Glaciers en péril en Papouasie-Nouvelle-Guinée // Glaciers at risk in Papua-New-Guinea

La série noire glaciaire continue. C’est au tour de deux glaciers de Papouasie de se diriger vers une mort certaine sous les coups de boutoir du réchauffement climatique. Les deux glaciers, situés au sommet du Puncak Jaya – ou Mont Carstensz – (4884 m) sont en train de vivre leurs dernières années d’existence. En effet, ces glaciers ont continué à reculer considérablement depuis des observations effectuées entre 2002 et 2018, et les glaciologues estiment qu’ils disparaîtront dans les prochaines années, en 2023 ou 2026 au plus tard.

La superficie couverte par la glace qui recouvre le Puncak Jaya a perdu 1,45 km2 entre 2002 et 2015. En 2018, les glaciers ne recouvraient plus qu’une surface de 0,46 km2. Les glaciers ne font pas que reculer ; ils s’amincissent aussi. Leur épaisseur  diminue de 1,05 m par an depuis 2010.

Les glaciers sont victimes de deux phénomènes qui vont de pair : d’une part l’augmentation de la température de l’air qui provoque, d’autre part, l’augmentation de la température de la roche. En effet, les roches exposées par la fonte de la glace sont noires et absorbent le rayonnement solaire, ce qui, in fine, accélère la disparition du glacier. Ce double réchauffement par le haut et par le bas entraîne la contraction progressive de la surface du glacier, ce qui se traduit par sa division en deux masses de glace.

Source : Courrier International.

————————————–

The glacial black series continues. Two glaciers in Papua are going to a certain death under the blows of global warming. The two glaciers, located at the top of Puncak Jaya – or Mount Carstensz – (4884 m) are living their last years of existence. Indeed, these glaciers have never stopped retreating since the observations made between 2002 and 2018, and glaciologists believe that they will disappear in the next few years, in 2023 or 2026 at the latest.

The area of ice ice covering Puncak Jaya lost 1.45 km2 between 2002 and 2015. In 2018, glaciers covered an area of obly ​​0.46 km2. Glaciers aren’t just retreating; they’re thinning too. Their thickness has been decreasing by 1.05 m per year since 2010.

Glaciers are victims of two phenomena that go hand in hand: on the one hand, an increase in air temperature which causes, on the other hand, an increase in the temperature of the rock. Indeed, the rocks exposed by the melting ice are black and absorb solar radiation, which, in turn, accelerates the disappearance of the glacier. This double warming from above and below leads to the progressive contraction of the glacier’s surface, which results in its division into two masses of ice.

Source: Courrier International.

Cette photo prise en 2005 montre le glacier Carstensz  en bas à droite. La dépression circulaire sur la gauche est la mine d’or de Grasberg, la plus grande du monde (Source : NASA)

Fonte et recul des glaciers islandais // Melting and retreat of Icelandic glaciers

Selon une nouvelle étude publiée dans Frontiers in Earth Science, les glaciers islandais ont perdu environ quatre milliards de tonnes de glace en moyenne au cours des 130 dernières années. La moitié de cette perte s’est produite au cours du dernier quart de siècle.

Des scientifiques islandais du Met Office et de différents organismes des Sciences de la Terre ont retracé l’évolution des glaciers depuis leur plus grande étendue de la fin du 19ème siècle jusqu’à aujourd’hui. Au total, les glaciers ont perdu entre 410 et 670 milliards de tonnes de glace entre 1890 et 2019. Ils ont reculé rapidement au cours de la première partie du 20ème siècle, mais les fluctuations naturelles du modèle climatique ont ralenti leur recul des années 1960 aux années 1990. Aujourd’hui, ils fondent de plus en plus rapidement en raison du réchauffement climatique.

Environ la moitié de la perte de masse de glace des glaciers islandais s’est produite entre l’automne 1994 et l’automne 2019, avec une perte d’environ 220 à 260 milliards de tonnes, soit environ 10 milliards de tonnes par an. Ainsi, les glaciers ont perdu près de 16% de leur volume au cours de cette période. Le changement climatique est tenu responsable de ces changements rapides.

Selon la dernière étude, les glaciers islandais rétrécissent plus rapidement que leurs homologues ailleurs dans le monde, en dehors des calottes polaires. C’est l’un des effets  les plus évidents du réchauffement climatique. Même si les pays réussissaient à contenir leurs émissions de gaz à effet de serre et à empêcher une accélération du réchauffement climatique, les glaciers continueraient de fondre pendant des décennies.

Cependant, le réchauffement climatique n’est probablement pas le seul facteur qui explique  la fonte des glaciers islandais. Les scientifiques ont découvert que le glacier Vatnajökull a perdu 3,7 milliards de tonnes de glace lors de l’éruption volcanique de Gjálp en octobre 1996 et au cours de l’été 2010 – soit deux fois la perte de glace habituelle – en raison de l’éruption de l’Eyjafjallajökull. L’activité géothermique, le vêlage dans les lagons glaciaires et le frottement de la calotte glaciaire sur le substrat rocheux ont également contribué à la perte de masse de la glace.

Si l’on considère les glaciers individuellement, on constate que le Vatnajökull a perdu 45 mètres, le Langjökull 66 mètres et le Höfsjökull 56 mètres au cours des 130 dernières années. Dans le même temps, le Vatnajökull a perdu 12% de son volume, le Langjökull 29% et le Höfsjökull 25%.

Les glaciers ne reculent pas de façon linéaire et leur volume fluctue chaque année. Malgré une perte générale de glace au cours des dernières décennies, les glaciers ont repris de la vigueur au cours de l’hiver 2014-2015. Durant cette période, plusieurs systèmes de basse pression ont apporté des précipitations abondantes et ont été suivis d’un été relativement frais. C’est la dernière fois que les glaciers islandais ont pris de la masse pendant l’hiver et le seul hiver de ce type au cours des 25 dernières années.

Le rapport de 2018 de l’Icelandic Science and Technology Council prévoit que les glaciers islandais disparaîtront dans les siècles à venir à cause du réchauffement climatique si rien n’est fait pour réduire les émissions de gaz à effet de serre. À l’échelle de la planète, la fonte des glaciers pourrait entraîner une hausse moyenne d’un mètre du niveau des océans au cours de ce siècle. Cette hausse est plus difficile à prévoir en Islande. En raison du rebond isostatique que j’ai mentionné précédemment (élévation des terres en raison de la masse plus faible de la glace), la hausse du niveau de la mer pourrait être moins significative autour de l’Islande, voire être inversée en certains endroits. De plus, certains scientifiques pensent que l’élévation des terres due à la fonte des glaciers pourrait augmenter la fréquence des éruptions volcaniques, mais cela reste à prouver. Pour mémoire, les dernières ont eu lieu en 2010 et 2014.

Source: Iceland Review.

———————————————–

According to a new study published in Frontiers in Earth Science, Iceland’s glaciers have lost about four billion tonnes of ice on average over the past 130 years, and about half the loss of volume has occurred in the past 25 years.

Icelandic scientists from the Met Office and Earth Sciences organisations have traced the glaciers’ development from their largest extent at the end of the 19th century to now. In total, the glaciers have lost between 410-670 billion tonnes of ice between 1890 and 2019. They receded quickly during the first part of the 20th century but natural climate pattern fluctuations slowed their recession from the sixties to the nineties. Since then, they have receded quicker than before due to global warming.

About half of the ice mass loss on Icelandic glaciers happened from autumn 1994 to autumn 2019, with a loss of about 220-260 billion tonnes of ice, which amounts to about 10 billion tonnes per year. The glaciers have lost close to 16% of their volume in this period. Climate change is held responsible for these swift changes.

The result of the research is that on average, Icelandic glaciers shrink faster than most glacial areas in the world, outside the polar ice caps. This is one of the most evident results of global warming in the world. Even if people managed to contain their emission of greenhouse gasses and prevent further global warming, glaciers would continue to melt for decades.

However, global warming is probably not the only factor in Icelandic glaciers melting. Scientists found that Vatnajökull glacier lost 3.7 billion tonnes of ice during the Gjálp volcanic eruption in October 1996 and over the summer of 2010, twice the usual amount of ice melted due to the Eyjafjallajökull eruption. Geothermal activity, glacial lagoon calving, and ice cap friction with bedrock also added to the loss of ice mass.

Individual glaciers have thinned by dozens of metres in the last century. Vatnajökull has lost 45 metres, Langjökull 66 metres, and Höfsjökull 56 metres for the past 130 years. During that time, Vatnajökull has lost 12% of its volume, Langjökull 29% and Höfsjökull 25%.

The glaciers don’t shrink linearly, and their volume fluctuates every year. Despite an overall recession in the past decades, glaciers gained mass in the winter of 2014-2015. That winter saw several low-pressure systems arriving one after the other, bringing large amounts of precipitation and was followed by a relatively cool summer. That was the last time Iceland’s glaciers gained mass over winter and the only such winter for the past 25 years.

The science committee of the Icelandic Science and Technology Council’s 2018 report on how climate change would affect Iceland forecasted that Icelandic glaciers would disappear in the coming centuries if the emission of greenhouse gasses continues the way it has.

Globally, melting glaciers might raise ocean levels, on average, by one metre in this century. The development in Iceland is less clear. Due to the isostatic rebound I mentioned previously, ocean levels might rise less around Iceland, even drop in some places. Land rise due to glaciers melting might make volcanic eruptions more frequent, cut this remains to be proved.

Source: Iceland Review.

Au pied du Vatnajökull (Photo : C. Grandpey)

 

Les secrets des Bossons (Alpes françaises)

Le glacier des Bossons est l’un de mes préférés dans les Alpes car il porte une lourde charge affective. C’est en août 1956, alors que je n’étais qu’un petit garçon de 8 ans que je l’ai découvert en compagnie de mes parents. A l’époque, quand on arrivait à Chamonix, l’énorme masse de glace surplombait la vallée et je me disais qu’il allait probablement s’effondrer. Il m’impressionnait vraiment, tout comme l’Arve qui bouillonnait à travers la ville. Sorti de ma campagne creusoise, je n’en menais pas large devant ces forces de la nature !

Au fil des années, je me suis rendu de nombreuses fois à Chamonix et j’ai vu le Glacier des Bossons reculer et remonter dans la montagne. Mes photos montrent que sa fonte s’est accélérée au milieu des années 1970.

Dans les années 2000, j’ai emprunté le télésiège qui permet d’accéder au  Chalet des Bossons d’où l’on a  – ou plutôt on avait – une première belle vue sur le front du glacier. Une halte au Chalet permet de se refaire une santé et de visiter une petite exposition où des panneaux racontent l’histoire du glacier. Dans une note publiée le 15 septembre 2018, j’ai évoqué les catastrophes aériennes survenues en 1950 et 1966 sur le Mont Blanc. Des décennies plus tard, le glacier fait réapparaître des objets ayant appartenu à des passagers ainsi que des morceaux de carlingue.

https://claudegrandpeyvolcansetglaciers.com/2018/09/15/les-secrets-du-glacier-des-bossons-alpes-francaises/

C’est ce que confirme un petit reportage diffusé le 10 novembre sur le site web de la radio France Info :

https://www.francetvinfo.fr/meteo/neige/rechauffement-climatique-le-glacier-des-bossons-devoile-des-lieux-inexplores_4176077.html

La séquence nous rappelle que le Glacier des Bossons recule de plus en plus sous les coups de boutoir du réchauffement climatique. Alors qu’il leur fallait autrefois quelques minutes pour atteindre la glace, les randonneurs doivent désormais effectuer deux heures de marche pour la rejoindre. Après le Chalet des Bossons, le sentier s’élève rapidement et conduit au Chalet des Pyramides. Il ne s’agit pas d’une référence à l’Egypte mais aux séracs spectaculaires qui ornent la surface du glacier. Le sentier s’élève ensuite encore davantage et permet d’atteindre un site baptisé La Jonction. En effet, il y a encore quelques années, on pouvait y admirer le mariage du Glacier des Bossons avec son voisin de Taconnaz. Aujourd’hui, le mariage est devenu divorce et la jonction n’existe plus. On a devant soi une étendue rocheuse qui porte les marques du rabotage effectué par la glace.

Le changement climatique permet aujourd’hui de voir le glacier sous un autre angle, avec des découvertes parfois inattendues. C’est ainsi que des cavernes se creusent dans sa partie frontale où se créent de nouveaux lacs.

Il faut se faire une raison : au train où vont les choses le Glacier des Bossons ne sera plus qu’un souvenir dans quelques décennies, voire quelques années, tout comme la vénérable Mer de Glace sur laquelle on a déposé un linceul blanc pour protéger la grotte que l’on atteignait très facilement quand j’avais 8 ans. Aujourd’hui, il faut emprunter une télécabine et descendre ensuite un escalier de plusieurs centaines de marches. Un bien triste spectacle…

Cette photo confirme que la Jonction entre les Bossons (à gauche) et le Taconnaz (à droite) n’existe plus :

Voici le front du glacier en septembre 2020, dominé par l’Aiguille du Midi :

On peut encore admirer de belles « pyramides » à la surface du glacier :

Cette roue du « Malabar Princess » a été récupérée le 4 août 1987 à hauteur du Chalet des Bossons. Il a fallu 36 ans pour que le glacier accepte de la rendre :

Photos : C. Grandpey

Crue glaciaire du Langjökull (Iceland) // Glacial flood of Langjökull (Iceland)

Le 11 mai 2020, j’ai publié une note sur la fonte des glaciers en Islande. J’écrivais que depuis l’an 2000, la superficie des glaciers islandais a diminué d’environ. 800 km2 et de près de 2200 km2 depuis la fin du 19ème siècle, époque où les glaciers ont atteint leur extension maximale depuis la colonisation du pays au 9ème siècle.
La surface glaciaire a en moyenne diminué d’environ. 40 km2 par an ces dernières années et les glaciers ont reculé de plusieurs dizaines de mètres en 2019. Le Hagafellsjökull, qui appartient à la calotte glaciaire du Langjökull, ainsi que le Síðujökull et le Tungnárjökull qui font partie de la calotte glaciaire du Vatnajökull, détiennent le record de recul pour 2019, avec 150 m de recul en une seule année.
Le Langjökull (islandais pour «long glacier») est la deuxième plus grande calotte glaciaire d’Islande, après le Vatnajökull. Il est situé dans la partie ouest de l’intérieur islandais ; on le distingue parfaitement quand on avance le long de l’Haukadalur. Le point culminant de la calotte glaciaire se situe à environ 1 450 m au-dessus du niveau de la mer.
Les températures dans la région ont été anormalement chaudes au cours des dernières semaines et une soudaine crue glaciaire – jökulhlaup en islandais – du Langjökull a eu lieu dans la nuit du 17 au 18 août 2020. On pense qu’elle s’est produite lorsqu’un barrage qui retenait un lc sous-glaciaire s’est rompu dans la partie nord-ouest du glacier. Une grande quantité d’eau s’est déversée dans la rivière Svartá dont le niveau est généralement bas à cette époque de l’année. Une jauge de niveau près de la cascade de Kljáfoss sur la rivière Hvítá a révélé une triple élévation du niveau de l’eau.
Le Met Office estime que le volume d’eau qui s’est échappé du glacier avant de se déverser dans la rivière Svartá, puis la rivière Hvítá près de Húsafell, a atteint 3,4 millions de mètres cubes en 24 heures. L’ampleur de cette crue glaciaire était telle que l’eau atteignait presque les poutres du pont sur la Hvítá près de Húsafell. La rivière a charrié une grande quantité de sédiments et les agriculteurs qui possèdent des terres en aval de la Hvítá ont découvert de nombreux cadavres de saumons dans leurs champs.
Les scientifiques vont se rendre sur le terrain pour vérifier si les chenaux creusés par la rivière se sont modifiés de façon permanente et pour évaluer le danger que les crues glaciaires sont susceptibles de poser à l’avenir. En effet, lorsque des changements se produisent, il faut parfois réévaluer les routes, les ponts et toutes sortes de structures près des glaciers et des rivières glaciaires.
Source: Iceland Review, Icelandic Met Office.
Les crues glaciaires sont assez fréquentes en Islande. Il y a quelques jours, les scientifiques s’attendaient à un jökulhlaup sur le volcan Grimsvötn, mais cela ne s’est pas produit. Cette fois, c’est au tour du glacier Langjökull….

———————————————–

On May 11th, 2020, I released a post about glacier melting in Iceland. I wrote that since 2000, the area of Iceland’s glaciers has decreased by about. 800 km2 and by almost 2200 km2 since the end of the 19th century when the glaciers reached their maximum extent since the country’s settlement in the 9th century.

The glacier area has on average shrunk by about. 40 km2 annually in recent years. Glaciers typically retreated by tens of metres in Hagafellsjökull in Langjökull ice cap and Síðujökull and Tungnárjökull in Vatnajökull ice cap hold the 2019 record, retreating by 150 m in this single year.

Langjökull (Icelandic for « long glacier ») is the second largest ice cap in Iceland, after Vatnajökull. It is situated in the west of the Icelandic interior and can be seen clearly when travelling along Haukadalur. The highest point of the ice cap is about 1,450 m above sea level.

Temperatures in the area have been unseasonably warm in the past weeks and a flash flood – or jökulhlaup in Icelandic – from Langjökull glacier took place during the night between August 17th and 18th, 2020. It is believed to have occurred when a dam containing a lagoon on the glacier’s northwestern side broke. A large amount of water streamed into Svartá river whose water level is typically low at this time of year. A water level gauge by Kljáfoss waterfall in Hvítá river showed an almost threefold increase in the water level.

The Met Office estimates the amount of water that cascaded from the lagoon into Svartá river and then Hvítá river near Húsafell amounted to 3.4 million cubic metres in 24 hours. The size of the flood was such that the water level nearly reached the girders of the bridge over Hvítá river near Húsafell. The flood carried a great deal of sediments into the rivers, and farmers who own land farther down Hvítá river have discovered numerous dead salmon in their fields.

Scientists will be checking conditions near the lagoon to see whether river channels have permanently changed and to assess how much risk glacial outburst floods are likely to pose in the future. Indeed, when changes occur, people may be forced to reassess roads, bridges, and all sorts of structures near glaciers and glacial rivers.

Source: Iceland Review, Icelandic Met Office.

Glacial floods are quite common in Iceland. A few days ago, scientists expected a jökulhlaup produced by Grimsvötn volcano, but it did not happen. This time, it is up to Langjökull…

L’Islande et ses glaciers (Source : Wikipedia)

Le glacier Columbia (Alaska) continue de fondre // Columbia Glacier (Alaska) keeps melting

Le Columbia est l’un de mes glaciers préférés en Alaska. Malheureusement, comme pour les autres rivières de glace dans le monde, les nouvelles ne sont pas bonnes.
La zone d’accumulation du glacier Columbia se situe à 3 050 mètres au-dessus du niveau de la mer. Le glacier avance ensuite sur les flancs des Chugach Mountains avant d’emprunter un étroit bras de mer qui le conduit vers le Prince William Sound, dans le sud-est de l’Alaska. Le Columbia l’un des glaciers qui avancent le plus vite dans le monde. C’est aussi un « tidewater glacier » qui vêle de nombreux icebergs quand il entre en contact avec la mer.
Lorsque les explorateurs britanniques l’ont parcouru pour la première fois en 1794, il s’étirait vers le sud jusqu’à la rive nord de Heather Island, près de l’embouchure de la Columbia Bay. Le glacier a conservé cette position jusqu’en 1980, date à laquelle le glacier a amorcé un recul rapide qui se poursuit aujourd’hui.
La vidéo en accéléré ci-dessous présente des couleurs artificielles permettant de mieux voir l’évolution du glacier au fil des ans. Les images ont été fournies par les satellites Landsat de la NASA. Elles montrent l’évolution du glacier et du paysage environnant depuis 1986. La neige et la glace apparaissent en couleur cyan, la végétation est verte, les nuages ​​sont blancs ou orange clair et la mer en bleu foncé. Le substrat rocheux est de couleur marron, tandis que les dépôts rocheux à la surface du glacier sont gris.
Depuis les années 1980, le front du Columbia a reculé de plus de 20 kilomètres vers le nord. Certaines années, il a reculé de plus d’un kilomètre, mais cette vitesse de recul est très variable. Par exemple, il a marqué une pause entre 2000 et 2006 parce que le Great Nunatak Peak et le Kadin Peak (juste à l’ouest) ont ralenti le mouvement du glacier et ont maintenu la glace en place.
Au fur et à mesure que le Columia a reculé, il s’est aussi aminci considérablement, comme le montrent les zones d’encaissement dépourvues de végétation dans les images Landsat. Ce phénomène a également été confirmé par les photos de James Balog. Depuis les années 1980, le glacier a perdu plus de la moitié de son épaisseur et de son volume.

https://earthobservatory.nasa.gov/world-of-change/ColumbiaGlacier

Source: NASA.

——————————————–

The Columbia in Alaska is one of my favourite glaciers. Unfortunately, like for the other rivers of ice in the world, the news is not good.

The Columbia Glacier descends from an icefield 3,050 metres above sea level, down the flanks of the Chugach Mountains, and into a narrow inlet that leads into Prince William Sound in southeastern Alaska. It is one of the most rapidly changing glaciers in the world.

The Columbia is a large tidewater glacier, flowing directly into the sea. When British explorers first surveyed it in 1794, its terminus extended south to the northern edge of Heather Island, near the mouth of Columbia Bay. The glacier held that position until 1980, when it began a rapid retreat that continues today.

The time lapse video below has false colours allowing to better see the evolution of the glacier through the years. The images were captured by NASA’s Landsat satellites. They show how the glacier and the surrounding landscape has changed since 1986. Snow and ice appear bright cyan, vegetation is green, clouds are white or light orange, and open water is dark blue. Exposed bedrock is brown, while rocky debris on the glacier’s surface is gray.

Since the 1980s, the terminus has retreated more than 20 kilometres to the north. In some years, the terminus retreated more than a kilometre, though the pace has been uneven. The movement of the terminus stalled between 2000 and 2006, for example, because the Great Nunatak Peak and Kadin Peak (directly to the west) constricted the glacier’s movement and held the ice in place.

As the glacier terminus has retreated, the Columbia has thinned substantially, as shown by the expansion of brown bedrock areas in the Landsat images. This was also confirmed by James Balog’s photos. Since the 1980s, the glacier has lost more than half of its total thickness and volume.

https://earthobservatory.nasa.gov/world-of-change/ColumbiaGlacier

Source: NASA.

°°°°°°°°°°°°°

Evolution du Columbia au cours de la dernière décennie :

Source: NASA

Photo: C. Grandpey

Source: NASA

Photo: C. Grandpey

Source: NASA

Le recul glaciaire en Islande // Glacial retreat in Iceland

Le site Internet « Iceland Review » a publié le dernier numéro de la newsletter Melting Glaciers qui dresse un bilan de la situation glaciaire en Islande. Ce bulletin est le fruit d’une collaboration entre l’Icelandic Met Office, l’Institut des Sciences de la Terre de l’Université d’Islande, la Iceland Glaciological Society, le Southeast Iceland Nature Center et le parc national du Vatnajökull. Il est publié avec le soutien du Ministère Islandais de l’Environnement et des Ressources Naturelles.

Dans l’introduction de la newsletter, on peut lire que « les glaciers islandais reculent rapidement depuis un quart de siècle. Ce phénomène est l’une des conséquences les plus visibles du réchauffement climatique dans le pays. »

Voici quelques extraits de la newsletter:

Evolution des glaciers :
Depuis l’an 2000, la superficie des glaciers islandais a diminué d’environ. 800 km2 et elle a perdu près de 2200 km2 depuis la fin du 19ème siècle, époque les glaciers ont atteint leur extension maximale depuis la colonisation du pays au 9ème siècle. La surface des glaciers a en moyenne diminué d’environ. 40 km2 par an ces dernières années et les glaciers ont reculé de plusieurs dizaines de mètres en 2019. Le Hagafellsjökull, qui appartient à la calotte glaciaire du Langjökull, ainsi que le Síðujökull et le Tungnárjökull qui font partie de la calotte glaciaire du Vatnajökull, détiennent le record de recul pour 2019 avec 150 mètres de retrait au cours de cette seule année. Le glacier Breiðamerkurjökull, issu de la calotte glaciaire du Vatnajökull recule encore plus rapidement au moment de son vêlage dans le Jökulsárlón. Le recul du front de vêlage a atteint entre 150 et 400 mètres en 2019.

Lagon glaciaire du Jökulsárlón :
Le lagon glaciaire du Jökulsárlón montre à quel point le vêlage dans l’océan ou dans un lac peut être important pour le bilan massique des glaciers. Le Jökulsárlón a commencé à se former au milieu des années 1930. Les lagons situés devant le front des glaciers Breiðamerkurjökull, Jökulsárlón et Breiðárlón, ainsi que quelques lagons plus petits, présentent actuellement une superficie totale de plus de 30 km2. En moyenne, la surface de ces lagons glaciaires a augmenté de 0,5 à 1 km2 par an au cours des dernières années. Le glacier Breiðamerkurjökull recule et s’amincit en raison d’un bilan massique de surface négatif dû au réchauffement climatique, mais également en raison du vêlage dans le lagon du Jökulsárlón. Le vêlage représente actuellement environ un tiers de la perte de masse du Breiðamerkurjökull.

Rebond isostatique :
La fonte rapide des glaciers entraîne un soulèvement de la croûte terrestre en bordure de la glace en raison de la faible viscosité du manteau sous l’Islande. A Höfn, dans le Hornafjörður au sud-est de l’Islande, le sol se soulève actuellement d’environ 10 à 15 mm par an et la vitesse de soulèvement a considérablement varié au cours des deux dernières décennies en raison des fluctuations de perte de masse du glacier. La vitesse de soulèvement la plus importante a été observée sur la bordure ouest du Vatnajökull où elle atteint environ 40 mm par an.

Le Hoffellsjökull :
Le glacier Hoffellsjökull a reculé et s’est considérablement aminci depuis la fin du 19ème siècle, période où le glacier a atteint son extension maximale. La zone située à l’avant du Hoffellsjökull permet d’observer les effets géomorphologiques du retrait des glaciers. Le recul du glacier a conduit à la formation, devant sa partie frontale, d’un lac qui s’est agrandi rapidement depuis le début du 21ème siècle. La superficie du Hoffellsjökull a diminué d’environ. 40 km2 depuis la fin du 19ème siècle et de plus de 0,5 km2 par an au cours des dernières années.

Bilan massique des glaciers :
Le bilan massique des plus grands glaciers islandais est négatif depuis 1995, à l’exception de l’année 2015 où il est devenu positif pour la première fois en 20 ans. Le bilan massique en 2016 a de nouveau été négatif, avec une ampleur semblable à celle des années précédentes. Le bilan massique du Langjökull et de l’Hofsjökull a de nouveau été nouveau négatif en 2017, alors que le Vatnajökull a été pratiquement en équilibre. Ces trois calottes glaciaires ont été presque à l’équilibre en 2018. L’été 2019 a été chaud et le bilan massique des trois glaciers a été négatif. Ils ont perdu environ. 250 km3 de glace depuis 1995, ce qui correspond à environ 7% de leur volume total.

Bilan massique des glaciers islandais négatif en 2019 :
Les glaciers islandais ont reculé rapidement après le milieu des années 1990 en raison du réchauffement climatique. La perte de masse a été équivalente à environ 1 m d’eau par an en moyenne sur la période 1997-2010. Après 2010, certains étés ont été frais et humides, ce qui s’est reflété dans la perte de masse des glaciers. Pendant la période 2011-2018, elle se situait entre le tiers et la moitié de la moyenne des décennies précédentes. L’été 2019 a été chaud et ensoleillé. Par conséquent, l’ablation glaciaire a considérablement augmenté et la perte de masse a été équivalente à environ 1,5 m d’eau par an, ce qui est l’une des valeurs les plus élevées jamais enregistrées.

L’intégralité de la newsletter Melting Glaciers se trouve (en islandais et en anglais) à cette adresse:
https://www.vedur.is/media/loftslag/frettabref-joklar-newsletter-glaciers-iceland-2019-1-.pdf

————————————————

The “Iceland Review” website has released that latest issue of the newsletter Melting Glaciers which describes the situation of glaciers in Iceland. The newsletter is a collaborative effort between the Icelandic Met Office, the Institute of Earth Sciences at the University of Iceland, the Iceland Glaciological Society, the Southeast Iceland Nature Centre, and Vatnajökull National Park. It is published with support from the Icelandic Ministry for the Environment and Natural Resources.

In the introduction of the newsletter, one can read that “glaciers in Iceland have retreated rapidly for a quarter of a century, and glacier downwasting is one of the most obvious consequences of a warming climate in the country.”

Here are some excerpts from the newsletter :

Glacier changes.:

Since 2000, the area of Iceland’s glaciers has decreased by about. 800 km2 and by almost 2200 km2 since the end of the 19th century when the glaciers reached their maximum extent since the country’s settlement in the 9th century. The glacier area has on average shrunk by about. 40 km2 annually in recent years. Glaciers typically retreated by tens of metres in Hagafellsjökull in Langjökull ice cap and Síðujökull and Tungnárjökull in Vatnajökull ice cap hold the 2019 record, retreating by 150 m in this single year. The Breiða-merkurjökull outlet glacier of the Vatnajökull ice cap retreats even faster, where it calves into Jökulsárlón lagoon. The retreat of the calving front measured 150–400 m in 2019.

The Jökulsárlón glacier lagoon :

The Jökulsárlón glacier lagoon demonstrates how important calving into the ocean or terminal lakes can be for the mass balance of glaciers. Jökulsárlón lagoon started to form in the mid-1930s because of the retreat of the glacier. The lagoons by the terminus of Breiðamerkurjökull, Jökulsárlón and Breiðárlón, as well as some smaller lagoons, now have a combined area of over 30 km2. On average, the lagoons have grown by 0.5–1 km2 annually in recent years. The Breiðamerkurjökull glacier retreats and thins due to negative surface mass balance in a warming climate but also due to calving into Jökulsárlón lagoon. Calving currently causes about 1/3 of the mass loss of Breiðamerkurjökull.

Crustal movements :

Rapid melting of glaciers leads to crustal uplift near the ice margins because of the low viscosity of the mantle under Iceland. The land at Höfn in Hornafjörður in SE-Iceland currently rises by about 10–15 mm per year and the rate of uplift has varied substantially over the last two decades due to variations in the rate of mass loss of the glacier. The rate of uplift is even larger near the western margin of Vatnajökull where it has been measured at about 40 mm per year.

The Hoffellsjökull outlet glacier :

The Hoffellsjökull outlet glacier has retreated and thinned greatly since the end of the 19th century, when the glacier reached its maximum extent in recent times. The foreland of Hoffellsjökull provides unique opportunities to observe the geomorphological effects of glacier retreat. The retreat of the glacier has led to the formation of a terminus lake that has grown rapidly since the turn of the 21st century. The area of Hoffellsjökull has descreased by about 40 km2 since the end of the19th century and by more than 0.5 km2 annually in recent years.

Glacier mass balance :

The mass balance of the largest Icelandic glaciers has been negative since 1995, with the exception of the year 2015 when it became positive for the first time in 20 years. The mass balance in 2016 was again negative by a magnitude similar to that in previous years. The mass balance of Langjökull and Hofsjökull was again negative in 2017, whereas Vatnajökull was almost in balance. All three ice caps were near balance in 2018. The summer of 2019 was quite warm and the mass balance of all three ice caps was negative. The glaciers have lost about. 250 km3 of ice since 1995, which corresponds to about 7% of their total volume.

Mass balance of the Icelandic glaciers negative in 2019 :

Glaciers in Iceland retreated rapidly after the mid-1990s as a consequence of warming climate. The mass loss was about 1m water per year on average in the period 1997–2010. After 2010, some summers have been cool and wet and this is reflected in the glacier mass loss, which in the period 2011–2018 was on average only one-third to one-half of the average of the preceding one or two decades. The summer of 2019 was warm and sunny. Consequently, the glacier ablation increased substantially and the mass loss was measured as about 1.5 m water per year which is among the highest values on record.

The entire newsletter Melting Glaciers can be found (in Icelandic and in English) at this address :

https://www.vedur.is/media/loftslag/frettabref-joklar-newsletter-glaciers-iceland-2019-1-.pdf

Source : Wikipedia

Variations du  Breiðamerkurjökull au niveau du vêlage dans le lagon du Jökulsárlón

(Source : Glacier Melting)

Vêlage du Vatnajökull (Photo : C. Grandpey)

La fonte des glaciers en Alaska // Glacier melting in Alaska

 A l’attention de ceux qui auraient encore des doutes sur les effets dévastateurs du changement climatique d’origine anthropique, voici une vidéo qui montre en accéléré le recul des glaciers de l’Alaska. Le montage a été réalisé par un glaciologue de l’Université de Fairbanks à l’aide d’images envoyées par le programme satellitaire NASA-USGS Landsat au cours des 48 dernières années. La vidéo a été mise en ligne le 9 décembre 2019.

 https://youtu.be/E4Zc_KuXMkA

Comme je l’ai indiqué dans plusieurs notes, j’ai eu l’occasion d’observer les glaciers d’Alaska depuis les airs et de les approcher en bateau. L’un des reculs les plus spectaculaires est celui du glacier Columbia que l’on atteint depuis le petit port de Valdez, là où aboutit l’oléoduc trans-alaskien. Il avait belle allure jusqu’en 1972. C’est l’époque où les gaz à effet de serre ont commencé à modifier la donne et où la catastrophe a commencé, comme pour beaucoup d’autres glaciers de la planète, dans nos Alpes en particulier.

Dès les années 1980, on voit le Columbia reculer toujours plus rapidement. En 2019, au moment où la vidéo a été diffusée, il a reculé de plus de 20 kilomètres par rapport à 1972. Entre mes deux visites de 2009 et 2013, la morphologie de sa partie frontale avait totalement changé

En 2015, j’exposais des photos des glaciers d’Alaska au festival Nature de Montier-en-Der. James Balog*, photographe naturaliste américain, exposait lui aussi des images du Columbia dans un autre site du festival. La très intéressante conversation que nous avons eue a abouti aux mêmes conclusions pessimistes sur l’avenir des glaciers et des banquises dans le monde.

Dans le sud de l’Alaska, j’ai eu l’occasion de faire d’autres approches par la mer. Comme le Columbia, le glacier Sawyer fond de manière spectaculaire. Ainsi, il avait reculé de quelque 600 mètres entre juin et septembre 2016 quand je l’ai observé !

J’adore assister au vêlage d’un glacier. J’éprouve autant d’émotion que devant un volcan en éruption. De tels phénomènes permettent de relativiser et confirment que l’Homme n’est pas grand-chose par rapport aux forces de la Nature…

*James Balog et son équipe ont filmé au Groenland le plus important vêlage glaciaire jamais observé par l’Homme.

https://youtu.be/oXe7T4SQNts

———————————————–

For those who still have doubts about the devastating effects of anthropogenic climate change, here is a video showing the accelerating retreat of the glaciers of Alaska. The editing was carried out by a glaciologist at the University of Fairbanks using images sent by the NASA-USGS Landsat satellite program over the past 48 years. The video was uploaded on December 9th, 2019.
https://youtu.be/E4Zc_KuXMkA

As I explained in several posts, I have had the opportunity to observe Alaskan glaciers from the air and approach them by boat. One of the most spectacular retreats is that of the Columbia Glacier. You can reach the glacier from the small port of Valdez which is also the end of the Trans-Alaskan oil pipeline. The glacier looked fine until 1972. It was the time when greenhouse gases began to change the game and when the disaster began, as for many other glaciers on the planet, in our Alps in particular.
As early as the 1980s, the Columbia retreated ever faster. In 2019, when the video was released, it fell more than 20 kilometers from 1972. Between my two visits in 2009 and 2013, the morphology of its front part had totally changed
In 2015, I was exhibiting photos of Alaskan glaciers at the Montier-en-Der Nature festival. James Balog *, an American naturalist photographer, also exhibited photos of the Columbia glacier at another site of the festival. The very interesting talk we had led to the same pessimistic conclusions about the future of glaciers and sea ice around the world.
In southern Alaska, I have had the opportunity to take other approaches by sea. Like the Columbia, the Sawyer Glacier is melting dramatically. Thus, it had shrunk by some 600 metres between June and September 2016 when I observed it!
I love watching the calving of a glacier. I feel as much emotion as in front of an erupting volcano. Such phenomena put into perspective and confirm that Man is not much compared to the forces of Nature …

* James Balog and his team filmed the biggest ice calving ever seen by humans in Greenland.
https://youtu.be/oXe7T4SQNts

Le glacier Columbia en 2009

Le glacier Columbia en 2019

Le Glacier Sawyer en 2016

Beaucoup de glaciers de montagne sont en phase d’effondrement en Alaska

(Photos: C. Grandpey)