Tectonique et calottes glaciaires déforment le Groenland // Tectonics and ice sheets distort Greenland

Une étude publiée en août 2025 dans le Journal of Geophysical Research: Solid Earth explique que les processus tectoniques en cours et le comportement des anciennes calottes glaciaires déforment, soulèvent et tirent le Groenland dans différentes directions.

Photo: C. Grandpey

Le Groenland repose sur la plaque tectonique nord-américaine, qui a entraîné l’île vers le nord-ouest à raison de 23 millimètres par an au cours des deux dernières décennies. Les chercheurs observent cette dérive depuis un certain temps. Toutefois, la nouvelle étude analyse des données satellitaires, ce qui montre que ce mouvement et les autres déformations sont bien plus complexes que la simple tectonique des plaques. Par conséquent, la carte du Groenland perdra progressivement en précision si elle n’est pas mise à jour.

Source: Longfors Berg et al. (2025)

Les auteurs de l’étude ont analysé les données de 58 stations GNSS au Groenland, qui enregistrent les mouvements horizontaux et verticaux de l’île, et de près de 2 900 stations GNSS installées autour de la plaque nord-américaine. Les chercheurs ont intégré ces données dans un modèle et, après avoir neutralisé l’influence de la plaque nord-américaine sur le Groenland, ils ont constaté des déformations du socle rocheux qui ne correspondaient pas aux modélisations précédentes.
Dans la plupart des régions analysées par les stations, les mouvements des masses continentales sont principalement dus aux processus tectoniques, mais le Groenland fait exception. En effet, l’île est recouverte d’une immense calotte glaciaire et a connu un passé glaciaire tumultueux.
Les calottes glaciaires exercent une pression considérable sur la croûte terrestre – à l’instar du volcan Mauna Loa à Hawaï – ce qui induit aussi une compression du manteau terrestre. Les matériaux déplacés dans le manteau suite à la pression exercée par la croûte sont repoussés latéralement, créant un bombement périphérique.
Lorsqu’une calotte glaciaire se retire, le manteau ne retrouve pas immédiatement sa forme initiale. Du fait de sa consistance visqueuse, il faut des milliers d’années pour que les matériaux comblent à nouveau le creux créé par la compression exercée par la croûte. Les auteurs de l’étude expliquent que le manteau « possède une mémoire très longue ». Ainsi, le manteau sous et autour du Groenland continue de s’adapter aux variations de la couverture glaciaire depuis le pic de la dernière période glaciaire, il y a environ 20 000 ans, ce qui explique la déformation observée. Plus précisément, il semble que le Groenland réagisse au retrait de la calotte glaciaire Laurentide qui recouvrait de vastes étendues d’Amérique du Nord jusqu’à il y a environ 8 000 ans.

Retrait de la calotte glaciaire Laurentide il y a 8200 ans (Sourve: Glacier-climats.com)

La calotte glaciaire Laurentide a créé un bombement glaciaire périphérique sous certaines parties du Groenland. Ce bombement s’aplatit progressivement, ce qui entraîne des zones du sud du Groenland vers le Canada. Les chercheurs le savaient déjà, mais les nouveaux résultats révèlent que le taux de déformation est plus élevé que ne le montrent la plupart des modèles.
La calotte glaciaire du Groenland contribue également aux mouvements de torsion de l’île. L’eau de fonte de cette calotte glaciaire a contribué à hauteur de 4,10 mètres aux 130 mètres d’élévation du niveau de la mer enregistrés au cours des 20 000 dernières années. Cela signifie que le Groenland a perdu une quantité incroyable de glace, ce qui a déclenché une réaction du manteau terrestre distincte de l’effet de la calotte glaciaire Laurentide.
Source : Live Science.

—————————————-

A study published in August 2025 in the Journal of Geophysical Research: Solid Earth explains that tectonic processes and the behaviourof past ice sheets are contorting, lifting and pulling Greenland in different directions.

Greenland sits on the North American tectonic plate, which has dragged the island northwest by 23 millimeters per year over the past two decades. Researchers have been monitoring this drift for some time, but the new study analyzing satellite data has found that there is far more to the movement and to other deformations than just plate tectonics. As a consequence, the Greenlandic map will slowly lose its accuracy if it is not updated.

The authors of the study analyzed data from 58 Global Network Satellite System (GNSS) stations in Greenland that record the island’s horizontal and vertical movements, and nearly 2,900 GNSS stations around the North American plate. The researchers entered these data into a model, and when they removed the effect on Greenland of the North American plate, they were left with bedrock deformations that di not match previous modeling.

In most regions, the movement of landmasses is overwhelmingly controlled by tectonic processes, but Greenland is different. Indeed, the island is covered by a giant ice sheet and has a tumultuous glacial past.

Ice sheets pile enormous weight onto Earth’s crust – just like Mauna Loa volcano in Hawaii – pressing it down into Earth’s mantle. The material displaced in the mantle by the sinking crust is pushed out to the sides, creating what is known as a peripheral forebulge.

When an ice sheet retreats, the mantle does not return to its original shape immediately. Due to the mantle’s gooey consistency, it takes thousands of years for material to flow back into the dent created by the loaded crust. The authors of the study explain that the mantle « has a very long memory. »

The mantle beneath and around Greenland is still adjusting to changes in ice cover since the peak of the last ice age about 20,000 years ago, which explains why data show the island deforming. Specifically, it appears that Greenland is reacting to the retreat of the Laurentide Ice Sheet, which covered large swathes of North America until about 8,000 years ago.

The Laurentide Ice Sheet created a peripheral forebulge beneath parts of Greenland. This forebulge is gradually flattening, pulling areas of southern Greenland downward and towards Canada. Researchers already knew this, but the new results reveal that the rate of deformation is higher than most modeling suggests.

The Greenland Ice Sheet also plays a role in the island’s twisting motions. Meltwater from the ice sheet has contributed 4.1 meters of the 130 meters of sea level rise recorded over the past 20,000 years. That means Greenland has lost an incredible amount of ice, which in turn has triggered a response in the mantle that is separate from the effect of the Laurentide Ice Sheet.

Source : Live Science.

Un robot sous l’Antarctique oriental // A robot beneath East Antarctica

L’agence scientifique nationale australienne Commonwealth Scientific and Industrial Research Organisation (CSIRO) a effectué une mission scientifique en Antarctique de l’Est. Malgré des débuts difficiles, elle a fourni des informations très intéressantes.

Les scientifiques ont envoyé un robot collecter des données sous le glacier Totten, l’un des mastodontes de l’Est Antarctique, mais un courant l’a dévié de sa destination initiale et le robot s’est dirigé vers l’ouest. Il s’est retrouvé dans une zone difficile d’accès pour les scientifiques, mais il est finalement revenu avec des données extrêmement rares et précieuses.
Le robot, équipé de capteurs de salinité et de température, était conçu pour plonger et remonter à la surface tous les dix jours afin de transmettre ses données aux satellites. Ce type de robot est fréquemment utilisé dans la recherche océanographique, notamment pour mesurer l’impact du réchauffement climatique sur les océans et les glaciers.
Le robot de la CSIRO avait pour mission d’étudier le glacier Totten et d’évaluer l’ampleur de la montée du niveau de la mer en cas de fonte. Ce phénomène est préoccupant et la NOAA américaine a même créé une carte interactive montrant les côtes qui pourraient être submergées en cas de fonte de ce glacier

Détourné de sa trajectoire initiale, le robot s’est retrouvé sous la glace du glacier Denman, dans une zone extrêmement difficile d’accès pour les scientifiques. Les chercheurs ont craint de l’avoir perdu à jamais, mais il a refait surface neuf mois plus tard avec des données hyper intéressantes sur le glacier Denman et l’impact du réchauffement climatique sur l’Antarctique.

Le robot a navigué sous le glacier Denman et la plateforme glaciaire Shackleton sur laquelle le glacier vient buter. Bloqué, il a continué sa mission; il a mesuré la salinité et la température de l’eau, depuis le plancher océanique jusqu’à la base de la plateforme glaciaire. Incapable de remonter à la surface pour transmettre ces données aux satellites, il a été considéré comme perdu par l’équipe de recherche. Pourtant, le robot continuait à travailler. En tentant de remonter à la surface, il venait buter contre la plateforme glaciaire et à chaque contact, il mesurait la profondeur.
L’équipe scientifique a ensuite comparé ces données de profondeur aux mesures satellitaires de la zone. Grâce à ces données, les chercheurs ont pu reconstituer le parcours du robot et ainsi déterminer précisément l’origine de ses mesures de salinité et de température. Au cours de sa mission, le robot a collecté 195 profils de données.
Les données recueillies ont montré que la plateforme glaciaire Shackleton n’est pas encore menacée de fonte par les eaux chaudes. Ce n’est pas le cas du glacier Denman qui est miné par les eaux chaudes qui provoquent sa fonte. Ce glacier, à lui seul, pourrait entraîner une élévation du niveau de la mer de près de 1,50 mètre à travers le monde.

Ce document illustre le recul de la ligne d’ancrage du glacier Denman entre 1996 (ligne noire) et 2018 (ligne jaune). (Source : AGU/Brancato et al.)

Cette découverte scientifique fortuite représente une véritable aubaine pour l’équipe scientifique. Le robot a collecté des données dans des zones jamais étudiées auparavant. En effet, il s’agit de la toute première série de mesures océanographiques réalisées sous une plateforme glaciaire en Antarctique oriental. Ces données sont essentielles pour comprendre cette zone et les risques qu’elle représente pour le glacier Denman. Dans la mesure où le robot a survécu si longtemps sous la glace et a transmis des données de qualité, les scientifiques envisagent d’envoyer d’autres robots dans des régions très reculées afin de recueillir des données inédites.
Le fait que ce robot ait réussi à effectuer des mesures précises en Antarctique oriental est également crucial pour les recherches futures. Cette région étant plus envahie par la glace que l’Antarctique occidental, la fonte des glaciers y représente une menace plus importante pour les littoraux.
Les données récoltées par le robot ont été publiées dans la revue Science Advances en décembre 2025. Elles constituent désormais une ressource précieuse pour les études antarctiques.
Source : BGR.

——————————————————

An Australian national science agency called CSIRO launched an experiment in East Antarctica that first went wrong but in the end provided very interesting information.

A free-floating ocean robot was sent to collect data from the Totten Glacier. However, a current pulled it away from its destination and westward. It ended up in a place very difficult for scientists to analyze, and it returned with extremely rare and valuable data.

The ocean float has salinity and temperature sensors and was meant to go below the water and surface once every 10 days to transmit its data to satellites. Robots like these are used frequently in ocean research and sometimes for measuring the impact of global warming on the waters and glaciers.

This specific one was meant to study the Totten Glacier in regards to how much the global sea levels could rise if the glacier melted. This is such a concern that the American NOAA even has an interactive map to show which coastlines could be permanently underwater in the future.

Pulled off its course, this float actually ended up underneath the ice of the Denman Glacier in a location extremely difficult for scientists to observe and collect data from. Though the research team feared it was lost forever, it popped back out nine months later. With it was a set of crucial data for the Denman Glacier and how global warming is impacting Antarctica as a whole.

The robot traveled beneath the Denman Glacier and the Shackleton ice shelf. Though trapped, the robot ocean float continued to do what it was meant to: It measured water salinity and temperature from the sea floor up to the base of the ice shelf it was under. However, it could not surface to transmit this data to satellites, so it was navigationally lost for the research team. There was one trail of clues left to follow; as the float tried to surface, it bumped the ice shelf. Whenever it did so, it was able to measure the depth of the ice shelf.

The research team was able to compare the data of the ice shelf’s depth to satellite measurements of the area. From that, they were able to piece together an idea of the path the ocean float took, thus knowing where its salinity and temperature measurements were specifically coming from. Throughout its mission, the robot collected 195 profiles of data.

The data returned showed that the Shackleton ice shelf is not yet in danger of warm water melting it. However, the Denman Glacier does have warm water beneath that is causing it to melt. This glacier on its own could cause sea levels around the world to rise by almost 1.50 meters.

This scientific accident turned out to be a stroke of luck for the team. The ocean float gathered data from areas never before researched. In fact, this was the first ever line of oceanographic measurements under an East Antarctic ice shelf. This has provided critical data about this area and the risk posed to the Denman Glacier.

Since the robot float did survive under the ice for so long with good data, scientists look to the future of sending more of these floats into very remote places in hopes of returning rare data.

The fact that the ocean float measured Eastern Antarctica specifically is also very important for future research. It holds more ice than West Antarctica, so glaciers melting in that area pose a greater overall threat for coastlines.

The data from this lost robot was put into publication in the ScienceAdvances journal in December 2025. It now serves as a useful piece of research for Antarctic studies.

Source : BGR.

L’intelligence artificielle (IA) pour mieux comprendre le Popocatepetl (Mexique) // Artificial intelligence (AI) to better understand Popocatepetl (Mexico)

Des scientifiques de l’Université nationale autonome du Mexique (UNAM) ont créé le premier modèle tridimensionnel du Popocatépetl qui dresse ses 5426 m à 70 kilomètres au sud-est de Mexico, dans les États de Puebla et de Mexico.

Les chercheurs espèrent que leurs travaux permettront de mieux comprendre la structure interne du volcan avec l’existence possible de chambres magmatiques, et d’optimiser la surveillance du volcan et la prévention des catastrophes.

L’étude intitulée « Estructura de velocidades sísmicas del volcán Popocatépetl, México, a partir de campos difusivos », publiée dans la revue ScienceDirect, indique que ces travaux permettront de mieux anticiper les futures éruptions. Grâce à l’intelligence artificielle (IA), les chercheurs seront en mesure, à l’avenir, de construire des tomographies en quatre dimensions.
Depuis 1994, année de la première éruption du Popocatépetl en plus de 70 ans, diverses études géophysiques ont été menées afin de comprendre l’histoire éruptive, l’activité et les risques volcaniques de ce volcan. Cependant, les modèles précédents, basés sur la sismicité volcano-tectonique, se sont avérés insuffisants pour décrire les phénomènes dans certaines zones ou sur une grande profondeur, en raison de la distribution spatiale de l’activité sismique et des stations utilisées. La nouvelle étude propose le premier modèle 3D du Popocatépetl, et prend en compte l’ensemble du volcan.

Les responsables du projet ont utilisé 18 stations sismiques réparties sur le volcan. Huit d’entre elles ont été installées par leurs soins, les autres appartenaient déjà au CENAPRED. Les appareils effectuent au moins 100 mesures par seconde et ces données, qui représentent une immense quantité d’informations, sont traitées automatiquement grâce à l’intelligence artificielle. Auparavant, tout était analysé manuellement. Aujourd’hui, grâce à l’IA, les scientifiques peuvent traiter une année de données, provenant de toutes les stations, en trois heures seulement. L’étude menée sur 18 stations permet de détecter des structures internes interconnectées, susceptibles d’être des zones d’accumulation de magma, des conduits d’alimentation et des anomalies. Toutes ces structures sont identifiées grâce à la propagation des ondes sismiques dans le sous-sol ; ces ondes se propagent plus rapidement dans les roches dures et plus lentement dans les zones contenant du magma ou des matériaux tendres.

Modèle de la structure interne du Popocateptl après traitement des données par l’intelligence artificielle (Source : UNMA)

L’étude montre la présence d’un système magmatique en forme de champignon dans deux régions présentant une vitesse des ondes S (Vs) élevée. Ces régions sont situées respectivement entre 0 et 5 kilomètres d’altitude, et entre 4 et 7 kilomètres de profondeur, et sont reliées par un conduit étroit en forme de tube.
Selon l’étude, la région à Vs élevée la plus superficielle est directement liée à des structures volcaniques anciennes et récentes. Ce phénomène résulte du mélange de matériaux magmatiques et d’un processus intense de dégazage, qui accroît la viscosité et la cristallisation du magma.
La région à Vs élevée la plus profonde est interprétée comme un piégeage de matériaux magmatiques par la pression lithostatique exercée par le poids des roches et sédiments sus-jacents sur une formation rocheuse profonde. De plus, le modèle met en évidence des paléostructures volcaniques enfouies et des vestiges d’anciens effondrements volcaniques.
Source : EL PAÍS USA.

Il ne fait aucun doute que l’IA, par la rapidité avec laquelle elle est capable de traiter des volumes importants de données, va énormément aider les volcanologues dans leur étude des structures volcaniques. Malgré tout, il restera encore un long chemin avant de pouvoir prévoir avec plus de précision qu’aujourd’hui le déclenchement des éruptions volcaniques.

———————————————

Scientists from the National Autonomous University of Mexico (UNAM) have created the first tridimensional model of the Popocatépetl volcano in the pursuit of understanding its internal structure, resolving doubts as to the existence of magma chambers, and optimizing monitoring efforts as well as disaster prevention. The study Estructura de velocidades sísmicas del volcán Popocatépetl, México, a partir de campos difusivos (Structure of seismic velocities of the Popocatépetl volcano, Mexico, via diffusion fields), which was published in the journal ScienceDirect, states that the model will better allow for the anticipation of future eruptive episodes. Thamks to the use of use of artificial intelligence, the researchers will be able to construct tomographies in four dimensions in the future.

Since 1994, the year that Popocatépetl erupted for the first time in more than 70 years, various geophysics studies have been carried out in the hopes of understanding the eruptive history, activity and volcanic perils of the volcano. But previous models based on volcanic-tectonic seismicity have not been sufficient in describing patterns in certain areas or across a large range of depth, due to spatial distribution of seismic activity and stations that have been used. The new study proposes the first 3D velocity model of Popocatépetl volcano describing the whole edifice.

Project leaders utilized 18 seismic stations located across the volcano. They installed eight of them, and the rest belong to the National Center for Disaster Prevention. Teams register at least 100 measurements per second and that data, an immense quantity of information, is automatically processed using AI. Previously, everything was analyzed manually. Today, with AI, scientists can process a year’s worth of data, from all stations, in three hours.

The 18-station study allows for the detection of interconnected internal structures as possible regions of magma accumulation and ascending conduits and abnormalities. All are identified by seismic waves traveling through the subsoil, which are faster in hard rocks and slower in areas with magma or soft material.

The study suggests the presence of a mushroom-shaped magmatic system in two regions with high Vs (S-wave velocity) between zero and five kilometers above sea level, and four and seven kilometers below sea level, connected by a narrow tube-shaped conduit.

According to the study, the most shallow high Vs region is directly related to old and new volcanic structures, as a result of magmatic materials mixing with and being affected by an intense process of degasification, which increases magma’s viscosity and crystal content.

The deepest region of high Vs is interpreted as magmatic material trapped by lithostatic pressure exerted by the weight of overlying rocks and sediments on a deep rock formation. In addition, the model presents evidence of buried volcanic paleostructures and remnants of ancient volcanic collapses.

Source : EL PAÍS USA.

La vie au fond de l’océan Pacifique // Life at the bottom of the Pacific Ocean

Dans une étude publiée le 8 août 2025 dans la revue Science Advances, des chercheurs chinois expliquent avoir découvert un système hydrothermal géant, jusqu’alors inconnu, au fond de l’océan Pacifique, et qui pourrait permettre de mieux comprendre les origines de la vie. Le système de Kunlun, au nord-est de la Papouasie-Nouvelle-Guinée, est composé de 20 grands cratères, dont le plus grand mesure environ 1 800 mètres de diamètre et 130 mètres de profondeur. Ce groupe de cratères libère d’importantes quantités d’hydrogène qui alimentent la vie qui prospère dans tout le système.

Site hydrothermal de Kunlun, à proximité de la fosse de Mussau (Source: Xiao et al. 2025, Science Advance

Kunlun a beaucoup de points communs avec un champ hydrothermal dans l’océan Atlantique connu sous le nom de « Cité perdue », situé dans le massif sous-marin Atlantis, à l’intersection entre la dorsale médio-atlantique et la faille transformante d’Atlantis. Cependant, le site de Kunlun présente plusieurs caractéristiques qui le rendent unique, notamment sa taille extraordinaire. Il couvre une superficie d’environ 11 kilomètres carrés. Il est donc des centaines de fois plus grand que la Cité perdue.
Le système hydrothermal de Kunlun offre aux scientifiques une nouvelle perspective sur la serpentinisation des grands fonds marins, processus par lequel l’eau de mer réagit chimiquement avec les roches du manteau sous-marin pour créer des serpentines – groupe de minéraux connus pour leur couleur verdâtre – et libérer de l’hydrogène.
Les chercheurs pensent pouvoir étudier les liens potentiels entre ces émissions d’hydrogène et l’émergence de la vie à Kunlun. On pense que le système contient des fluides riches en hydrogène, semblables à l’environnement chimique de la Terre primitive.
Les auteurs de l’étude ont été surpris par le potentiel écologique du site. Ils ont observé une vie marine diversifiée avec crevettes, galatées, anémones et vers tubicoles, des espèces qui pourraient dépendre de la chimiosynthèse alimentée par l’hydrogène.

Crevettes sur des rochers dans le système hydrothermal de Kunlun.

La lumière du soleil n’atteignant pas les profondeurs océaniques, la vie au fond de l’océan ne peut donc pas utiliser la photosynthèse. Une partie de la vie dans les profondeurs océaniques dépend donc de la chimiosynthèse, qui consiste à utiliser des substances chimiques comme l’hydrogène comme source d’énergie pour produire de la nourriture. Une autre équipe de recherche dirigée par la Chine a récemment utilisé un submersible habité pour filmer des communautés basées sur la chimiosynthèse au fond du Pacifique Nord-Ouest, à environ 9 500 mètres de profondeur. Ces communautés sont rarement documentées car la grande majorité des fonds océaniques reste inexplorée.
Dans la nouvelle étude, les chercheurs ont utilisé le même submersible pour cartographier le site de Kunlun et explorer quatre de ses plus grands cratères. En mesurant les concentrations d’hydrogène dans les fluides hydrothermaux de Kunlun, les scientifiques ont estimé que le champ hydrothermal produisait plus de 5% de l’hydrogène sous-marin non vivant dans le monde.
L’équipe chinoise pense que le groupe de cratères qu’elle a analysé s’est formé par étapes. D’abord, l’hydrogène s’est accumulé sous la surface et a été libéré lors d’explosions majeures. Des fractures se sont ensuite formées le long des bords et du fond des structures résultantes, en déclenchant de nouvelles éruptions intenses de fluides hydrothermaux riches en hydrogène. Ces fractures ont ensuite été lentement obstruées par des minéraux en formation, ce qui a permis à l’hydrogène de s’accumuler à nouveau et potentiellement d’alimenter d’autres explosions de moindre intensité.
Le site de Kunlun se distingue des systèmes hydrothermaux sous-marins d’origine volcanique plus courants, que l’on trouve en limite de plaques tectoniques. Ces systèmes présentent souvent des structures en forme de cheminée, comme les fumeurs noirs, avec des températures d’environ 400 °C. Les systèmes de serpentinisation comme celui de Kunlun et de la Cité perdue sont plus froids, avec des températures inférieures à 90 °C.

 

Kunlun est non seulement plus grand que la Cité perdue, mais il occupe également un emplacement plus inhabituel. La Cité perdue est proche d’une dorsale médio-océanique qui se forme le long des limites de plaques divergentes et expose la roche mantellique. En revanche, Kunlun se trouve à l’intérieur de la plaque tectonique, loin de toute dorsale. Le système Kunlun se distingue par son flux d’hydrogène exceptionnellement élevé, son échelle et son contexte géologique unique. Il démontre que la production d’hydrogène par serpentinisation peut se produire loin des dorsales médio-océaniques, et remet donc en question d’anciennes hypothèses.
Source : Live Science via Yahoo News.

————————————————-

In a study published on 8 August 2025 in the journal Science Advances, Chinese researchers explain that they have discovered a giant, previously unknown hydrothermal system at the bottom of the Pacific Ocean that could shed light on the origins of life. The Kunlun system, northeast of Papua New Guinea, is made up of 20 large craters, the largest of which is about 1,800 meters wide and 130 meters deep. These craters are clustered together and they release copious amounts of hydrogen, which may feed the life that thrives throughout the system.

Kunlun is similar to an Atlantic hydrothermal field known as the Lost City, which is located on the Atlantis Massif underwater mountain range. However, Kunlun has several features that make it unique, including its extraordinary size. It covers an area of about11 square kilometers, making it hundreds of times larger than the Lost City.

The Kunlun system offers scientists a new window into deep-sea serpentinization, which is the process by which seawater chemically reacts with mantle rocks beneath the seafloor to create serpentine minerals (a group of minerals known for their greenish color) and release hydrogen.

Researchers think they can study the potential links between these hydrogen emissions and the emergence of life at Kunlun. The system is thought to have hydrogen-rich fluids that are similar to early Earth’s chemical environment.

The authors of the study were surprised at the ecological potential of the site. They observed diverse deep-sea life – shrimp, squat lobsters, anemones, and tubeworms – species that may depend on hydrogen-fueled chemosynthesis. »

Sunlight doesn’t reach the deep ocean, so life at the seafloor can’t use photosynthesis. Some life in the deep ocean therefore relies on chemosynthesis, which involves using chemicals like hydrogen as an energy source to make food. A separate Chinese-led research team recently used a crewed submersible to film chemosynthesis-based communities at the bottom of the northwest Pacific, at depths of around 9,500 meters. Such communities are rarely documented asthe vast majority of the ocean floor is unexplored.

In the new study, researchers used the same submersible to map Kunlun and explore four of its largest craters. By measuring the hydrogen concentrations in Kunlun’s hydrothermal fluids, the scientists estimated that the field produced more than 5% of the world’s non-living submarine hydrogen output.

The Chinese team proposed that the cluster of craters they documented formed in stages. First, hydrogen accumulated beneath the surface and burst out in major explosions. Fractures then formed along the edges and bottom of the resulting structures, triggering further intense eruptions of hydrogen-rich hydrothermal fluids. These fractures then slowly became blocked by forming minerals, enabling hydrogen to accumulate again and potentially fuel additional smaller-scale explosions.

Kunlun is different from the more common volcano-powered hydrothermal seafloor systems found at plate boundaries. These systems often feature chimney-like structures, such as black smokers, with temperatures about 400 degrees Celsius. The serpentinization systems like Kunlun and the Lost City are cooler, with temperatures below 90° C.

Kunlun is not only bigger than the Lost City, it’s also in a more unusual location. The Lost City is close to a mid-ocean ridge, which form along diverging plate boundaries and expose mantle rock, while Kunlun is in the interior of its plate, far from any ridge.The Kunlun system stands out for its exceptionally high hydrogen flux, scale, and unique geological setting, It shows that serpentinization-driven hydrogen generation can occur far from mid-ocean ridges, challenging long-held assumptions.

Source : Live Science via Yahoo News.