement de l’AMOC se répercute déjà sur le système climatique des deux côtés de l’Atlantique. Du côté américain, on observe une augmentation du niveau de la mer dans des lieux comme New York et Boston. En Europe, les effets se font sentir sur les conditions météorologiques avec modification de la trajectoire des tempêtes venant de l’Atlantique, ainsi que les vagues de chaleur.

Selon la dernière étude, ces impacts continueront probablement de s’aggraver avec le réchauffement à venir de la planète, la poursuite du ralentissement de l’AMOC, avec des événements météorologiques plus extrêmes comme un changement de trajectoire des tempêtes hivernales au large de l’Atlantique et des tempêtes potentiellement plus intenses. .

Les auteurs de l’étude pensent que si nous restons en dessous de 2 degrés Celsius de réchauffement climatique, il semble peu probable que l’AMOC s’arrête définitivement. En revanche, si nous atteignons 3 ou 4 degrés de réchauffement, les chances d’arrêt augmenteront. Si l’AMOC s’arrête, il est probable que l’hémisphère nord se refroidira en raison d’une diminution significative de l’arrivée de chaleur tropicale poussée vers le nord.

Toutefois, en l’état actuel des choses, la Science ne sait pas vraiment ce qui se passera si le Gulf Stream cesse de fonctionner.

Source : Yahoo News.

———————————————-

 A new study published in the journal Nature Geoscience is sending a warning and explains that the Gulf Stream, an influential current system in the Atlantic Ocean, which plays a vital role in redistributing heat throughout our planet’s climate system, is now moving more slowly than before.

Scientists believe that part of this slowing is directly related to global warming, as the melting of the ice at the poles and on the glaciers alters the balance in northern waters. Its impact may be seen in storms, heat waves and sea-level rise.

The Gulf Stream is an integral part of the Atlantic Meridional Overturning Circulation, or AMOC. The author of the article released in Yahoo News reminds us that the phenomenon was made famous in the 2004 film « The Day After Tomorrow, » in which the ocean current abruptly stops, causing immense killer storms around the globe, a super tornado in Los Angeles and a wall of water smashing into New York City. However, if the Gulf Stream were to eventually stop moving, the result would not be sudden, but over years and decades the impacts would certainly be devastating for our planet.

Recent research has shown that the circulation has slowed down by at least 15% since 1950. This slowdown is undoubtedly already having an impact on Earth systems, and by the end of the century it is estimated the circulation may slow by 34% to 45% if we continue to heat the planet. Scientists fear that kind of slowdown would put us dangerously close to tipping points.

Because the equator receives a lot more direct sunlight than the colder poles, heat builds up in the tropics. In an effort to reach balance, the Earth sends this heat northward from the tropics and sends cold south from the poles. This is what causes the wind to blow and storms to form.

The largest part of that heat is redistributed by the atmosphere. But the rest is more slowly moved by the oceans in what is called the Global Ocean Conveyor Belt, a worldwide system of currents connecting the world’s oceans. (see map below)

Through years of scientific research, it has become clear that the AMOC is the engine that drives its operation. It moves water at 100 times the flow of the Amazon river.

In the AMOC, a narrow band of warm, salty water in the tropics near Florida – the Gulf Stream – is carried northward near the surface into the North Atlantic. When it reaches the Greenland region, it cools sufficiently enough to become more dense and heavier than the surrounding waters, at which point it sinks. That cold water is then carried southward in deep water currents.

One important factor that controls the speed of the AMOC is the melting of glacial ice and the resulting influx of fresh water into the North Atlantic. Indeed, fresh water is less salty, and therefore less dense, than sea water, and it does not sink as readily. Too much fresh water means the AMOC loses the sinking part of its engine and thus loses its momentum.

This is what scientists believe is happening now as ice in the Arctic is melting at an accelerating pace due to human-caused climate change.

In order to ascertain just how unprecedented the recent slowing of the AMOC is, the research team compiled proxy data taken mainly from nature’s archives like ocean sediments and ice cores, reaching back over 1,000 years. This helped them reconstruct the flow history of the AMOC.

The team used a combination of three different types of data to obtain information about the history of the ocean currents: temperature patterns in the Atlantic Ocean, subsurface water mass properties, and deep-sea sediment grain sizes, dating back 1,600 years.

While each individual piece of proxy data is not a perfect representation of the AMOC evolution, the combination of them revealed a robust picture of the overturning circulation.

The study results suggest that the AMOC has been relatively stable until the late 19th century. The first significant change happened in the mid 1800s, after the Little Ice Age which spanned from the 1400s to the 1800s.

With the end of the Little Ice Age in about 1850, the ocean currents began to decline, with a second, more drastic decline since the mid-20th century, likely due to global warming from the burning of fossil fuels. Nine of the 11 data-sets used in the study showed that the 20th century AMOC weakening is statistically significant, which provides evidence that the slowdown is unprecedented in the modern era.

The weakening of the AMOC is already reverberating in the climate system on both sides of the Atlantic. On the U.S. side, one observes an enhanced sea level rise in places like New York and Boston. In Europe, evidence shows there are impacts to weather patterns, such as the track of storms coming off the Atlantic as well as heat waves.

According to the latest study, these impacts will likely continue to get worse as the Earth continues to warm and the AMOC slows down even further, with more extreme weather events like a change of the winter storm track coming off the Atlantic and potentially more intense storms.

The authors of the study think that if we stay below 2 degrees Celsius of global warming it seems unlikely that the AMOC will stop, but if we hit 3 or 4 degrees of warming the chances for the stopping rise. If the AMOC halts, it is likely the Northern Hemisphere ill cool due to a significant decrease in tropical heat being pushed northward. But science does not yet know exactly what would happen if the Gulf Stream stopped moving..

Source: Yahoo News.

Source : NOAA

Circulation océanique et climat (1ère partie) // Ocean circulation and climate (Part 1)

Aujourd’hui avec le réchauffement climatique, la crainte n’est plus que le ciel nous tombe sur la tête, mais que la circulation des courants océaniques se modifie, avec de sévères conséquences sur le climat de notre planète. Au cours de mes conférences, j’entends souvent des questions sur cette éventualité.

Ce ne serait pas la première fois que la circulation océanique subirait des modifications. Une nouvelle étude nous donne des précisions intéressantes quand au timing de l’évolution passée de la « circulation océanique méridienne de retournement atlantique », autrement connue sous le nom d’AMOC (Atlantic meridional overturning circulation). Dans l’Océan Atlantique, ce tapis roulant géant transporte les eaux chaudes des tropiques vers l’Atlantique Nord, où elles refroidissent et coulent puis retournent vers le sud dans les profondeurs de l’océan. L’AMOC est ainsi un acteur important du climat mondial, régulant les régimes climatiques dans l’Arctique, en Europe et dans le monde.

A plusieurs reprises, depuis la fin de la dernière glaciation, il y a 20 000 ans, l’AMOC s’est déjà effondré de façon brutale, ramenant le climat à des conditions glaciaires en Europe.

Des indices d’un ralentissement du système sont de plus en plus nombreux et certains scientifiques craignent qu’il puisse avoir des effets majeurs, tels que la baisse des températures en Europe et le réchauffement des eaux au large de la côte est des Etats-Unis, pouvant potentiellement nuire à la pêche et exacerber les ouragans.

Selon les prévisions, le réchauffement de la planète devrait affaiblir l’AMOC mais l’ampleur du changement reste incertaine. La plupart des modèles climatiques prévoient un ralentissement modéré mais pas un arrêt complet de l’AMOC.

Une nouvelle étude publiée dans Nature Communications donne des indications sur la rapidité avec laquelle ces changements ont pu intervenir dans le passé. Une équipe scientifique de l’Observatoire de la Terre Lamont-Doherty de Columbia s’est concentrée sur une zone où l’eau coule de la surface vers le fond de l’Atlantique Nord. D’après les chercheurs, l’AMOC a commencé à s’affaiblir environ 400 ans avant la vague de froid majeure survenue il y a 13 000 ans. Puis l’AMOC a commencé à se renforcer environ 400 ans avant le réchauffement brutal qui s’est produit il y a 11 000 ans. Pour déterminer si les changements passés du transport océanique se produisaient avant ou après les changements brusques de climat qui ont ponctué la dernière déglaciation dans l’hémisphère nord, l’équipe scientifique a rassemblé les données tirées de sédiments au fond de la mer de Norvège, de sédiments lacustres du sud de la Scandinavie et de carottes de glace du Groenland. Les anciennes couches du lac contiennent des plantes en décomposition qui extraient le carbone 14 directement de l’atmosphère, ce qui permet de déterminer l’âge de chaque couche de sédiment du lac. Les auteurs de l’étude ont ensuite fait correspondre les couches de sédiments lacustres aux couches de sédiments marins. Cela a permis de révéler la rapidité avec laquelle l’eau coulait dans cette zone, et donc le processus appelé « formation d’eau profonde » qui est essentiel pour maintenir la circulation de l’AMOC. Pour parachever l’étude, il a fallu analyser les carottes de glace du Groenland et étudier les changements de température et de climat au cours de la même période. C’est ainsi que les chercheurs ont pu mettre en parallèle les changements de la circulation océanique et les changements climatiques.

La comparaison des données des échantillons a révélé que l’AMOC s’est affaibli dans la période qui a précédé la dernière vague de froid majeure de la planète il y a environ 13 000 ans. La circulation océanique a commencé à ralentir environ 400 ans avant la vague de froid, mais une fois que le climat a commencé à changer, les températures au Groenland ont rapidement chuté de 6 degrés environ.

Un schéma similaire est apparu vers la fin de cette vague de froid. Le courant a commencé à se renforcer environ 400 ans avant que l’atmosphère ne commence à se réchauffer de façon spectaculaire, sortant de l’ère glaciaire. Une fois que la déglaciation a commencé, le Groenland s’est réchauffé rapidement : sa température moyenne a augmenté d’environ 8 degrés en l’espace de quelques décennies, ce qui a provoqué la fonte des glaciers et la fonte des glaces de mer dans l’Atlantique Nord.

Source : global-climat.

———————————————

Today with global warming, the fear is no longer that the sky may fall on our heads, but that the circulation of ocean currents might change, with severe consequences on the climate of our planet. During my conferences, I often hear questions about this possibility.
This would not be the first time that ocean circulation would undergo modifications. A new study gives us interesting insights as to the timing of the past evolution of AMOC (Atlantic meridional overturning circulation). In the Atlantic Ocean, this giant conveyor transports the warm waters of the tropics to the North Atlantic, where they cool and sink and then return south into the depths of the ocean. AMOC is thus an important player in the global climate, regulating weather patterns in the Arctic, Europe and the world.
On several occasions, since the end of the last glaciation 20,000 years ago, AMOC has already collapsed abruptly, bringing the climate back to glacial conditions in Europe.
There is growing evidence of a slowing down of the system and some scientists fear that it may have major effects, such as lower temperatures in Europe and warmer waters off the east coast of the United States, potentially harmful to fishing and exacerbating hurricanes.
Global warming is predicted to weaken AMOC, but the extent of change remains uncertain. Most climate models predict a moderate slowdown but not a complete shutdown of AMOC.
A new study published in Nature Communications provides insight into how quickly these changes may have occurred in the past. A scientific team from the Lamont-Doherty Earth Observatory in Columbia has focused on an area where water is flowing from the surface to the bottom of the North Atlantic. According to the researchers, AMOC began to weaken about 400 years before the major cold wave of 13,000 years ago. Then AMOC began to strengthen about 400 years before the brutal warming that occurred 11,000 years ago. To determine whether past changes in ocean transport occurred before or after the sudden changes in climate that punctuated the last deglaciation in the northern hemisphere, the scientific team collected sediment data from the bottom of the Norwegian Sea, lake sediments from southern Scandinavia and ice cores from Greenland. The former layers of the lake contain decaying plants that extract Carbon 14 directly from the atmosphere, allowing the age of each lake sediment layer to be determined. The authors of the study then matched lake sediment layers to marine sediment layers. This revealed the speed with which water was flowing into this area, and thus the process called « deep water formation » which is essential to maintain the circulation of AMOC. To complete the study, it was necessary to analyze the ice cores of Greenland and study the changes in temperature and climate during the same period. As a result, researchers have been able to compare changes in ocean circulation with climate change.
The comparison of the sample data revealed that AMOC weakened in the period before the last major cold wave of the planet about 13,000 years ago. Ocean circulation began to slow down about 400 years before the cold wave, but once the climate began to change, temperatures in Greenland quickly dropped by about 6 degrees.
A similar pattern appeared towards the end of this cold snap. The current began to strengthen about 400 years before the atmosphere began to warm up dramatically, coming out of the ice age. Once the deglaciation began, Greenland warmed rapidly: its average temperature increased by about 8 degrees within a few decades, which caused the melting of glaciers and the melting of sea ice in the North Atlantic.
Source: global-climat.

Schéma montrant la circulation thermohaline [Source : GIEC]

Réchauffement climatique, fonte des calottes glaciaires et effets sur les courants océaniques // Global warming, melting ice caps and effects on ocean currents

Avec la fonte des calottes glaciaires arctique et antarctique, on sait d’ores et déjà que des milliards de tonnes d’eau douce vont se déverser dans l’océan. On sait aussi que ce phénomène va avoir un double effet dévastateur. D’une part, on va assister à une rapide hausse du niveau des océans. D’autre part, cette arrivée d’eau douce et très froide risque fort d’entraîner un dérèglement des grands courants océaniques, donc du climat du globe, avec des effets catastrophiques faciles à imaginer.

Une étude internationale qui vient d’être publiée début février 2019 dans la revue Nature prévient que la fonte des calottes glaciaires du Groenland et de l’Antarctique, en plus d’augmenter le niveau des océans, va aussi multiplier les événements météo extrêmes et déstabiliser le climat de certaines régions dans les prochaines décennies. On peut lire que les milliards de tonnes d’eau issues de la fonte des glaces, en particulier au Groenland, vont affaiblir les courants océaniques qui aujourd’hui transportent l’eau froide vers le sud en plongeant vers le fond de l’Atlantique, tout en repoussant les eaux tropicales vers le nord plus près de la surface. Ce phénomène est connu sous l’appellation anglaise Atlantic Meridional Overturning Circulation (AMOC) – circulation méridienne de retournement de l’Atlantique, ou circulation thermohaline. C’est une espèce de grand tapis roulant océanique qui joue un rôle crucial dans le système climatique et aide à maintenir une certaine chaleur sur l’hémisphère nord.

Selon les modèles établis par des chercheurs néo-zélandais dans le cadre de l’étude, la fonte des banquises va provoquer des perturbations importantes dans les courants océaniques et changer les niveaux de réchauffement à travers le globe.

Jusqu’à présent, de nombreuses études sur les calottes glaciaires se sont concentrées sur la vitesse de leur fonte sous l’effet du réchauffement, et sur leur point de basculement (« tipping point ») autrement dit le niveau de hausse de température à partir duquel leur disparition sera inévitable, même si la fonte totale pourrait prendre des siècles.

Les changements à grande échelle observés par les scientifiques dans leurs simulations révèlent que le climat sera plus chaotique dans les prochaines années, avec des événements météo extrêmes plus nombreux, des canicules plus fréquentes et plus intenses.

Selon des chercheurs californiens, d’ici le milieu du 21ème siècle, l’eau de fonte de la calotte du Groenland perturbera sensiblement l’AMOC, qui montre déjà des signes de ralentissement. L’échéance serait beaucoup plus courte que prévu. Les conclusions des chercheurs s’appuient sur des simulations détaillées et des observations satellitaires des changements des calottes depuis 2010. Parmi les conséquences probables de l’affaiblissement de l’AMOC, la température de l’air sera plus élevée dans le haut Arctique, l’est du Canada et l’Amérique centrale, et au contraire plus basse sur l’Europe de l’Ouest.

Source : Presse scientifique.

——————————————————–

With the melting of the Arctic and Antarctic ice sheets, we know that billions of tons of fresh water will flow into the ocean. We also know that this phenomenon will have a double devastating effect. On the one hand, we will witness a rapid rise in the level of the oceans. On the other hand, this arrival of fresh and very cold water is likely to cause a disruption of major ocean currents, and therefore of the global climate, with disastrous effects easy to imagine.
An international study just published early February 2019 in the journal Nature warns that the melting of the icecaps of Greenland and Antarctica, in addition to increasing the level of the oceans, will also multiply extreme weather events and destabilize the climate of certain regions in the coming decades. One can read that the billions of tons of water from melting ice, especially in Greenland, will weaken the ocean currents that today carry cold water to the south by diving towards the bottom of the Atlantic, while pushing tropical waters further north closer to the surface. This phenomenon is known as the Atlantic Meridional Overturning Circulation (AMOC). It is a sort of large oceanic treadmill that plays a crucial role in the climate system and helps maintain some warmth in the northern hemisphere.
According to models developed by New Zealand researchers who took part in the study, melting sea ice will cause major disturbances in ocean currents and change warming levels across the globe.
So far, many studies on ice caps have focused on the speed of their melting under the effect of warming, and on their tipping point, in other words the level of temperature rise from which their disappearance will be inevitable, even if total melting could take centuries.
The large-scale changes observed by scientists in their simulations reveal that the climate will be more chaotic in the coming years, with more extreme weather events, more frequent and more intense heat waves.
According to California researchers, by the middle of the 21st century, meltwater from the Greenland ice cap will significantly disrupt AMOC, which is already showing signs of slowing down. The deadline is thought to be much shorter than expected. The researchers’ conclusions are based on detailed simulations and satellite observations of ice sheet changes since 2010. Among the likely consequences of the weakening of AMOC, the air temperature will be higher in the high Arctic. East of Canada and Central America, and on the contrary lower in Western Europe.
Source: Scientific Press.

Schémas montrant la circulation thermohaline [Source : GIEC]

L’Océan Arctique, la poubelle de la planète // The Arctic Ocean, the garbage dump of the planet

Une étude dont les résultats ont été publiés en avril 2017 dans la revue Science Advances démontre qu’une grande partie du plastique déversé par notre société dans les océans de la planète termine sa course dans les eaux de l’Océan Arctique sous l’influence du puissant système de courants qui l’entraînent dans les mers à l’est du Groenland et au nord de la Scandinavie. L’étude a été réalisée par des chercheurs d’universités de huit pays: Danemark, France, Japon, Pays-Bas, Arabie saoudite, Espagne, Royaume-Uni et États-Unis.
En 2013, dans le cadre d’une circumnavigation de sept mois dans l’Océan Arctique, les scientifiques ont observé un grand nombre de petits morceaux de plastique dans les mers du Groenland et de Barents, là même où la branche terminale du Gulf Stream achemine les eaux de l’Atlantique vers le nord. Les chercheurs affirment que ce n’est que le début de la migration du plastique vers les eaux de l’Arctique car il n’y a qu’une soixantaine d’années que nous utilisons le plastique industriellement ; son utilisation et sa production n’ont fait qu’augmenter depuis. Les chercheurs estiment qu’environ 300 milliards de petits morceaux de plastique sont en suspension dans les eaux de l’Arctique en ce moment, et ils sont probablement en dessous de la vérité. Ils pensent qu’il y a encore davantage de plastique sur les fonds marins.
Plusieurs facteurs confirment l’idée que le plastique est entré dans les eaux de l’Arctique par l’intermédiaire des courants océaniques plutôt que par la pollution locale. Tout d’abord, l’Arctique a une très faible population qui ne contribue guère à la présence d’autant de déchets. Comme il faut beaucoup de temps au plastique pour parcourir le monde grâce aux courants océaniques, l’étude conclut que les déchets actuels proviennent en grande partie d’Amérique du Nord et d’Europe où ils ont été déversés dans l’Océan Atlantique. En outre, l’aspect altéré du plastique et la petite taille des morceaux laissent supposer qu’il a parcouru les mers pendant des décennies en se décomposant en cours de route. Les auteurs de l’étude n’ont pas trouvé beaucoup de plastique dans l’Océan Arctique au-delà des mers du Groenland et de Barents, ce qui confirme que les courants sont responsables de sa présence. Le plastique s’est accumulé là où les eaux atlantiques qui se dirigent vers le nord plongent dans les profondeurs de l’Arctique. Les mers du Groenland et de Barents contiennent 95 pour cent du plastique de l’Arctique. La mer de Barents est une zone de pêche importante pour le cabillaud, le haddock, le hareng et d’autres espèces. Une question cruciale sera de savoir dans quelles proportions le plastique affecte ces poissons.
Le système de circulation des eaux de l’Atlantique – responsable de ce transport du plastique – fait partie d’un système océanique « thermohalique » beaucoup plus vaste, basé sur la température et la teneur en sel des océans et dans lequel les eaux froides et salées plongent dans l’Atlantique Nord avant de revenir vers le sud à des profondeurs importantes.
Dans la mesure où notre société déverse actuellement 8 millions de tonnes de plastique dans l’océan chaque année, il est extrêmement important de comprendre comment les courants répartissent ce plastique à l’échelle de la planète. Dans des études scientifiques précédentes, les chercheurs ont constaté que le plastique se déplace lentement dans les océans du monde mais tend à s’attarder dans cinq courants océaniques circulaires dans les océans subtropicaux des hémisphères nord et sud. Un de ces courants se trouve dans l’Atlantique, et il se dirige vers l’Arctique !
Alors que l’Arctique devient de plus en plus accessible en raison de la fonte de la glace liée au changement climatique, on craint que davantage de plastique arrive dans cette région du globe en raison de l’ouverture de nouveaux couloirs de circulation pour les navires. On risque fort de trouver de plus en plus de plastique dans les courants de surface.
Source: The Washington Post.

 ————————————-

A study whose results were published in April 2017 in the journal Science Advances demonstrates that drifts of floating plastic that humans have dumped into the world’s oceans are flowing into the waters of the Arctic as a result of a powerful system of currents that deposits waste in the icy seas east of Greenland and north of Scandinavia. The study was performed by researchers from universities in eight nations: Denmark, France, Japan, the Netherlands, Saudi Arabia, Spain, the United Kingdom and the United States.

In 2013, as part of a seven-month circumnavigation of the Arctic Ocean, scientists documented a profusion of tiny pieces of plastic in the Greenland and Barents seas, where the final limb of the Gulf Stream system delivers Atlantic waters northward. The researchers say this is just the beginning of the plastic migration to Arctic water as it has only been about 60 years since we started using plastic industrially, and the usage and the production has been increasing ever since. So, most of the plastic that we have disposed in the ocean is still now in transit to the Arctic. The researchers estimate that about 300 billion pieces of tiny plastic are suspended in the Arctic waters right now, although the amount could be higher. And they think there is even more plastic on the seafloor.

Several factors support the idea that the plastic entered these waters via ocean currents rather than local pollution. First, the Arctic has a very small population that is unlikely to directly contribute so much waste. Because it takes such a long time for plastic to travel across the world in ocean currents, the study concludes that the current waste is largely the work of North Americans and Europeans, who dumped it in the Atlantic. Also, the aged and weathered state of the plastic, and the tiny size of the pieces found, suggested that it had travelled the seas for decades, breaking down along the way. The study didn’t find much plastic in the rest of the Arctic Ocean beyond the Greenland and Barents seas, also suggesting that currents were to blame. The plastic had accumulated where the northward-flowing Atlantic waters plunge into the Arctic depths. The Greenland and Barents seas contain 95 percent of the Arctic’s plastic. The Barents Sea happens to be a major fishery for cod, haddock, herring and other species. A key question will be how the plastic is affecting these animals.

The ocean circulation system in the Atlantic responsible for this plastic transport is part of a far larger « thermohaline » ocean system driven by the temperature and salt content of oceans. It is also often called an « overturning » circulation because cold, salty waters sink in the North Atlantic and travel back southward at deep ocean depths.

As humans now put 8 million tons of plastic in the ocean annually, learning how such currents affect the plastic’s global distribution is a key scientific focus. Researchers previously found that plastic slowly travels the world’s oceans but tends to linger in five circular ocean currents in the subtropical oceans in both the northern and southern hemispheres. One of those currents is located in the Atlantic, which then feeds the Arctic.

As the Arctic becomes more accessible because of ice melt linked to climate change, it is feared more plastic could wash in due to the opening of passageways for vessels and plastics in surface currents.

Source: The Washington Post.

Allons-nous continuer à souiller l’Arctique? (Photo: C. Grandpey)