Long Valley, en Californie, à proximité du Parc National de Yosemite, est un supervolcan qui est entré en éruption il y a environ 765 000 ans. En une semaine, 760 kilomètres cubes de lave et de cendre ont été émis par le volcan. Cette cendre a probablement refroidi la planète en faisant obstacle aux rayons du soleil, avant de recouvrir toute la partie occidentale de l’Amérique du Nord. Aujourd’hui, de nombreux géologues visitent des sites comme Long Valley avec l’espoir de comprendre pourquoi les super éruptions se déclenchent et, au bout du compte, où et quand elles sont susceptibles de se produire à nouveau.
Un rapport publié au début du mois de novembre dans les Proceedings of the National Academy of Sciences par des chercheurs de l’Université du Wisconsin montre que le vaste réservoir magmatique sous Long Valley était beaucoup moins chaud avant l’éruption qu’on ne le pensait jusqu’à présent. Leur étude laisse supposer que des erreurs d’interprétation ont été commises. Selon l’un des auteurs de l’étude, un géologue au Georgia Institute of Technology, « l’image traditionnelle des volcans alimentés par des réservoirs magmatiques dans la croûte n’est pas la meilleure façon d’interpréter les processus physiques ». Selon lui, la plupart des scientifiques pensent que les chambres magmatiques se trouvent «dans un état plutôt calme, à basse température, et relativement stable pendant la plus grande partie de leur vie». Malheureusement, cela signifie que les scientifiques ne sont pas en mesure de les analyser correctement avec les outils mis à leur disposition.
L’idée reçue est que l’on a affaire à un gros réservoir de roche fondue qui stagne pendant une longue période dans la croûte. La nouvelle hypothèse est que le magma reste stocké pendant une longue période dans un état cristallin stable, à basse température, et incapable de produire une éruption. Ce système inerte a besoin d’un énorme apport de chaleur pour déclencher une éruption. En conséquence, la cause principale de l’éruption doit être une ascension rapide d’une quantité importante de roche plus chaude en provenance des profondeurs. Au lieu d’un réservoir de roche en fusion sur une longue durée, les cristaux de roche solidifiée ont été incorporés peu de temps avant l’éruption de Long Valley. Ainsi, les conditions de fusion n’ont probablement duré que quelques décennies, au plus quelques siècles.
Les conclusions de la nouvelle étude s’appuient sur une analyse détaillée des isotopes d’argon de 49 cristaux recueillis à Bishop Tuff, un dépôt de cendre fossilisée, émise lors de la formation de la caldeira de Long Valley. L’argon, produit par la désintégration radioactive du potassium, s’échappe rapidement des cristaux à haute température ; donc, si le réservoir magmatique contenant ces cristaux avait été uniformément chaud avant l’éruption, l’argon ne se serait pas accumulé, et les dates des 49 cristaux auraient été identiques.
En utilisant un nouveau spectromètre de masse de haute précision dans le laboratoire de géochronologie de l’Université de Wisconsin-Madison, les dates obtenues par l’équipe de chercheurs s’étendent sur 16 000 ans, indiquant la présence d’argon qui s’était formé bien avant l’éruption. Cela indique des conditions de basse température avant la méga éruption.
Le nouveau spectromètre de masse de haute précision est plus sensible que ses prédécesseurs, ce qui lui permet de mesurer un plus petit volume de gaz avec une plus grande précision. Lorsque les chercheurs ont examiné plus en détail les monocristaux, il est apparu que certains d’entre eux devaient provenir d’un magma complètement solidifié. Il est apparu également que près de la moitié des cristaux ont commencé à se cristalliser quelques milliers d’années avant l’éruption, indiquant des températures plus basses. Pour obtenir l’âge réel de l’éruption, il faut prendre en compte la dispersion des dates. Les plus jeunes cristaux montrent la date de l’éruption.
Ces résultats ont une signification au-delà de la volcanologie car les cendres de Long Valley et d’autres super éruptions sont fréquemment utilisées pour la datation. Une meilleure compréhension du processus pré éruptif pourrait conduire à une meilleure prévision du comportement des volcans.
Cependant, certains chercheurs remarquent que cette étude ne permettra pas de faire avancer la prévision volcanique. Elle ne fait que souligner le fait que nous ne comprenons pas ce qui se passe dans les systèmes magmatiques au cours de la période de 10 à 1000 ans qui précède une grande éruption. De plus, comme chaque volcan a son propre processus éruptif, les conclusions tirées de l’éruption de Long Valley ne sauraient être généralisées à tous les supervolcans du monde entier.
Source: Université du Wisconsin à Madison.
——————————————
Long Valley, California, is a supervolcano located neat Yosemite National Park, which erupted about 765,000 years ago. Within one week, 760 cubic kilometres of lava and ash were emitted by the volcano. The ash likely cooled the planet by shielding the sun, before settling across the western half of North America. Today, many geologists visit places like Long Valley with the hope to understand why super-eruptions happen, and ultimately to understand where and when they are likely to occur again.
A report published early in November in the Proceedings of the National Academy of Sciences by University of Wisconsin researchers shows that the giant body of magma at Long Valley was much cooler before the eruption than previously thought. The paper suggests we may be thinking about volcanoes and their eruptions in the wrong way. « The historical view of volcanoes as fed by basically these tanks of magma in the crust isn’t really a useful way to think about the physical processes, » said first author of the study, a geologist at the Georgia Institute of Technology. He added that scientists are realizing that underground magma chambers are « in a pretty calm, pretty cool, more or less unremarkable state for most of their lifetime. » Unfortunately, that means they don’t show up very well with the tools scientists have to monitor magma underground.
The older view was that there was a long period with a big tank of molten rock in the crust. A new view is that magma is stored for a long period in a state that is locked, cool, crystalline, and unable to produce an eruption. That dormant system needs a huge infusion of heat to erupt. Thus, the main cause of the eruption must be a quick rise of much hotter rock from deep below. Instead of a long-lasting pool of molten rock, the crystals from solidified rock were incorporated shortly before the eruption of Long Valley. So the molten conditions likely lasted only a few decades, at most a few centuries.
The new results are rooted in a detailed analysis of argon isotopes in 49 crystals from the Bishop Tuff, a fossilized ash deposit released when the Long Valley Caldera formed. Argon, produced by the radioactive decay of potassium, quickly escapes from hot crystals, so if the magma body that contained these crystals was uniformly hot before eruption, argon would not accumulate, and the dates for all 49 crystals should be the same.
Using a new, high-precision mass spectrometer in the Geochronology Lab at University of Wisconsin-Madison, the research group’s dates spanned a 16,000 year range, indicating the presence of some argon that formed long before the eruption. That points to unexpectedly cool conditions before the giant eruption.
The new, high-precision mass spectrometer is more sensitive than its predecessors, so it can measure a smaller volume of gas with higher precision. When the researchers looked in greater detail at single crystals, it became clear some must have been derived from magma that had completely solidified. It appeared that about half of the crystals began to crystallize a few thousand years before the eruption, indicating cooler conditions. To get the true eruption age, one needs to see the dispersion of dates. The youngest crystals show the date of eruption.
The results have meaning beyond volcanology, however, as ash from Long Valley and other giant eruptions is commonly used for dating. A better understanding of the pre-eruption process could lead to better volcano forecasting.
However, some researchers notice that this study does not point to prediction in any concrete way. It only points to the fact that we do not understand what is going on in these systems, in the period of 10 to 1,000 years that precedes a large eruption. Besides, as each volcano has its own erupting process, the conclusions about Long Valley should not be extended to all supervolcanoes around the world.
Source: University of Wisconsin at Madison.
Source: USGS