Vagues de chaleur et séismes glaciaires // Heatwaves and glacial earthquakes

La vague de chaleur qui a affecté le nord-ouest des Etats Unis et l’ouest du Canada s’est propagée jusqu’en Alaska où un séisme de magnitude M 2,7 provoqué par la fonte des glaciers a été enregistré le 29 juin 2021 à 40 kilomètres à l’est de Juneau, la capitale de l’État.

La température a grimpé jusqu’à 33,3 °C dans certaines parties de l’Alaska. Avec la hausse du mercure, la fonte de la neige et des glaciers provoque souvent des inondations dans la région. Il arrive aussi que l’eau de fonte se retransforme en glace et se dilate, ce qui provoque des contraintes suffisantes pour entraîner une activité sismique. Connu sous le nom de cryoséisme – un type de sismicité non tectonique – l’événement du 29 juin a eu lieu dans le sud-est de l’Etat d’Alaska.

Les scientifiques ont établi un lien entre la fonte des glaciers et une recrudescence de la sismicité dans le cadre d’un phénomène baptisé rebond isostatique. Le substrat rocheux sur lequel reposent les glaciers a tendance à varier en fonction de leur poids relatif, qui diminue naturellement avec leur fonte. Au fur et à mesure que les glaciers se soulèvent, le substrat rocheux sur lequel ils reposent s’élève lui aussi en créant des failles qui peuvent entraîner une augmentation de la fréquence et de l’intensité des séismes. Certains scientifiques pensent que lorsque les glaciers recouvrent des volcans potentiellement actifs, leur fonte et la perte de masse qui s’ensuit pourraient entraîner une augmentation de l’activité volcanique. Cette relation n’a toutefois jamais été prouvée de manière concrète.

Le séisme glaciaire du 29 juin en Alaska a été enregistré à une profondeur d’environ 13 kilomètres et n’avait aucun lien avec un séisme sous-marin de M 4.0 au large des côtes de l’Oregon le 30 juin 2021 à une profondeur de 13 kilomètres.

Outre les conséquences sismiques pour les glaciers, la vague de chaleur dans le nord-ouest du Pacifique a eu un effet dévastateur sur l’environnement. Les câbles électriques ont fondu et il a fallu fermer des écoles. La température au sol dans certaines parties de l’État de Washington a atteint jusqu’à 63 degrés Celsius. De telles conditions constituent non seulement une menace pour la santé publique mais aussi pour les infrastructures essentielles. Ainsi, les routes fondent littéralement et se déforment sous l’effet de la chaleur qui a également mis sous tension le réseau électrique. Les gens se sont précipités sur les climatiseurs pour apporter un peu de fraîcheur dans leurs maisons.

Il est probable que les épisodes de chaleur intense vont devenir de plus en plus fréquents, de sorte que les conséquences vont continuer à devenir problématiques pour les régions du monde habituées à des températures plus fraîches. Le développement des infrastructures va devoir s’adapter afin de mieux faire face aux conditions météorologiques extrêmes qui sont appelées à devenir la nouvelle norme.

Source : médias d’information de l’Alaska.

———————————

The heatwave which has affected the Pacific Northwest has made its way up to Alaska, where a 2.7 magnitude ice quake – the result of seismic activity triggered by melting glaciers – was recorded on June 29th, 2021 40 kilometres east of Juneau, the State’s capital.

Temperatures climbed to as high as 33.3°C in parts of Alaska. As temperatures rise, melting snow and glaciers often cause flooding in the region. Sometimes, the water refreezes and expands so that the ice triggers enough accumulated stress to result in seismic activity. Known as a cryoseism – a non-tectonic seismic event – the 29 June event took place in the Alaska Panhandle.

Scientists have long linked the melting of glaciers to incidences of earthquakes, in a phenomenon called isostatic rebound. The land that the glaciers are situated on tends to shift around according to their relative weight, which naturally lessens as they melt. As the glaciers spring upwards, the land that they sit upon rises, creating faults that can lead to an increase in the frequency and intensity of earthquakes. It has been suggested that when the glaciers cover potentially active volcanoes, the melting of the glaciers and the ensuing loss of mass might lead to increased volcanic activity.However, this relationship has never been clearly proved.

The ice quake in Alaska was recorded at a depth of about 13 kilometres, and was distinct from a separate M 4.0 undersea earthquake hat occurred off the coast of Oregon on June 30th, 2021 at a depth of 13 kilometres.

Beside the seismic consequences for the glaciers, the heatwave had a ruinous effect on the Pacific Northwest’s landscape. Power cables melted and districts were forced to shutter schools. Ground temperatures in parts of Washington State reached as high as 63 degrees Celsius, conditions that pose not only a threat to public health but also to critical infrastructure, with roadways buckling under the staggering heat. The wild heat also stressed the power grid, as people rushed to cool down their homes with air conditioning units.

With climate change likely to become more and more frequent, these types of stresses will continue to plague areas of the world accustomed to cooler temperatures. Infrastructure development will need to adapt in order to better accommodate the extreme weather patterns that are set to become the new abnormal.

Source: Alaska’s news media.

 

Glacier Mendenhall, pas très loin de Juneau (Photo: C. Grandpey)

La dangereuse fonte de l’Antarctique // Antarctica’s dangerous melting

Selon une nouvelle étude publiée dans la revue Science Advances le 30 avril 2021, l’élévation du niveau de la mer à l’échelle de la planète à cause de la fonte de la calotte glaciaire antarctique au cours du prochain millénaire a probablement été sous-estimée d’environ 30%. Jusqu’à présent, les études ont expliqué que si la calotte glaciaire de l’Antarctique occidental disparaissait, le niveau de la mer augmenterait d’environ 90 centimètres. Les auteurs de la nouvelle étude expliquent qu’un effet appelé «mécanisme d’expulsion de l’eau» a été sous-estimé.

L’effet – qui correspond au rebond isostatique – fait référence au soulèvement du substrat rocheux sous la calotte de glace de l’Antarctique occidental qui, selon les scientifiques, accompagnera la fonte de la calotte glaciaire. Je mentionne le rebond isostatique à propos de l’Islande au cours de ma conférence «Glaciers en péril», ainsi que son effet possible sur l’activité volcanique et sur le petit port d’Höfn, sur la côte sud de ce pays.

Le nouveau calcul du «mécanisme d’expulsion de l’eau» montre qu’au cours du prochain millénaire, le niveau de la mer dans le monde pourrait s’élever d’environ un mètre de plus que prévu. Comme le substrat rocheux sous la calotte glaciaire de l’Antarctique occidental est quelque peu élastique, les scientifiques pensent qu’il s’élèvera au-dessus du niveau de la mer lorsque la calotte glaciaire fondra. Lorsque cela se produira, l’eau de l’océan pourrait être repoussée autour de cette émergence, ce qui ne manquera pas d’augmenter le niveau de la mer dans le monde. Les scientifiques connaissaient déjà ce phénomène, mais de nouvelles recherches montrent que la croûte terrestre sous la région est moins visqueuse qu’on le pensait jusqu’à présent, de sorte que le substrat rocheux pourrait se soulever plus rapidement que prévu.

Un professeur de géophysique à Harvard et qui a participé à l’étude affirme que chaque estimation de l’élévation du niveau de la mer « va devoir être revue à la hausse » au vu de la nouvelle étude.

Les scientifiques craignent que la disparition de la calotte glaciaire de l’Antarctique occidental soit inéluctable. En particulier, le glacier de Thwaites recule à raison d’environ 800 mètres par an. Le réchauffement des eaux océaniques a creusé sous le glacier une cavité de la taille de l’île de Manhattan Les scientifiques ont baptisé le Thwaites le «glacier de la fin du monde» parce qu’il joue le rôle de tampon entre la calotte glaciaire et les eaux océaniques en phase de réchauffement. S’il fond, le glacier déclenchera un effet domino car tous les glaciers de la région sont interconnectés.

Source: Business Insider.

—————————————-

According to a a new study published in the journal Science Advznces on April 30th, 2021, the global sea-level rise due to the melting of Antarctic ice sheets in the next 1,000 years could have been underestimated by about 30%. Previous studies had estimated that if the West Antarctic ice sheet were to collapse, the sea levels would increase by about 90 centimetres. However, the new study suggests that an effect called the « water-expulsion mechanism » had been underestimated.

The effect – which could also be called isostatic rebound – refers to the bedrock beneath the West Antarctic ice sheet which, according to scientists, will rise above sea levels when the ice sheet melts. I mention the isostatic rebound about Iceland during my conference “Glaciers at risk” and the effect it might have on volcanic activity, as well as on Höfn, a port on the south coast of this country.

The new calculation of this « water-expulsion mechanism » shows that over the next 1,000 years, the world’s sea level could rise by one metre higher than previously predicted.

Because the bedrock underneath the West Antarctic ice sheet is somewhat elastic, scientists believe it will lift above sea level when the ice sheet melts. As this happens, it could push the water around the glacier into the surrounding ocean, adding to the global sea-level rise.

Scientists already knew this, but the new evidence suggests the underlying Earth is less viscous than previously thought, so the bedrock could rise faster than first expected.

A professor of geophysics at Harvard and an author of the study affirms that every single estimate of sea level rise « is going to have to be revised upward » because of this work.

Scientists are concerned that the collapse of the West Antarctic ice sheet could be unstoppable. In particular, the Thwaites Glacier is receding at a rate of about 800 metres per year, and warming waters have created a huge cavity underneath. Scientists have nicknamed this glacier the « Doomsday Glacier » because it is acting as a buffer between the ice sheet and warming waters. As it melts away, it will trigger a cascading effect as all the glaciers of the region are interconnected.

Source: Business Insider.

Le glacier Thwaites (Source : Wikipedia)

Séismes et glaciers // Earthquakes and glaciers

Une activité sismique significative, avec 27 événements présentant des magnitudes entre M 1,6 et M 3,2 sur l’échelle de Richter, a été enregistrée entre le 15 et le 17 juillet 2020 à l’est de Juneau, la capitale de l’Etat d’Alaska, sur le Juneau Icefield. L’Alaska Earthquake Center a expliqué que cette activité n’était pas d’origine tectonique ; il s’agit de «séismes glaciaires» générés par les mouvements des glaciers. En d’autres termes, l’origine des ondes sismiques ne se situe pas sous terre, mais à la surface du glacier proprement dit.
Toutefois, la sismicité dans un environnement glaciaire peut avoir d’autres causes que celle qui vient d’être évoquée.

Lorsque les glaciers vêlent dans un lagon ou dans la mer, de gros blocs de glace se détachent de leurs fronts et s’effondrent en soulevant des masses d’eau ; cela donne naissance à un spectacle impressionnant et bruyant. Une distance de sécurité doit être respectée car les vagues générées par les effondrements peuvent être puissantes et sont capables de retourner des embarcations.
Les séismes glaciaires provoqués par de tels effondrements ont été multipliés par sept au Groenland au cours des deux dernières décennies. Les scientifiques ont surveillé pendant 55 jours de juillet à septembre 2013 le glacier Helheim, l’un des principaux exutoires de la calotte glaciaire du Groenland. Ils ont enregistré 10 séismes glaciaires, dont certains atteignaient une magnitude de M 5,0. Ils ont également vu le glacier reculer d’environ 1,5 km à la suite de ces événements accompagnés de sismicité.
Les scientifiques ont étudié le phénomène et découvert que lorsqu’un gros bloc de glace se détache du front d’un glacier en train de vêler et bascule dans l’océan, l’événement peut non seulement arrêter la progression du glacier, mais aussi le faire reculer. Le recul du glacier et le changement de pression de l’eau qui s’ensuit provoquent des séismes glaciaires qui peuvent déclencher des vagues de tsunami et des grondements impressionnants. Le glacier recule pendant quelques minutes avant de reprendre sa progression vers l’avant.
Avec le réchauffement climatique, ces séismes glaciaires sont de plus en plus nombreux car il y a de plus en plus de vêlages lorsque la température de l’eau et de l’air augmente. Les glaciologues expliquent que les icebergs produits lors des vêlages peuvent peser un milliard de tonnes et retiennent suffisamment d’eau pour couvrir la surface de Central Park avec la hauteur de l’Empire State Building à New York. La perte de masse de glace du Groenland s’élève à 300 à 400 gigatonnes par an. La magnitude des séismes semble varier en fonction de la taille des icebergs.

Une autre facteur peut expliquer la sismicité en milieu glaciaire : le rebond isostatique – ou post-glaciaire – bien que certains scientifiques ne soient pas d’accord avec cette théorie. Le rebond isostatique fait référence au soulèvement des terres émergées après l’évacuation du poids énorme des calottes glaciaires et / ou des glaciers. Par exemple, il a été remarqué qu’avec la fonte rapide des 75000 kilomètres carrés occupés par les glaciers du sud de l’Alaska, certaines régions du sud-est de cet Etat se soulèvent à raison de 25 millimètres par an. Certains glaciologues disent que ce soulèvement des terres émergées est susceptible de déclencher des séismes. D’autres affirment que ce n’est pas parce que la région connaît beaucoup d’activité sismique et de rebond post-glaciaire que les deux phénomènes sont nécessairement liés. Ils ajoutent qu’il se passe tellement de choses différentes – sismicité, comportement glaciaire, changement climatique,  température des océans et érosion – qu’il y a forcément une coïncidence à un moment ou un autre entre les phénomènes naturels. Autrement dit, la fonte des glaciers et les séismes peuvent avoir lieu en même temps et ne pas s’affecter mutuellement.

Source : médias d’information de l’Alaska.

———————————————

Significant seismic activity, with 27 different events between M 1.6 and M 3.2 on the Richter scale was recorded between July 15th and 17th, 2020 east of Juneau on the Juneau Icefield. The Alaska Earthquake Center said the activity was not caused by earthquakes but “ice quakes” associated with glacial activity.  The origin of the seismic waves does not lie underground, but on the surface of the glacier itself.

Seismicity in a glacial environment may have other causes.

When glaciers are calving in a lagoon or in the sea, large chunks of ice break off from their fronts and collapse with a giant splash into the water, which gives birth to a dramatic and noisy show. A safety distance should be respected as the waves generated by the collapses can be quite powerful.

Ice quakes triggered by such collapses have been multiplied by seven in Greenland in the past two decades. Scientists monitored the Helheim Glacier, a major outlet of the Greenland Ice Sheet, over 55 days from July to September 2013. They recorded 10 glacial earthquakes, some of which registered a magnitude of M 5.0, and saw the glacier retreat by about 1.5 kilometres following the shaking events.

The scientists discovered that, when a big chunk of ice breaks off from a calving glacier and tips forward into the ocean, it can force the glacier not only to stop inching forward, but also to push it backward. The backward movement and the subsequent change in water pressure cause glacial earthquakes, which can trigger massive tsunami waves and thunderous rumbling. The glacier moves backward for a few minutes before springing forward again and moving as normal.

With global warming, such ice quakes will increase in frequency because calving rates rise when water temperatures and air temperatures rise. Glaciologists explain that calved icebergs often weigh around one billion tons and hold enough water to fill Central Park up to the Empire State Building. The mass loss of ice from Greenland amounts to 300 to 400 gigatons of ice per year. The size of the icebergs appears to determine the magnitude of the earthquakes.

Another explanation for the seismicity in a glacial environment if the isostatic – or post-glacial – rebound, although some scientists do not agree with this theory. This expression refers to the rise of land masses after the removal of the huge weight of ice sheets and / or glaciers For instance, it has been noticed that because Southern Alaska’s 75,000 square kilometres of glacier are melting at a rapid rate, some regions of Southeast are rising by a rate of 25 millimetres a year. Some glaciologists say this rise of land masses may trigger earthquakes. Other scientists say that just because the region has plenty of seismic activity and postglacial rebound does not mean the two are necessarily related. They add that there are so many different things going on, such as earthquakes, glaciology, climate change, ocean temperatures and erosion, that you are bound to have coincidence between natural phenomena. In other words, glacial melt and earthquake activity could be taking place at the same time and not affecting each other.

Source : Alaskan news media.

 Effondrements des glaciers alaskiens Columbia (Prince William Sound) et Sawyer (Juneau Icefield) [Photos : C. Grandpey]

Vidéo montrant l’effondrement du front du Sawyer Glacier dans le Juneau Icefield (C. Grandpey) :

https://www.youtube.com/watch?v=jZtvNMxoxdY

Le soulèvement de l’Antarctique // Antarctica’s uplifting

Une étude publiée le 21 juin 2018 dans la revue Science révèle que le substrat rocheux sous l’Antarctique se soulève beaucoup plus vite qu’on le pensait, à raison d’environ 41 millimètres par an, probablement en raison de l’amincissement de la glace qui se trouve au-dessus. En effet, à mesure que la glace fond, son poids et sa pression sur la masse rocheuse diminuent. Avec le temps, lorsque d’énormes quantités de glace disparaissent, le substratum rocheux se soulève, poussé par le manteau visqueux sous la surface de la Terre. C’est un phénomène qui a été baptisé rebond isostatique par les scientifiques.
Ce soulèvement du substrat rocheux de l’Antarctique est à la fois une bonne et une mauvaise nouvelle. La bonne nouvelle, c’est que ce soulèvement du substrat rocheux pourrait stabiliser la calotte glaciaire. La mauvaise nouvelle, c’est qu’il a faussé les mesures satellitaires montrant la perte de glace qui a probablement été sous-estimée d’au moins 10%.
Le substrat rocheux de l’Antarctique est difficile à étudier parce qu’il est en grande partie recouvert d’une épaisse couche de glace; D’après la NASA, l’Antarctique contient environ 90% de toute la glace de la Terre, de sorte que sa fonte intégrale pourrait entraîner une hausse d’environ 60 mètres du niveau des océans. Pour mesurer les changements intervenus sur le continent, les chercheurs ont installé six stations GPS en différents points de l’Amundsen Sea Embayment (ASE), une vaste échancrure littorale de la Baie d’Admundsen, de la taille du Texas. Ils ont placé les capteurs GPS dans des endroits où le substrat rocheux était accessible, ce qui a permis de recueillir des données à une résolution spatiale de 1 km, plus élevée que celle obtenue dans des études antérieures.
Les scientifiques s’attendaient à voir un lent rebond isostatique. Au lieu de cela, ils ont constaté qu’il était environ quatre fois plus rapide que prévu. C’est le plus rapide jamais enregistré dans des zones glaciaires. Les résultats laissent supposer que le manteau sous-jacent est très réactif lorsque le poids important de la glace s’amoindrit, ce qui entraîne un soulèvement rapide du substrat.
Le soulèvement du substrat rocheux est certes le résultat de la perte de glace au cours du siècle dernier, mais cette perte de glace continue de nos jours à une vitesse inquiétante sous l’effet du changement climatique induit par l’homme. La quantité de glace qui a disparu du continent antarctique depuis 1992 a provoqué une élévation du niveau de la mer d’environ 8 mm. Les scientifiques de la NASA ont récemment prédit que le West Antarctic Ice Sheet (WAIS) – inlandsis antarctique occidental – pourrait disparaître entièrement dans les 100 prochaines années, entraînant une élévation du niveau de la mer de près de 3 mètres.
Les chercheurs font remarquer  que la fonte de l’Antarctique occidental pourrait avoir un aspect positif. Le soulèvement du substrat rocheux sous cette région pourrait permettre de stabiliser la calotte glaciaire et empêcher sa disparition totale, en dépit du réchauffement climatique qui affecte la planète.
Le point négatif, c’est que les estimations de la perte de glace en Antarctique dépendent des mesures satellitaires qui peuvent être affectées par des changements de masse significatifs. Les mesures risquent donc d’être faussées, avec des marges d’erreur pouvant atteindre jusqu’à 10 pour cent.
Source: Live Science.

———————————————–

A study published on June 21st, 2018 in the journal Science reveals that the bedrock under Antarctica is rising more swiftly than ever recorded — about 41 millimetres upward per year, probably due to the thinning of the ice above. Indeed, as ice melts, its weight on the rock below lightens. And over time, when enormous quantities of ice have disappeared, the bedrock rises in response, pushed up by the flow of the viscous mantle below Earth’s surface, a phenomenon called post-glacial rebound or isostatic rebound.

This uplifting is both bad news and good news for the frozen continent. The good news is that the uplift of supporting bedrock could make the remaining ice sheets more stable. The bad news is that in recent years, the rising earth has probably skewed satellite measurements of ice loss, leading researchers to underestimate the rate of vanishing ice by as much as 10 percent.

Antarctica’s bedrock is difficult to study because most of it is covered by thick layers of ice; the continent’s ice sheet cover holds about 90 percent of all the ice on Earth, containing enough water to elevate sea levels worldwide by about 60 metres, according to NASA. To measure how it was changing, the researchers installed six GPS stations at locations around the Amundsen Sea Embayment (ASE), a region of the ice sheet roughly the size of Texas, that drains into the Amundsen Sea. They placed the GPS monitors in places where bedrock was exposed, gathering data at a spatial resolution of 1 km, higher than any recorded in prior studies.

The scientists expected to see some evidence of slow uplift in the bedrock over time. Instead, they saw that the rate of the uplift was about four times faster than anticipated from ice-loss data. The velocity of the rebound in the ASE was one of the fastest rates ever recorded in glaciated areas. The findings suggest that the mantle underneath is fast-moving and fluid, responding rapidly as the heavy weight of ice is removed to push the bedrock upward very quickly.

The bedrock uplift is a result of ice loss over the past century, but ice continues to vanish from parts of Antarctica at a dramatic rate, spurred by human-induced climate change. The amount of ice that has vanished from the continent since 1992 caused about 8 mm of sea level rise. And scientists recently predicted that the West Antarctic Ice Sheet (WAIS) could collapse entirely within the next 100 years, leading to sea level rise of up to nearly 3 metres.

But the researchers suggest that there may be a ray of hope for the weakening WAIS. The deforming bedrock under Antarctica, buoyed by a fluid mantle, could provide an unexpected source of support for the WAIS. In fact, the bedrock’s uplift could stabilize the WAIS enough to prevent a complete collapse, even under strong pressures from a warming world.

There’s a downside to the scientists’ findings, too. Estimates of ice loss in Antarctica depend on satellite measurements of gravity in localized areas, which can be affected by significant changes in mass. If the bedrock under Antarctica is rapidly adjusting in response to ice loss, its uplift would register in gravity measurements, compensating for some ice loss and obscuring just how much ice has truly disappeared by about 10 percent.

Source : Live Science.

Source: NOAA