Kilauea (Hawaii) : l’activité mouvementée de l’Halema’uma’u // Halema’uma’u’s eventful activity

La lave a fait sa réapparition sur le Kilauea, dans le cratère de l’Halema’uma’u, le 29 septembre 2021, mais ce n’est pas la première fois que l’on observe de la lave dans ce cratère qui a subi des changements à répétition au cours des deux derniers siècles.
Avant 1924, la taille et la forme du lac de lave dans l’Halema’uma’u changeaient fréquemment et la lave se répandait généralement sur le plancher de la caldeira du Kilauea.
Après l’effondrement de l’Halema’uma’u en 1924, le contour du cratère est resté en l’état jusqu’en 2018. Des lacs de lave éphémères allaient et venaient, en particulier dans les années 1950 et 1960, et ont connu leur apogée avec le lac de lave qui a occupé le cratère entre 2008 et 2018.
Le changement récent le plus important au sommet du Kilauea s’est produit en 2018 lorsque le plancher de l’Halema’uma’u s’est effondré de 500 mètres, avec une augmentation du volume de la caldeira de près d’un kilomètre cube. L’éruption de 2018 et l’effondrement du sommet du Kilauea ont mis fin à une période d’activité continue qui avait persisté pendant des décennies.
Une période de calme relatif a suivi les événements de 2018. Elle a pris fin avec le retour de l’activité éruptive au sommet du Kilauea en décembre 2020.
Le Kilauea est entré en éruption le 20 décembre 2020. La lave s’est déversée dans la pièce d’eau au fond de l’Halema’uma’u à partir de bouches qui se sont ouvertes sur les parois du cratère. Le lac s’est vaporisé en quelques heures. L’éruption a formé un nouveau lac de lave qui est resté présent durant cinq mois. Le lac de lave a rempli 226 m du cratère de l’Halema’uma’u avec 41 millions de mètres cubes de lave.
Le Kilauea est de nouveau entré en éruption le 29 septembre 2021. Des bouches se sont ouvertes au centre de l’ancien lac de lave et sur les parois de l’Halema’uma’u. Un nouveau lac de lave a commencé à se former, à s’élever et a continué de remplir le cratère. En ce moment, la lave est émise par une bouche unique et elle a ajouté 30 millions de mètres cubes au volume du lac.
La lave a maintenant rempli Halema’uma’u jusqu’à moitié de la hauteur laissée par l’effondrement de 2018. Le lac de lave a une profondeur de 282 m, mais il n’y a aucun risque de remplissage et de débordement. Les 71 millions de mètres cubes de lave qui se sont accumulés au cours de l’année écoulée représentent moins de 10% du volume de 1 kilomètre cube qui s’est effondré en 2018.
De grands volumes de lave sont nécessaires pour faire s’élever d’un mètre le niveau du lac de lave. En effet, la largeur du cratère augmente au fur et à mesure que l’on s’élève. En ce moment, plus de 670 000 mètres cubes de lave sont nécessaires pour faire s’élever la surface d’un mètre ; au vu du débit effusif actuel, cela prend environ deux jours.
Une question est de savoir si cette période de remplissage annonce une autre période dominée par des éruptions sommitales, comme cela a été observé avant 1924, ou si c’est le prélude à une activité éruptive dans la zone de rift, comme cela s’est produit après la présence de lacs de lave au sommet du Kilauea dans les années 1950 et 1960.
Source : USGS/HVO.

———————————————-

Lava reappeared within Kilauea’s Halema’uma’u Crater on September 29th, 2021 but this is not the first time lava has been seen in the crater which has undergone repeated changes during the past two centuries.

Prior to 1924, the size and shape of the Halemaʻumaʻu lava lake changed frequently and lava commonly spilled out across the floor of Kīlauea caldera.

After the 1924 collapse of Halemaʻumaʻu, the outline of the crater remained constant until 2018. Ephemeral lava lakes came and went, especially during the 1950s and 1960s, and culminated with the 2008–2018 lava lake.

The most significant recent change at Kīlauea’s summit occurred in 2018 when the floor of Halemaʻumaʻu crater collapsed 500 meters and the volume of the caldera increased by almost a cubic kilometer. The 2018 eruption and summit collapse of Kīlauea ended a period of continuous flank and summit activity that had persisted for decades.

A period of quiet uncertainty followed the 2018 events. This ended with the return of eruptive activity at Kīlauea’s summit in December 2020.

Kīlauea erupted on December 20th, 2020. Lava poured from vents on the walls of Halemaʻumaʻu crater into the water lake, which boiled away in a matter of hours. The eruption formed a new lava lake and lasted for five months. The lava lake filled in 226 m of Halemaʻumaʻu crater with 41 million cubic meters of lava.

Kīlauea erupted again on September 29th, 2021. Vents opened in the center of the older lava lake and on the walls of Halamaʻumaʻu. The lava lake began to rise and continue to fill the crater. Lava is currently erupting from a single vent and has added a total of 30 million cubic meters to the volume of the lava lake.

Lava has now refilled Halamaʻumaʻu more than half the distance it collapsed in 2018. The lava lake is 282 m deep, but Halemaʻumaʻu is in no danger of filling and overflowing anytime soon. The 71 million cubic meters of lava that has erupted in the past year account for less than 10 percent of the 1 cubic kilometer volume that collapsed in 2018.

Greater volumes of lava are needed for each increase of one meter of lake level rise because the width of the crater increases with elevation. At this point, more than 670,000 cubic meters of lava needs to erupt to raise the surface 1 meter; at the current eruption rate, this takes about two days.

An important question for HVO scientists is whether this period of refilling is a prelude to an era dominated by summit eruptions, similar to pre-1924 activity, or whether it is the prelude to increased rift zone activity, like what followed the summit lava lakes of the 1950s and 1960s.

Source: USGS / HVO.

Lac de lave dans l’Halema’uma’u en 2016 (Crédit photo : HVO)

 

Graphique montrant les différents niveaux de l’Halema’uma’u en suivant une ligne de l’ouest (gauche) à l’est (droite). [Source: USGS].

La muographie permettra-t-elle un jour de prévoir les éruptions ? // Will muography some day help predict eruptions ?

J’ai expliqué dans des notes précédentes (21 novembre 2015, 11 juillet 2016) que les muons pourraient nous aider à comprendre la structure interne de certains volcans. Un nouvel article publié dans la presse américaine va plus loin et affirme que ces particules cosmiques pourraient être utilisés pour prévoir les éruptions.
Les muons sont partout et nous frappent à chaque seconde. Ces particules, qui se forment lorsque les rayons cosmiques pénètrent dans l’atmosphère terrestre, sont inoffensives et se désintègrent rapidement en formant des amas de particules encore plus fines.
Les muons pénètrent dans les objets comme le font les rayons X,. C’est ainsi qu’ils ont permis aux scientifiques de découvrir une chambre funéraire à l’intérieur de la Grande Pyramide d’Égypte il y a plusieurs années.
Les scientifiques utilisent également des muons pour cartographier la structure interne des volcans, ce qui pourrait un jour aider à prévoir des éruptions. C’est ce que l’on peut lire dans un article publié la semaine dernière dans les Proceedings of the Royal Society.
Pour créer ces cartes, les scientifiques mesurent la faculté des muons à traverser le magma qui circule dans les cavités, les chambres et entre les passages rocheux à l’intérieur des volcans. Ils utilisent ensuite ces informations pour créer des aperçus géologiques. Selon l’un des auteurs de l’article, la muographie, pourrait un jour permettre de suivre les mouvements du magma qui précèdent une éruption
Les muons ont une charge négative, mais sont 207 fois plus lourds que les électrons. Ils se déplacent presque à la vitesse de la lumière. Cette lourdeur et cette vitesse permettent aux particules de pénétrer dans des matériaux denses comme la roche volcanique. Plus l’objet est dense, plus les muons perdent de la vitesse et se désintègrent. De nombreux muons peuvent heurter le flanc d’un volcan et le traverser. Toutefois, si la structure de la montagne est suffisamment dense, par exemple parce qu’un passage est rempli de magma, un muon ne pourra pas sortir de l’autre côté du volcan.
Pour repérer quels muons ont réussi à traverser l’édifice volcanique, les scientifiques installent des détecteurs sur les flancs d’un volcan. Ces détecteurs créent une image de l’intérieur du volcan en capturant les muons qui ne se sont pas désintégrés lors de leur passage à travers l’édifice, et en notant les zones où les muons ne sont pas ressortis. Certains chercheurs réalisent cette cartographie depuis les airs en positionnant les détecteurs de muons à l’intérieur d’hélicoptères et en volant à proximité des flancs du volcan.
Les muons qui traversent complètement l’édifice volcanique projettent des zones sombres sur le détecteur de muons. Mais lorsque les muons frappent des parties denses et se désintègrent, ils laissent des zones plus claires. Autrement dit, plus l’objet est dense, plus zone imprimée est claire. Plus on dispose de détecteurs de muons autour d’un volcan, meilleure est l’image. En utilisant plusieurs détecteurs positionnés autour d’un objet, il est possible de créer une image 3D.
Les chercheurs ont utilisé la muographie pour scruter l’intérieur des volcans japonais Sakurajima et Asama, ainsi que trois volcans en Italie, dont le Vésuve, et La Soufrière de la Guadeloupe.
[NDLR : Le problème est que les détecteurs ne sont pas toujours faciles à mettre en place sur les flancs d’un volcan, comme on a pu le voir avec La Soufrière de la Guadeloupe. De plus, pour être efficaces, les détecteurs doivent être installés sur des volcans coniques, de forme pyramidale comme le mont Unzen au Japon, ou encore le Mayon aux Philippines. Les résultats seraient beaucoup plus aléatoires sur des volcans boucliers comme le Kilauea à Hawaii.]
En plus de la cartographie des entrailles d’un volcan, l’article explique que la muographie pourrait être utilisée pour repérer les réservoirs de magma à l’intérieur des volcans qui sont sur le point d’entrer en éruption et pour suivre le mouvement du magma en temps réel. Les éruptions sont souvent précédées d’une ascension du magma vers le sommet du volcan. L’utilisation de muons pour détecter le déplacement du magma dans la zone sommitale pourrait aider les scientifiques à détecter les éruptions imminentes. Cela permettrait d’évacuer des populations en toute sécurité avant une éruption. Cependant, la muographie est encore loin de ce résultat et le rêve de tout volcanologue n’est pas près de se réaliser…
Source (entre autres) : Business Insider.

——————————————

I explained in previous posts (21 November 2015, 11 July 2016) that muons could help us understand the inner structure of some volcanoes. A new article published in the American press goes farther and explains that these cosmic particles could be used to predict eruptions.

Muons are everywhere and strike us every second. These particles, which are created when cosmic rays enter the Earth’s atmosphere, are harmless and quickly decay into clusters of lighter particles.

The particles penetrate objects like X-rays do, which make them useful to scientists, who used muons to uncover a hidden chamber in Egypt’s Great Pyramid several years ago.

Scientists also use muons to map the internal structure of volcanoes, which could one day help predict dangerous eruptions, according to an article published last week in the Proceedings of the Royal Society.

To create those maps, scientists measure how efficiently particles pass through magma flowing through caverns, chambers, and rocky passages in volcanoes, then use that information to create geological blueprints. According to one of the authors of the article, muography, may one day make it possible to track magma movements that may precede an eruption

Muons have a negative charge, but are 207 times heavier than electrons, traveling at nearly the speed of light. That heaviness and speed allows particles to penetrate dense materials like volcanic rock. The denser the object, the more quickly muons lose speed and decay. Many muons can hit the side of a volcano and travel right through. But if the volcano is dense enough, for instance because a passage is filled with magma, a muon won’t make it out the volcano’s other side.

To spot which muons survived the journey, scientists set up muon detectors on the flanks of a volcano. Those detectors create an image of the volcano’s interior by capturing the muons that didn’t decay while passing through the volcano, and noting gaps where muons didn’t survive intact. Some researchers do this mapping from the air by positioning muon detectors inside helicopters and flying near the volcano’s flanks.

Muons that pass through completely cast dark shadows on the muon detector. But when muons hit dense parts of the volcano and decay more quickly, they leave lighter silhouettes. In short, the denser the object, the lighter the silhouette. The more muon detectors surrounding a volcano, the better the image. By using multiple detectors positioned around the object, it’s possible to build up a crude 3D image.

Researchers have used muography to glimpse inside Japan’s Sakurajima and Mount Asama volcanoes, as well as three volcanoes in Italy,including Vesuvius, and La Soufrière volcano in Guadeloupe.

[NDLR: The problem is that the detectors are not always easy to set up on the flanks of a volcano, as could be seen with La Soufrière. Moreover, to be effective, the detectors need to be installed on pyramid-like conical volcanoes like Mount Unzen in Japan. The operations would be much more diffiocult on shield volcanoes like Kilauea in Hawaii.

Beyond helping scientists map volcanic innards, the new article suggests muography could be used to spot magma reservoirs inside volcanoes that are primed to erupt and to track magma movement in real time. Eruptions are often preceded by magma rising toward the volcano’s summit, and using muons to detect magma flow in that summit area may help scientists detect impending eruptions. This would allow people to safely evacuate ahead of an eruption. However, muon technoly is still far from what is a volcanologist’s dream.

Source (among others) : Business Insider.

Image muonique de la Soufrière de la Guadeloupe (Source: CNRS)

Mesure de la hauteur des fontaines de lave // Measuring the height of lava fountains

L’un des derniers épisodes de la série « Volcano Watch » publié par l’Observatoire des volcans d’Hawaii – le HVO – est consacré aux fontaines de lave et à la mesure de leur hauteur.
En raison de la pression accumulée par les gaz, le début d’une éruption est souvent la période la plus dynamique et la plus spectaculaire. L’une des premières missions des géologues est de mesurer la hauteur des fontaines de lave et la dimension des bouches éruptives pour essayer d’évaluer l’énergie émise par l’éruption.
Lors des deux dernières éruptions sommitales du Kilauea, les fontaines de lave les plus hautes se sont produites au début de ces événements. Cependant, lors de l’éruption de 2018, les géologues ont dû attendre près d’un mois avant de pouvoir observer la plus haute fontaine car le volcan a d’abord émis un magma plus ancien et plus froid, donc moins propice aux fontaines de lave qui supposent une lave à haute température. .
La mesure de la hauteur d’une fontaine de lave pendant une éruption peut être effectuée avec quelques instruments simples et une trigonométrie de base.
Tout d’abord, les géologues mesurent les angles vers le haut et le bas de la fontaine. Cela peut sembler simple mais peut devenir délicat lorsque la base est difficilement visible ou lorsque le sommet de la fontaine est mal défini.
On entend par ‘sommet de la fontaine de lave’ la limite supérieure de la colonne telle que la voit un oeil humain. C’est le point où la plus grande partie de la lave cesse de monter avant de retomber au sol. Il ne faut pas prendre en compte les particules les plus hautes soulevées par le panache de gaz et qui montent jusqu’à plusieurs dizaines ou plusieurs centaines de mètres au-dessus de la colonne de lave.
La base de la fontaine est facile à déterminer dès le début d’une éruption : c’est le point où la lave jaillit du sol. Même si les géologues arrivent rapidement sur le site éruptif, il est rare d’être présent au moment précis où s’ouvre une fracture, de sorte que la base peut déjà être cachée par des projections de lave et/ou des cendres qui se sont accumulées autour de la bouche active.
Pour effectuer les mesures d’angle, on a besoin d’un inclinomètre à main, d’un télémètre (laser ou optique) ou d’une application accessible sur son smartphone. Pour plus de facilité dans les calculs, les géologues du HVO mesurent toujours l’angle entre la hauteur de l’oeil et le haut de la fontaine, puis un deuxième angle entre la hauteur de l’oeil et le bas de la fontaine. De cette façon, peu importe où on se trouve par rapport à la fontaine
Il est important de tenir l’instrument de mesure au niveau des yeux et de ne pas le déplacer vers le haut ou vers le bas entre les deux mesures. C’est un peu comme si on utilisait un trépied.
Ensuite, les angles mesurés sont notés et les géologues utilisent la trigonométrie pour calculer les distances verticales pour chaque angle – autrement dit les hauteurs partielles pour chaque segment. La dernière partie du calcul consiste à additionner les deux hauteurs.
Pour connaître la distance jusqu’à la fontaine de lave, les géologues du HVO utilisent un télémètre laser précis qui mesure non seulement la distance, mais aussi l’angle, fait le calcul, puis indique la hauteur verticale.
Certaines applications pour smartphones peuvent calculer la distance si on connaît la hauteur d’un élément qui se trouve à proximité immédiate de la fontaine. Si les visiteurs du Parc National des Volcans d’Hawaii éprouvent le désir de mesurer les fontaines de lave, ils peuvent le faire depuis la nouvelle plateforme d’observation de Keanakākoʻi qui offre une vue sur le cratère. S’ils ont la chance de voir des fontaines de lave, ils peuvent les mesurer, ou ils peuvent simplement estimer la hauteur en sachant que le cône de projection (spatter cone) mesure environ 20 à 25 m de hauteur.
Source : USGS/HVO.

—————————————–

One of the last episodes of the series « Volcano Watch » released by the Hawaiian Volcano Observatory is dedicated to lava fountains and the measuring of their height.

Because of the accumulated pressure of the gases, the onset of an eruption is frequently the most dynamic and vigorous period. One of the geologists’ first mission is to measure the height of lava fountains and other vent dimensions to help assess how energetic the eruption is.

In both recent summit eruptions of Kilauea Volcano, the highest fountaining occurred at the start of the eruptions. However, during the 2018 event, geologists had to wait nearly a month to observe the highest fountaining which took place nearly a month into the eruption due to the primary magma pushing out older, cooler magma.

Measuring the height of a lava fountain during an eruption can be accomplished with a few simple instruments and some basic trigonometry.

First, geologists measure the angles to the top and bottom of the fountain. This may seem simple, but it can get tricky when the base becomes obscured or when the top of the fountain has an indistinct boundary.

The top of the lava fountain is defined as the upper boundary of the optically dense column. This is where the vast majority of the lava stops rising and falls back to the ground. This is not to be confused with the highest visible particles, which could be lifted up by the gas plume several tens to hundreds of meters above the lava column.

The base is easy to determine right at the start of an eruption: it is where lava is erupting from the ground. Even though geologists arrive quickly, it is rare to be present exactly when a fissure opens, so the base might already be hidden as lava, spatter, and cinder accumulates around the vent area.

To make the angle measurements, you need either a hand-held inclinometer, compass, rangefinder (laser or optical), or even a handy app on your phone. To make the math easy, HVO geologists always measure the angle from their eye-height to the top of the fountain and then a second angle from their eye-height to the bottom of the fountain. This way no matter where you are in relation to the fountain

It is important to hold the instrument at eye level and not move the instrument up or down between the two measurements, as if you were usuing a tripod.

Second, these measured angles can then be taken and geologists use trigonometry to calculate the vertical distances for each angle — partial heights for each segment. The final part of the calculation is to add these two heights together.

To know the distance to the lava fountain, HVO geologists use an accurate laser range finder that not only measures the distance, but also the angle, does the math, and then reports back the vertical height.

Some smart phone apps can calculate the distance if you know the height of something immediately adjacent to the fountain. If visitors to Hawaii Volcanoes National Park are anxious to measure lava fountains, they can do it from the new Keanakākoʻi viewing area which allows a view into the crater. If they are lucky enough to see lava fountains, they can measure them, or they can simply estimate the height knowing that the spatter cone is about 20–25 m high.

Source: USGS / HVO.

 

En 1959, au cours de l’éruption du Kilauea Iki, les fontaines de lave ont atteint 580 mètres de hauteur (Crédit photo: USGS)

Les cristaux d’olivine du Kilauea (Hawaii) // The olivine crystals of Kilauea Volcano (Hawaii)

Les cristaux d’olivine – le minéral vert très répandu dans les laves hawaïennes – enregistrent quand et comment le magma se déplace à l’intérieur des volcans hawaïens avant les éruptions. Les géologues du HVO expliquent qu’ils peuvent utiliser ces cristaux comme des horloges pour mieux comprendre les événements qui ont précédé les éruptions sommitales du Kilauea en décembre 2020 et septembre 2021.
Les laves et leurs minéraux fournissent des indices sur l’histoire des magmas émis pendant les éruptions. Les récentes éruptions sommitales du Kilauea permettent aux scientifiques d’avoir « une fenêtre sur l’intérieur » du volcan et d’en savoir plus sur l’origine de la lave qui a percé le cratère de l’Halema’uma’u, et à quelle vitesse elle s’est déplacée vers la surface.
Les géologues mesurent la chimie des matériaux émis pour connaître la température du magma, pendant combien de temps il a séjourné à l’intérieur du volcan avant l’éruption, et si des magmas différents – plus anciens et plus froids – ont pu se mélanger au magma juvénile.
L’olivine est principalement composée d’éléments magnésium (Mg) et fer (Fe) ainsi que de silice. Le rapport entre Mg et Fe, également connu sous le nom de teneur en forstérite (Fo), peut donner des informations sur le magma dans lequel le cristal s’est développé.
Un taux de Mg plus élevé dans l’olivine (et donc un Fo plus élevé) signifie que les cristaux se sont développés dans des magmas plus chauds et généralement plus profonds. Au contraire, si la teneur en olivine Fo est faible, cela indique que les cristaux se sont développés dans un magma plus froid et généralement moins profond.
Après avoir recherché des cristaux d’olivine dans les matériaux émis par le Kilauea en décembre 2020 et septembre 2021, les scientifiques du HVO ont travaillé avec le laboratoire de microsonde électronique de l’Université d’Hawaï à Manoa pour photographier l’intérieur des cristaux d’olivine.
Ces images montrent que l’olivine récemment émise par le Kilauea peut être zonée, ce qui signifie que les noyaux des cristaux ont un Fo différent de celui de leurs bords. Cela correspond à un zonage normal dans lequel le Fo décroît de l’intérieur du cristal vers l’extérieur.
Le zonage normal des cristaux indique aux géologues qu’ils se sont d’abord développés dans une partie plus profonde et plus chaude du Kilauea, puis que leurs bords se sont développés plus tard après que le magma se soit déplacé vers une région moins profonde et plus froide.
La présence de cristaux zonés est intéressante pour le sommet du Kilauea. En effet, l’olivine du lac de lave qui était active de 2008 à 2018, avant l’effondrement du sommet, était généralement homogène, ce qui signifie qu’elle ne présentait aucun zonage.
Ces changements intervenus dans le Fo de l’olivine sont également intéressants à étudier car ils enregistrent en fait le temps mis par le processus de diffusion. Dans ce processus, les atomes de Mg du noyau d’olivine peuvent diffuser vers les bords au fil du temps pendant que l’olivine se trouve dans un magma chaud. En mesurant le changement de Fo du noyau au bord, puis en appliquant un modèle de ce changement, les géologues peuvent calculer combien de temps les cristaux sont restés au niveau le moins profond, là où les bords se sont développés avant d’entrer en éruption.
Les cristaux d’olivine de l’éruption de 2020 du Kilauea ont présenté des temps de diffusion d’environ 60 jours ou moins. Cela montre que les cristaux, qui à l’origine étaient logés profondément dans le volcan, se sont déplacés vers des régions peu profondes environ 60 jours avant leur éruption.
Environ 60 jours avant l’éruption du Kilauea en décembre 2020, le HVO a détecté fin octobre la première série d’essaims sismiques au cours de la période d’activité qui a conduit à l’éruption. Bien que l’essaim sismique initial se soit produit sous le terrain de camping de Nāmakanipaio, les temps de diffusion des cristaux d’olivine montrent que les séismes étaient peut-être le signe que le magma pénétrait à faible profondeur sous le sommet du Kilauea.
Au cours des prochaines semaines, les cristaux d’olivine de l’éruption du Kilauea qui a commencé le 29 septembre 2021 seront mesurés sur la microsonde électronique de l’Observatoire des Volcans de Californie. Les données seront ensuite modélisées pour calculer les échelles de temps à partir des «horloges» les plus récentes fournies par les cristaux. Cela permettra aux géologues de savoir si le même processus s’est répété cet automne ou si quelque chose de nouveau et de différent s’est produit avant la dernière éruption du Kilauea.
Source : USGS/HVO.

——————————————————

Olivine crystals – the green mineral common in Hawaiian lavas – record when and where magmas move inside Hawaiian volcanoes before they erupt. HVO geologists explain that theye can use these little crystals like clocks to better understand the magmatic events leading to the December 2020 and September 2021 summit eruptions at Kilauea.

Lavas and their minerals erupted from Hawaiian volcanoes provide clues to the history of the magmas that are eventually erupted. Kilauea’s recent summit eruptions allow scientists to get “a glimpse inside” the volcano and the chance to learn more about where the magma that erupted in Halema‘uma‘u crater came from and how quickly it moved to the surface.

Geologists measure the chemistry of the erupted materials to find out how hot the magma was, how long it stayed inside the volcano prior to erupting at the surface, and how different magmas – older and cooler – might have mixed.

Olivine is primarily made of the elements magnesium (Mg) and iron (Fe) along with silica. The ratio of Mg and Fe, also known as the forsterite (Fo) content, can give information about the magma that the crystal grew in.

Higher Mg in olivine (and therefore higher Fo) means that crystals grew in hotter, and usually deeper, magmas. If the olivine Fo content is low, it tells us that crystals grew in a cooler, and usually shallower, magma.

After searching for olivine crystals in tephra erupted by Kilauea in December 2020 and September 2021, HVO scientists worked with the electron microprobe lab housed at the University of Hawaii at Manoa to take pictures of the insides of the olivine crystals.

These images show that Kilauea’s recently erupted olivine can be zoned, meaning that the cores of the crystals have different Fo than their rims. This corresponds to normal zoning where Fo decreases from the inside of the crystal to the outside.

Normal zoning in these crystals tells geologists that they first grew in a deeper, hotter part of Kilauea and then the rims of the crystals grew later after the magma had moved to a shallower, cooler region.

The presence of zoned crystals is interesting for Kilauea’s summit. Indeed, olivine from the lava lake that was active from 2008–2018, prior to the summit collapse, were typically homogeneous, meaning that they did not have any zoning.

These changes in olivine Fo are also special because they actually record time through a process called diffusion. In this process, Mg atoms from the olivine core can diffuse toward its rim over time while the olivine sits in a hot magma. By measuring the change in Fo from core to rim, and then applying a model of this change, geologists can calculate how long crystals sat at the shallower level where the rims grew before they erupted.

Kilauea’s 2020 olivine crystals have modeled diffusion times of about 60 days or less. This suggests that the crystals, which originally grew deeper in the volcano, moved up to shallow regions about 60 days before they erupted.

Around 60 days before Kilauea’s December 2020 eruption, HVO detected in late October the first set of earthquake swarms during the period of unrest leading to the eruption. Though the initial earthquake swarm occurred under Nāmakanipaio Campground, the modeled olivine crystal diffusion times suggest that the earthquakes could have been a sign that magma was intruding shallowly under Kilauea’s summit.

In the next few weeks, olivine crystals from Kilauea’s eruption that began on September 29th will be measured on the California Volcano Observatory’s electron microprobe. The data will then be modeled to calculate the timescales from these most recent “crystal clocks,” letting geologists know if the same process was repeated this Fall or if something new and different happened prior to the most recent eruption of Kilauea.

Source: USGS / HVO.

Dans ces images de cristaux mises en ligne par le HVO, on peut voir à gauche une vue au microscope de l’olivine émise lors de l’éruption du Mauna Loa en 1852.

Au centre, on a une vue grossie de l’intérieur d’une olivine prélevée pendant l’éruption du Kīlauea en décembre 2020, où les niveaux de gris indiquent l’abondance relative de fer (Fe). Le noyau plus foncé (noir à l’intérieur) de l’olivine est plus élevé en Mg (et donc avec une teneur en Fo plus élevée) que le bord plus clair (gris à l’extérieur). Ce cristal mesure environ 800 microns de diamètre.

À droite, on a une autre image électronique de l’olivine du 29 septembre 2021 qui présente, elle aussi, des changements dans la teneur en Fo entre le noyau et le bord. Ce cristal est plus petit, avec un diamètre de seulement 400 microns.

Images obtenues par la microsonde électronique de l’Université d’Hawaii à Manoa. (Source: HVO)

——————————————

Images of olivine from Hawaiian volcanoes:

Left: Green olivine from Mauna Loa’s 1852 eruption, viewed under a microscope.

Middle: Zoomed in image of the inside of an olivine from Kilauea’s December 2020 eruption, where grayscale indicates the relative abundance of iron (Fe). The darker core (black inside) of the olivine is higher in Mg (and a higher Fo content) than the lighter rim (gray outside). This crystal is approximately 800 microns across.

Right: Another electron image of olivine from 29 September 2021 that also has changes in Fo content between the core and rim. This crystal is smaller, only 400 microns across.

Images from the University of Hawai‘i at Mānoa electron microprobe. (Source: HVO)