Vers un changement de comportement du Kilauea (Hawaï) ? // Towards a change in behaviour of Kilauea (Hawaii) ?

Le 14 janvier 2026, après la fin de l’Épisode 40, un nouvel essaim sismique a été enregistré sous le cratère Halemaʻumaʻu, au sommet du Kilauea. Cette activité sismique a progressivement diminué en fréquence et en intensité sur une période de 40 minutes. Comme on peut le voir sur la carte ci-dessous, les épicentres de ces séismes sont largement répartis dans la partie Est du cratère de l’Halemaʻumaʻu et la caldeira sud. Tous les séismes avaient une magnitude inférieure à M2,0, et de M1,0 ou moins pour la plupart.

Localisation des quelque 300 séismes enregistrés entre le 12 et le 22 janvier 2026 dans la région sommitale du Kilauea.

Il s’agit du troisième essaim sismique sous le cratère de l’Halemaʻumaʻu depuis la fin de l’Épisode 40. Les deux premiers essaims présentaient des magnitudes similaires. La plupart des séismes semblent se produire dans le secteur de la chambre magmatique superficielle de l’Halemaʻumaʻu, à une profondeur de 1,5 à 4 km.
La plupart de ces séismes sont volcano-tectoniques, liés à l’ouverture de fissures sous l’effet de la pression magmatique. Une activité sismique d’une telle intensité n’avait jamais été observée au sommet du Kilauea depuis le début de l’éruption en décembre 2024. Reste à savoir si ces essaims sismiques auront un impact sur l’activité des fontaines de lave en surface.
Actuellement, toute l’activité éruptive se concentre sous la caldeira du Kilauea et rien n’indique que le magma s’éloigne de cette zone. Les zones de rift est et sud-ouest ne montrent aucun signe de réveil pour le moment.

Dans un communiqué publié le 23 janvier 2026, l’Observatoire volcanologique d’Hawaï (HVO) indique que l’éruption qui a débuté le 23 décembre 2024 dans le cratère de l’Halema’uma’u au sommet du Kīlauea, se poursuit après 40 épisodes de fontaines de lave. Les dernières données montrent que la pression à l’intérieur de la chambre magmatique superficielle, située sous le sommet du Kīlauea, augmente lentement et pourrait (le conditionnel est de rigueur) à terme modifier la dynamique éruptive.
On ne sait pas quel sera l »impact des récents essaims sismiques sur le prochain épisode de fontaines de lave, mais aucune modification des déformations du sol ne laisse entrevoir une intrusion magmatique dans une nouvelle zone. L’Observatoire suggère plusieurs scénarios possibles pour les mois à venir :
– Poursuite de l’éruption. La lave pourrait continuer à jaillir des bouches éruptives nord et sud dans l’ l’Halemaʻumaʻu pendant une durée et un nombre d’épisodes imprévisibles.
– Une ou plusieurs nouvelles bouches éruptives pourraient se former au sommet ou dans la partie supérieure de la zone de rift sud-ouest, avec des projections de lave à proximité des bouches existantes, ou bien à l’intérieur de la caldeira sommitale.
– Une autre possibilité est une intrusion magmatique ou une éruption dans la zone de rift Est : du magma pourrait migrer vers cette zone et provoquer potentiellement une éruption. Cependant, compte tenu de l’emplacement des bouches éruptives et des déformations de la zone sommitale, ce scénario est le moins probable.
Source : HVO.

Inflation du Kilauea sur 2 jours :

Inflation du Kilauea sur 3 mois :

Source: HVO

Le communiqué du HVO illustre la difficulté de prévoir le comportement d’un volcan, même celui du Kilauea, qui est truffé d’instruments et fait l’objet d’une surveillance étroite. La même remarque pourrait s’appliquer au Piton de la Fournaise (Île de la Réunion), un volcan de point chaud, lui aussi. La dernière éruption a mis longtemps à démarrer et a parfois décontenancé l’OVPF, l’observatoire local, avec des éruptions avortées en décembre et le 1er janvier 2026.

————————————————

On January 14 2026, following the end of Episode 40, a new seismic swarm was recorded beneath Halemaʻumaʻu crater at the summit of Kilauea. Elevated seismic activity gradually died down in frequency of occurrence and intensity, over the course of 40 minutes. Locations of these earthquakes are spread broadly beneath east side of Halemaʻumaʻu crater and the south caldera. All of the detected earthquakes have been less than magnitude M2.0, with most being magnitude M1.0 or smaller.

This is the third small swarm of earthquakes beneath Halemaʻumaʻu crater since the end of episode 40. The first and second swarms both had magnitude ranges similar to the third. Most of the earthquakes seem to be occurring around the shallow Halemaʻumaʻu magma chamber, some 1.5 to 4 km beneath the surface.

Most of the earthquakes are volcano-tectonic earthquakes that accompany crack opening due to magmatic pressure. Elevated seismic activity of these intensities have not been seen at the summit since the start of the eruption in December 2024. It is yet to be determined if these swarms after Episode 40 will have an impact on lava-fountaining activity at the surface.

Currently all of the activity remains beneath Kīlauea caldera and there is no observable evidence that magma is migrating away from this area.  Both the east and the southwest rift zones remain quiet at this time.

In an information statement released on 23 January 2026, the Hawaiian Volcano Observatory (HVO) indicates that the eruption that began within Halemaʻumaʻu at the summit of Kilauea volcano on December 23, 2024, continues after 40 lava fountaining episodes. Monitoring data show that the modeled pressurization within the shallow Halemaʻumaʻu magma chamber beneath Kīlauea’s summit has been slowly increasing over time and could eventually result in a change to the eruption dynamics.

The impact of the recent earthquake swarms on the next episode of lava fountaining, if any, is unknown at this time, but there have not been changes in ground deformation patterns to suggest that magma has intruded or is intruding into a new area.

In its statement, the HVO explains that it is not possible to forecast an exact outcome of the latest seismic activity on the behaviour of Kilauea. The Observatory suggests some potential scenarios in the coming months :

  • The eruption continues. Lava could continue to erupt from the north and south vents in Halemaʻumaʻu for an unforeseeable amount of time or number of episodes.
  • One or several new vents might form in the summit region or upper Southwest Rift Zone, erupting lava near the existing vents in Halemaʻumaʻu, or nearby within the summit caldera.
  • Another possibility is an East Rift zone intrusion or eruption: Magma could migrate into East Rift Zone, potentially resulting in an eruption there. However, given the vent locations and summit region deformation patterns, this is the least likely scenario.

Source : HVO.

This statement shows the difficulty to predict a volcano’s behaviour, even on Kilauea which is fully monitored. The same remark is valid for Piton de la Fournaise (Reunion Island), a similar hotspot volcano. The last eruption took a long time to start and puzzled the OVPF. the local observatory, with aborted eruptions in December and on January 1st 2026.

Mesures de déformation de la Montagne Pelée (Martinique)

Suite à la hausse de l’activité sismique observée depuis 2019 sur la Montagne Pelée, une campagne est aujourd’hui organisée pour voir dans quelle mesure l’édifice volcanique s’est déformé.

Photo: C. Grandpey

Le volcan a connu une période d’activité sismique intense entre septembre et octobre 2025 avec près de 9 000 secousses, une situation qui n’a jamais été observée depuis 2012. Afin d’obtenir une bonne image de la situation dans sa globalité, une campagne de mesure étudie la déformation de la Vieille Dame depuis le 5 janvier 2026. Elle doit durer dix jours pendant lesquels les scientifiques vont vérifier la vingtaine de stations sur et autour de la Montagne Pelée. Les mesures sont effectuées à l’aide du GNSS (Système de positionnement par satellites).

Sur la station « Petit Bonhomme » situé à 1123 mètres d’altitude, sur la façade ouest du volcan, l’équipe de chercheurs va fixer le dispositif à un rocher pendant 4 jours. Toutes les 30 secondes, son positionnement sera enregistré, ce qui permettra de vérifier s’il y a eu un début de déformation liée à l’activité sismique de septembre 2025.

Photo: C. Grandpey

L’activité sismique est l’un des quatre paramètres à prendre en compte dans la prévision éruptive avec la température des fumerolles, l’évolution de la la chimie des gaz et le gonflement de la montagne. Comme l’avait expliqué le regretté Maurice Krafft, un volcan en phase pré-éruptive est comme un malade ou un blessé : il a de la fièvre et des frissons, sa blessure enfle et il a mauvaise haleine. C’est un peu la même chose pour un volcan. ,

C’est la déformation de l’édifice volcanique qui est au cœur de la campagne annuelle menée par l’IPGP qui gère l’Observatoire Volcanologique et Sismologique de la Martinique ((OVSM). Les mesures seront par la suite modélisées à l’Observatoire et viendront compléter celles prises de façon permanentes par neuf autres stations positionnées sur la Montagne Pelée.

Les scientifiques expliquent que sur les stations situées au sommet de la Montagne Pelée, les mesures traduisent une légère inflation de la partie sommitale du volcan, de quelques millimètres par an. Il ne s’agit pas d’une remontée de magma des profondeurs. Si c’était le cas, l’ensemble des flancs du volcan gonfleraient. On a davantage affaire à un phénomène superficiel. La campagne de mesures effectuée dans les quinze prochains jours devrait confirmer que l’inflation très légère du sommet est toujours en cours,et que le volcan est toujours dans une phase de reprise d’activité.

 

Carte des vecteurs de déplacement calculés à partir des mesures du réseau permanent et du réseau de répétition entre Janvier 2021 et Décembre 2023 · ©J.-B. de Chabalier, IPGP, rapport annuel de l’OVSM-IPGP, 2023.

Source : Martinique la 1ère.

Tectonique et calottes glaciaires déforment le Groenland // Tectonics and ice sheets distort Greenland

Une étude publiée en août 2025 dans le Journal of Geophysical Research: Solid Earth explique que les processus tectoniques en cours et le comportement des anciennes calottes glaciaires déforment, soulèvent et tirent le Groenland dans différentes directions.

Photo: C. Grandpey

Le Groenland repose sur la plaque tectonique nord-américaine, qui a entraîné l’île vers le nord-ouest à raison de 23 millimètres par an au cours des deux dernières décennies. Les chercheurs observent cette dérive depuis un certain temps. Toutefois, la nouvelle étude analyse des données satellitaires, ce qui montre que ce mouvement et les autres déformations sont bien plus complexes que la simple tectonique des plaques. Par conséquent, la carte du Groenland perdra progressivement en précision si elle n’est pas mise à jour.

Source: Longfors Berg et al. (2025)

Les auteurs de l’étude ont analysé les données de 58 stations GNSS au Groenland, qui enregistrent les mouvements horizontaux et verticaux de l’île, et de près de 2 900 stations GNSS installées autour de la plaque nord-américaine. Les chercheurs ont intégré ces données dans un modèle et, après avoir neutralisé l’influence de la plaque nord-américaine sur le Groenland, ils ont constaté des déformations du socle rocheux qui ne correspondaient pas aux modélisations précédentes.
Dans la plupart des régions analysées par les stations, les mouvements des masses continentales sont principalement dus aux processus tectoniques, mais le Groenland fait exception. En effet, l’île est recouverte d’une immense calotte glaciaire et a connu un passé glaciaire tumultueux.
Les calottes glaciaires exercent une pression considérable sur la croûte terrestre – à l’instar du volcan Mauna Loa à Hawaï – ce qui induit aussi une compression du manteau terrestre. Les matériaux déplacés dans le manteau suite à la pression exercée par la croûte sont repoussés latéralement, créant un bombement périphérique.
Lorsqu’une calotte glaciaire se retire, le manteau ne retrouve pas immédiatement sa forme initiale. Du fait de sa consistance visqueuse, il faut des milliers d’années pour que les matériaux comblent à nouveau le creux créé par la compression exercée par la croûte. Les auteurs de l’étude expliquent que le manteau « possède une mémoire très longue ». Ainsi, le manteau sous et autour du Groenland continue de s’adapter aux variations de la couverture glaciaire depuis le pic de la dernière période glaciaire, il y a environ 20 000 ans, ce qui explique la déformation observée. Plus précisément, il semble que le Groenland réagisse au retrait de la calotte glaciaire Laurentide qui recouvrait de vastes étendues d’Amérique du Nord jusqu’à il y a environ 8 000 ans.

Retrait de la calotte glaciaire Laurentide il y a 8200 ans (Sourve: Glacier-climats.com)

La calotte glaciaire Laurentide a créé un bombement glaciaire périphérique sous certaines parties du Groenland. Ce bombement s’aplatit progressivement, ce qui entraîne des zones du sud du Groenland vers le Canada. Les chercheurs le savaient déjà, mais les nouveaux résultats révèlent que le taux de déformation est plus élevé que ne le montrent la plupart des modèles.
La calotte glaciaire du Groenland contribue également aux mouvements de torsion de l’île. L’eau de fonte de cette calotte glaciaire a contribué à hauteur de 4,10 mètres aux 130 mètres d’élévation du niveau de la mer enregistrés au cours des 20 000 dernières années. Cela signifie que le Groenland a perdu une quantité incroyable de glace, ce qui a déclenché une réaction du manteau terrestre distincte de l’effet de la calotte glaciaire Laurentide.
Source : Live Science.

—————————————-

A study published in August 2025 in the Journal of Geophysical Research: Solid Earth explains that tectonic processes and the behaviourof past ice sheets are contorting, lifting and pulling Greenland in different directions.

Greenland sits on the North American tectonic plate, which has dragged the island northwest by 23 millimeters per year over the past two decades. Researchers have been monitoring this drift for some time, but the new study analyzing satellite data has found that there is far more to the movement and to other deformations than just plate tectonics. As a consequence, the Greenlandic map will slowly lose its accuracy if it is not updated.

The authors of the study analyzed data from 58 Global Network Satellite System (GNSS) stations in Greenland that record the island’s horizontal and vertical movements, and nearly 2,900 GNSS stations around the North American plate. The researchers entered these data into a model, and when they removed the effect on Greenland of the North American plate, they were left with bedrock deformations that di not match previous modeling.

In most regions, the movement of landmasses is overwhelmingly controlled by tectonic processes, but Greenland is different. Indeed, the island is covered by a giant ice sheet and has a tumultuous glacial past.

Ice sheets pile enormous weight onto Earth’s crust – just like Mauna Loa volcano in Hawaii – pressing it down into Earth’s mantle. The material displaced in the mantle by the sinking crust is pushed out to the sides, creating what is known as a peripheral forebulge.

When an ice sheet retreats, the mantle does not return to its original shape immediately. Due to the mantle’s gooey consistency, it takes thousands of years for material to flow back into the dent created by the loaded crust. The authors of the study explain that the mantle « has a very long memory. »

The mantle beneath and around Greenland is still adjusting to changes in ice cover since the peak of the last ice age about 20,000 years ago, which explains why data show the island deforming. Specifically, it appears that Greenland is reacting to the retreat of the Laurentide Ice Sheet, which covered large swathes of North America until about 8,000 years ago.

The Laurentide Ice Sheet created a peripheral forebulge beneath parts of Greenland. This forebulge is gradually flattening, pulling areas of southern Greenland downward and towards Canada. Researchers already knew this, but the new results reveal that the rate of deformation is higher than most modeling suggests.

The Greenland Ice Sheet also plays a role in the island’s twisting motions. Meltwater from the ice sheet has contributed 4.1 meters of the 130 meters of sea level rise recorded over the past 20,000 years. That means Greenland has lost an incredible amount of ice, which in turn has triggered a response in the mantle that is separate from the effect of the Laurentide Ice Sheet.

Source : Live Science.

Un robot sous l’Antarctique oriental // A robot beneath East Antarctica

L’agence scientifique nationale australienne Commonwealth Scientific and Industrial Research Organisation (CSIRO) a effectué une mission scientifique en Antarctique de l’Est. Malgré des débuts difficiles, elle a fourni des informations très intéressantes.

Les scientifiques ont envoyé un robot collecter des données sous le glacier Totten, l’un des mastodontes de l’Est Antarctique, mais un courant l’a dévié de sa destination initiale et le robot s’est dirigé vers l’ouest. Il s’est retrouvé dans une zone difficile d’accès pour les scientifiques, mais il est finalement revenu avec des données extrêmement rares et précieuses.
Le robot, équipé de capteurs de salinité et de température, était conçu pour plonger et remonter à la surface tous les dix jours afin de transmettre ses données aux satellites. Ce type de robot est fréquemment utilisé dans la recherche océanographique, notamment pour mesurer l’impact du réchauffement climatique sur les océans et les glaciers.
Le robot de la CSIRO avait pour mission d’étudier le glacier Totten et d’évaluer l’ampleur de la montée du niveau de la mer en cas de fonte. Ce phénomène est préoccupant et la NOAA américaine a même créé une carte interactive montrant les côtes qui pourraient être submergées en cas de fonte de ce glacier

Détourné de sa trajectoire initiale, le robot s’est retrouvé sous la glace du glacier Denman, dans une zone extrêmement difficile d’accès pour les scientifiques. Les chercheurs ont craint de l’avoir perdu à jamais, mais il a refait surface neuf mois plus tard avec des données hyper intéressantes sur le glacier Denman et l’impact du réchauffement climatique sur l’Antarctique.

Le robot a navigué sous le glacier Denman et la plateforme glaciaire Shackleton sur laquelle le glacier vient buter. Bloqué, il a continué sa mission; il a mesuré la salinité et la température de l’eau, depuis le plancher océanique jusqu’à la base de la plateforme glaciaire. Incapable de remonter à la surface pour transmettre ces données aux satellites, il a été considéré comme perdu par l’équipe de recherche. Pourtant, le robot continuait à travailler. En tentant de remonter à la surface, il venait buter contre la plateforme glaciaire et à chaque contact, il mesurait la profondeur.
L’équipe scientifique a ensuite comparé ces données de profondeur aux mesures satellitaires de la zone. Grâce à ces données, les chercheurs ont pu reconstituer le parcours du robot et ainsi déterminer précisément l’origine de ses mesures de salinité et de température. Au cours de sa mission, le robot a collecté 195 profils de données.
Les données recueillies ont montré que la plateforme glaciaire Shackleton n’est pas encore menacée de fonte par les eaux chaudes. Ce n’est pas le cas du glacier Denman qui est miné par les eaux chaudes qui provoquent sa fonte. Ce glacier, à lui seul, pourrait entraîner une élévation du niveau de la mer de près de 1,50 mètre à travers le monde.

Ce document illustre le recul de la ligne d’ancrage du glacier Denman entre 1996 (ligne noire) et 2018 (ligne jaune). (Source : AGU/Brancato et al.)

Cette découverte scientifique fortuite représente une véritable aubaine pour l’équipe scientifique. Le robot a collecté des données dans des zones jamais étudiées auparavant. En effet, il s’agit de la toute première série de mesures océanographiques réalisées sous une plateforme glaciaire en Antarctique oriental. Ces données sont essentielles pour comprendre cette zone et les risques qu’elle représente pour le glacier Denman. Dans la mesure où le robot a survécu si longtemps sous la glace et a transmis des données de qualité, les scientifiques envisagent d’envoyer d’autres robots dans des régions très reculées afin de recueillir des données inédites.
Le fait que ce robot ait réussi à effectuer des mesures précises en Antarctique oriental est également crucial pour les recherches futures. Cette région étant plus envahie par la glace que l’Antarctique occidental, la fonte des glaciers y représente une menace plus importante pour les littoraux.
Les données récoltées par le robot ont été publiées dans la revue Science Advances en décembre 2025. Elles constituent désormais une ressource précieuse pour les études antarctiques.
Source : BGR.

——————————————————

An Australian national science agency called CSIRO launched an experiment in East Antarctica that first went wrong but in the end provided very interesting information.

A free-floating ocean robot was sent to collect data from the Totten Glacier. However, a current pulled it away from its destination and westward. It ended up in a place very difficult for scientists to analyze, and it returned with extremely rare and valuable data.

The ocean float has salinity and temperature sensors and was meant to go below the water and surface once every 10 days to transmit its data to satellites. Robots like these are used frequently in ocean research and sometimes for measuring the impact of global warming on the waters and glaciers.

This specific one was meant to study the Totten Glacier in regards to how much the global sea levels could rise if the glacier melted. This is such a concern that the American NOAA even has an interactive map to show which coastlines could be permanently underwater in the future.

Pulled off its course, this float actually ended up underneath the ice of the Denman Glacier in a location extremely difficult for scientists to observe and collect data from. Though the research team feared it was lost forever, it popped back out nine months later. With it was a set of crucial data for the Denman Glacier and how global warming is impacting Antarctica as a whole.

The robot traveled beneath the Denman Glacier and the Shackleton ice shelf. Though trapped, the robot ocean float continued to do what it was meant to: It measured water salinity and temperature from the sea floor up to the base of the ice shelf it was under. However, it could not surface to transmit this data to satellites, so it was navigationally lost for the research team. There was one trail of clues left to follow; as the float tried to surface, it bumped the ice shelf. Whenever it did so, it was able to measure the depth of the ice shelf.

The research team was able to compare the data of the ice shelf’s depth to satellite measurements of the area. From that, they were able to piece together an idea of the path the ocean float took, thus knowing where its salinity and temperature measurements were specifically coming from. Throughout its mission, the robot collected 195 profiles of data.

The data returned showed that the Shackleton ice shelf is not yet in danger of warm water melting it. However, the Denman Glacier does have warm water beneath that is causing it to melt. This glacier on its own could cause sea levels around the world to rise by almost 1.50 meters.

This scientific accident turned out to be a stroke of luck for the team. The ocean float gathered data from areas never before researched. In fact, this was the first ever line of oceanographic measurements under an East Antarctic ice shelf. This has provided critical data about this area and the risk posed to the Denman Glacier.

Since the robot float did survive under the ice for so long with good data, scientists look to the future of sending more of these floats into very remote places in hopes of returning rare data.

The fact that the ocean float measured Eastern Antarctica specifically is also very important for future research. It holds more ice than West Antarctica, so glaciers melting in that area pose a greater overall threat for coastlines.

The data from this lost robot was put into publication in the ScienceAdvances journal in December 2025. It now serves as a useful piece of research for Antarctic studies.

Source : BGR.