Nouvelles découvertes à Pompéi // New discoveries at Pompeii

L’éruption du Vésuve en 79 a permis de préserver des richesses du monde romain pendant des milliers d’années. Pompéi et sa voisine Herculaneum font l’objet de fouilles depuis le début du 18ème siècle. Elles ont permis de mettre à jour des fresques, des corps humains et même les restes d’un cheval.
La découverte la plus récente effectuée par les archéologues dans les ruines de Pompéi est un thermopolium, établissement de restauration rapide, l’ancêtre de nos « fast food ». Les fresques colorées du comptoir ont survécu pendant près de 2 000 ans sous les couches de cendre et de pierre ponce. Le Parc Archéologique de Pompéi a publié plusieurs images de ce thermopolium. Les chercheurs pensent que de la nourriture chaude était peut-être servie dans ce lieu.
Le comptoir est orné de deux peintures très belles et bien conservées. L’une représente une néréide assise sur un cheval, tandis que l’autre représente un ouvrier dans l’environnement d’un thermopolium. Plusieurs amphores découvertes près du comptoir ressemblent beaucoup à celles de la fresque.
Le site se trouve à l’intersection de Vicolo delle Nozze d’Argento et de Vicolo dei Balconi. Quelque quatre-vingts thermopolia ont déjà été découverts à Pompéi.
Source: Parco Archaeologico di Pompei.

——————————————————–

The eruption of Mount Vesuvius in 79 helped to preserve the wealth of the Roman world for thousands of years. The long-forgotten city and its neighbour, Herculaneum, were explored in excavations that began in the 18th century. They revealed frescoes, human bodies and even the remains of a horse.

The most recent discovery by archaeologists is an ancient snack bar in the ruins of Pompeii. The counter’s colourful frescoes have survived nearly 2,000 years under volcanic ash and pumice. The Archaeological Park of Pompeii has released several images of the well-preserved bar, or thermopolium. Researchers think the commercial space may once have served hot food.

The counter is adorned with two very nice and well preserved paintings. One features a nereid seated on a horse, while the other depicts a worker in a snack bar–type environment. Several amphorae discovered close to the counter are very similar to those depicted in the fresco.

The bar is located at the intersection of Vicolo delle Nozze d’Argento and Vicolo dei Balconi. Some eighty thermopolia had already been discovered at Pompeii in the past.

Source: Parco Archaeologico di Pompei.

Crédit photo: Parco Archeologico di Pompei

Taal (Philippines): Hausse du niveau d’alerte // The alert level has been raised

Le PHIVOLCS indique que le niveau d’alerte du Taal a été élevé de 0 à 1 le 28 mars 2019. En effet, l’Institut a récemment enregistré un essaim sismique qui pourrait être le signe de fracturations sous l’édifice, éventuellement associées à une activité hydrothermale. De plus, le  sol a connu une légère inflation par rapport aux dernières mesures de novembre 2018. Les concentrations de CO2 dans l’eau du grand cratère du lac Taal ont augmenté régulièrement depuis février 2019. La température de l’eau est passée de 30,7° C à 31,7° C. Tous ces paramètres justifient la hausse du niveau d’alerte volcanique. .
Il est rappelé au public que l’accès au cratère principal est strictement interdit en raison des risques d’explosions et d’émissions de fortes concentrations de gaz mortels. Il est également rappelé au public que l’ensemble de Volcan Island est une zone de danger permanent et qu’il n’est pas recommandé de s’y établir de façon permanente. .
La dernière éruption du Taal a eu lieu en 1977, avecdes évacuations mais aucun décès. Les précédentes éruptions en 1911 et 1965 ont respectivement causé la mort de 1334 et 200 personnes.
Source: PHIVOLCS ; Killer Volcanoes.

———————————————-

PHIVOLCS indicates that the alert level for of Taal volcano was raised from 0 to 1 on March 28th, 2019.  The Institute has recorded a recent seismic swarm which may indicate rock-fracturing beneath the edifice possibly associated with hydrothermal activity. Moreover, there has been a slight inflation of the ground compared with the last measurements of November 2018. Dissolved CO2 concentrations in Taal Main Crater Lake have been gradually increasing since February 2019. The water temperature increased from 30.7°C to 31.7°C. All these parameters justify the increase in the volcanic alert level. .

The public is reminded that access to the Main Crater is strictly forbidden because sudden steam explosions can occur and high concentrations of lethal volcanic gases can be released.

The public is also reminded that the entire Volcano Island is a Permanent Danger Zone, and permanent settlement in the island is not recommended.

The last eruption of Taal took place in 1977, with evacuations and no fatalities. Previous eruptions of Taal in 1911 and 1965 caused the death of 1334 and 200 persons, respectively.

Source: PHIVOLCS; Killer Volcanoes.

Vue de la caldeira du Taal et de Volcano Island (Crédit photo: Wikipedia)

Volcanisme stratosphérique et isotopes du sulfate // Stratospheric volcanism and sulphate isotopes

Dans les archives glaciaires, les éruptions volcaniques du passé sont associées à des pics de concentration de sulfate. Pour estimer la contribution volcanique aux variations climatiques passées, il est nécessaire de pouvoir faire la différence, dans ces enregistrements, entre les éruptions stratosphériques, à fort impact climatique, et les éruptions troposphériques, d’impact faible et local. L’étude des isotopes du sulfate (soufre et oxygène), permet de faire cette distinction et d’établir un inventaire des éruptions stratosphériques enregistrées à Dôme C, Antarctique, sur les 2600 dernières années. Cette étude a été réalisée par l’Institut des géosciences de l’environnement de l’Université de Grenoble et le Laboratoire de géologie de Lyon.

La glace polaire est la meilleure archive en terme de paléovolcanisme. Les reconstructions du volcanisme passé se basant sur l’analyse des carottes de glace sont nombreuses. Elles permettent d’estimer l’effet refroidissant du volcanisme et ses conséquences climatiques, dû aux interactions entre aérosols d’acide sulfurique d’origine volcanique, et le rayonnement solaire incident.

Différencier, dans les enregistrements volcaniques polaires, les éruptions troposphériques des éruptions stratosphériques (à forte conséquence climatique) est crucial pour estimer l’impact climatique naturel exercé par le volcanisme dans le passé. La découverte d’une signature isotopique particulière sur le sulfate volcanique formé dans la stratosphère a permis d’établir une reconstruction des éruptions stratosphériques enregistrées à Dôme C, Antarctique, sur les 2600 dernières années.

Jusqu’alors, les reconstructions volcaniques ont été faites à partir d’enregistrements volcaniques bipolaires (carottes de glace issues d’Antarctique et du Groenland), et reposent sur le principe qu’une éruption stratosphérique, à fort impact climatique, entraîne un dépôt global de sulfate, mis en évidence par comparaison de carottes de glace de pôles opposés. Les émissions soufrées issues d’une éruption dite troposphérique ont, quant à elles, une faible durée de vie dans cette basse couche de l’atmosphère, et leur incidence climatique reste négligeable. Cette approche, dite bipolaire, nécessite une excellente synchronisation et datation des carottes de glace entre elles.

En 2010-2011, 5 carottes de glace de 100 mètres de long ont été collectées à Dôme C en Antarctique et ensuite rapatriées à Grenoble. Ces carottes ont été analysées et échantillonnées dans le but de reconstruire une histoire du volcanisme stratosphérique des 2600 dernières années, par la méthode isotopique.

Cette première reconstruction des éruptions stratosphériques par la méthode isotopique fournit une validation indépendante des reconstructions antérieures. Elle met en évidence des évènements stratosphériques de hautes latitudes, non bipolaires mais néanmoins significatifs d’un point de vue climatique. Il arrive en effet que les aérosols issus d’une éruption stratosphérique localisée dans les hautes latitudes se cantonnent à un seul hémisphère. L’analyse isotopique révèle également, en profondeur, des signaux troposphériques jusqu’alors considérés comme bipolaires. Elle permet donc d’affiner les précédentes reconstructions.

Tandis que l’analyse isotopique du soufre renseigne sur la nature de l’éruption, l’analyse isotopique de l’oxygène révèle un effondrement du traceur suite à deux éruptions majeures. Cette évolution du signal isotopique reflète soit une altitude d’injection particulièrement importante, soit un épuisement de l’ozone atmosphérique, provoqué par une large injection de composés halogénés.

Etendue à d’autres régions et d’autres types de sites, cette approche isotopique constitue un outil intéressant pour affiner et compléter les reconstructions du volcanisme passé, et à terme, pour mieux quantifier l’impact du volcanisme sur le climat.

Source : Observatoire des Sciences de l’Univers de Grenoble (OSUG).

———————————————————-

In glacial records, volcanic eruptions of the past are associated with peaks of sulphate concentration. To estimate the volcanic contribution to past climatic variations, it is necessary to be able to make a diffrence, in these recordings, between stratospheric eruptions, with high climatic impact, and tropospheric eruptions, of weak and local impact. The study of sulphate isotopes (sulphur and oxygen) makes it possible to make this distinction and to establish an inventory of the stratospheric eruptions recorded at Dome C, Antarctica, over the last 2600 years. This study was carried out by the Institute of Environmental Geosciences of Grenoble University and the Geology Laboratory of Lyon.
Polar ice is the best archive in terms of paleovolcanism. The reconstructions of past volcanism based on the analysis of ice cores are numerous. They make it possible to estimate the cooling effect of volcanism and its climatic consequences, due to the interactions between sulphuric acid aerosols of volcanic origin, and the incident solar radiation.
Differentiating in polar volcanic recordings tropospheric eruptions from stratospheric (high climatic) eruptions is crucial for estimating the natural climatic impact of volcanism in the past. The discovery of a particular isotopic signature on the volcanic sulphate formed in the stratosphere has made it possible to establish a reconstruction of the stratospheric eruptions recorded at Dome C, Antarctic, over the last 2600 years.
Up to now, volcanic reconstructions have been made from bipolar volcanic records (ice cores from Antarctica and Greenland), and are based on the premise that a stratospheric, climate-impacting eruption results in a global sulphate deposition, highlighted by comparison of ice cores from opposite poles. The sulphur emissions resulting from a so-called tropospheric eruption have, for their part, a short life in this low layer of the atmosphere, and their climatic incidence remains negligible. This so-called bipolar approach requires excellent synchronization and dating of the ice cores.
In 2010-2011, five 100-meter-long ice cores were collected at Dome C in Antarctica and then repatriated to Grenoble. These cores were analyzed and sampled with the aim of reconstructing a history of stratospheric volcanism of the last 2600 years by the isotopic method.
This first reconstruction of stratospheric eruptions by the isotopic method provides an independent validation of previous reconstructions. It highlights stratospheric events of high latitudes, non-bipolar but nevertheless significant from a climatic point of view. Aerosols from a stratospheric eruption located in high latitudes may be confined to a single hemisphere. Isotopic analysis also reveals, in depth, tropospheric signals previously considered as bipolar. It allows to refine previous reconstructions.
While isotopic analysis of sulphur provides information on the nature of the eruption, isotopic analysis of oxygen reveals a collapse of the tracer after two major eruptions. This evolution of the isotopic signal reflects either a particularly high injection altitude, or a depletion of atmospheric ozone, caused by a large injection of halogenated compounds.
Extended to other regions and other types of sites, this isotopic approach is an interesting tool to refine and complete reconstructions of past volcanism, and ultimately to better quantify the impact of volcanism on the climate.
Source: Observatoire des Sciences de l’Univers de Grenoble (OSUG).

L’analyse isotopique des sulfates volcaniques permet de différencier les éruptions stratosphériques (en rouge), à fort impact climatique, des éruptions troposphériques (en bleu), d’incidence climatique négligeable et locale. Les éruptions enregistrées à Dôme C (Antarctique) sur les 2600 dernières années sont majoritairement d’origine stratosphérique.

Popocatepetl (Mexique): Hausse du niveau d’alerte // The alert level has been raised

Suite aux explosions à répétition des derniers jours, les autorités mexicaines ont décidé le 28 mars de faire passer le niveau d’alerte du volcan de la couleur Jaune Phase 2 à la couleur Jaune Phase 3. Comme je l’ai indiqué précédemment, les explosions sont dues à la destruction du dôme de lave qui s’est formé dans le cratère.
Source: CENAPRED.

———————————

Following the repetitive explosions of Popocatepetl during the past days, Mexican authorities decided to raise the alert level for the volcano from Yellow Phase 2 to Yellow Phase 3 on March 28th, 2019. As I put it before, the explosions are caused by the destruction of the lava dome that built up in the crater.
Source: CENAPRED.

Le recul des glaciers de Heard Island // The retreat of glaciers on Heard Island

Heard Island est une île montagneuse de 368 kilomètres carrés qui fait partie du Territoire australien des îles Heard et McDonald. Elle se trouve à environ 4 100 km au sud-ouest de Perth et à 3 845 km au sud-ouest du Cap Leeuwin en Australie. 41 glaciers recouvrent les montagnes et 80% de l’île sont occupés par la glace. Heard Island est dominée par Mawson Peak, un complexe volcanique de 2 745 mètres d’altitude qui fait partie du massif du Big Ben. Une image satellite datant de juillet 2000 fournie par l’Université d’Hawaï montrait une coulée de lave active de 2 km de long partant du sommet de Big Ben.
Ce qui nous intéresse ici, ce sont les glaciers de l’île. D’une manière générale, nous savons que la fonte des glaciers façonne de nouveaux paysages et crée parfois de nouvelles opportunités pour la faune. C’est ce qui se passe à Heard Island où les glaciers Winston, Brown et Stephenson ont tous reculé considérablement depuis 1947, année où les premières cartes fiables ont localisé leurs fronts avec exactitude.
Le recul des glacier Stephenson et Winston (voir la carte ci-dessous) a été documenté de 2001 à 2018, ainsi que l’agrandissement de la lagune qui en a résulté.
Le recul du glacier Stephenson a commencé en 1971, date à laquelle son front s’est éloigné d’un kilomètre de la côte sud et de plusieurs centaines de mètres du côté nord.
En 1980, ce recul a entraîné la formation du lagon Stephenson.
En 2001, le glacier Stephenson avait deux branches distinctes se terminant dans deux lagons distincts, le Doppler au sud et le Stephenson à l’est. Il y avait de nombreux icebergs dans le lagon Doppler mais aucun dans le lagon Stephenson, preuve que le recul était en cours. Le glacier Winston terminait sa course là où le lagon s’élargissait.
En 2008, les deux lagons devant le glacier Stephenson étaient reliées dans la partie est par un étroit chenal ; ils étaient remplies d’icebergs suite à l’effondrement de la partie terminale du glacier.
En 2010, le glacier Stephenson n’atteignait plus le lagon Stephenson et, comme le glacier Winston en 2001, il se terminait dans le point étroit où le glacier entrait dans le lagon principal.
En 2018, le glacier Stephenson n’entrait plus dans le lagon principal. Le bras nord du glacier avait connu un recul de 1,8 km entre 2001 et 2018 et le bras sud s’était retiré de 3,5 km. Le lagon était dépourvu de glace pour la première fois depuis plusieurs siècles, voire plusieurs millénaires. La période de recul rapide due au vêlage d’icebergs dans le lagon était terminée et le glacier reculait maintenant plus lentement.
Le glacier Winston a reculé de 600 mètres entre 2001 et 2018. L’agrandissement global du lagon a été limité car le glacier s’est retiré dans une crique d’une largeur de 500 mètres.
La population de manchots royaux a fortement augmenté entre les années 1940 et le 21ème siècle, tandis que les effectifs de gorfous sauteurs, de manchots papous et de gorfous macaronis ont diminué au cours de la même période.
L’expansion des lagons Stephenson et Winston a été importante pour la faune, les manchots royaux et des cormorans ont également été observés. Le recul de ces glaciers sur Heard island suit un schéma de recul identique à celui d’autres glaciers situés sur des îles de la région antarctique: la Calotte glaciaire Cook à Grande Terre, l’île principale de l’archipel des Kerguelen ; les glaciers Hindle et Neumayer en Géorgie du Sud.
Source: AGU 100.

——————————————————–

Heard Island is a 368-square-kilometre bleak and mountainous island which belongs to the Australian Territory of Heard Island and McDonald Islands. It is located approximately 4,100 km southwest of Perth and 3,845 km southwest of Cape Leeuwin, Australia. Its mountains are covered by 41 glaciers and the island is 80% covered with ice. It is dominated by Mawson Peak, a 2,745-metre-high complex volcano which forms part of the Big Ben massif. A July 2000 satellite image provided by the University of Hawaii showed an active 2-kilometre-long lava flow travelling from the summit of Big Ben.

What interest us here is the glaciers of the island. More generally, we know that the melting of glaciers shapes new landscapes and sometimes creates new opportunitiess for the wildlife. This is what is happening on Heard Island where the Winston, Brown and Stephenson Glacier have all retreated substantially since 1947, a year when the first good maps of their terminus are available.

The retreat of the Stephenson Glacier and the Winston Glacier (see map below) has been studied from 2001 to 2018, together with the consequent lagoon expansion.

The retreat of the Stephenson Glacier began by 1971 when it retreated 1 km from the south coast and several hundred meters on its northern side.

This retreat by 1980 caused the formation of Stephenson Lagoon.

In 2001, the Stephenson Glacier had two separate branches terminating in two separate lagoons, Doppler to the south and Stephenson to the east. There were numerous icebergs in Doppler lagoon but none in Stephenson Lagoon, indicating the retreat was underway. Winston Glacier terminated where the lagoon widened.

In 2008, the two lagoons in front of the Stephenson Glacier were joined with a narrow eastern channel; the lagoons were filled with icebergs as a terminus collapse was underway.

By 2010, the Stephenson Glacier had retreated from the main Stephenson Lagoon, and like the Winston Glacier in 2001 terminated at narrow point where the glacier entered the main lagoon.

By 2018, the Stephenson Glacier had retreated from the main lagoon, the northern arm of the glacier experienced a 1.8 km retreat from 2001 to 2018 and the southern arm a 3.5 km retreat.  The lagoon was free of ice for the first time in several centuries if not several millennia. The period of rapid retreat due to calving of icebergs into the lagoon was over and the retreat rate would now be slower.

The Winston Glacier retreated 600 metres from 2001-2018.  The overall lagoon expansion has been limited as the glacier retreated up an inlet that is 500 metres wide.

The population of king penguins increased sharply from the 1940s into the 21st century, while rockhopper, gentoo and macaroni penguin numbers declined over the same period.

The expansion of both the Stephenson Lagoon and the Winston Lagoon has been important for wildlife, king penguins, and cormorants have also been observed.  The retreat of these glaciers follows the pattern of glacier retreat at other glaciers on islands in the circum-Antarctic region: Cook Ice Cap on Kerguelen Island,  Hindle Glacier and Neumayer Glacier in South Georgia

Source: AGU 100.

Vue de Heard Island et de ses glaciers (Source : Australian Antarctic Division)

Images fournies par le satellite Landsat et montrant le recul des glaciers Stephenson et Winston au cours des dernières années.

Le recul des glaciers en images // Images of the glacial retreat

Voici une animation fort intéressante qui montre les avancées et retraits des glaciers alpins durant la dernière période glaciaire. Réalisée par le glaciologue Julien Seguinot, elle  permet d’observer le recul des glaciers dans les Alpes depuis 120 000 ans. Réalisée à partir des traces de glaces prélevées sur le terrain et d’un modèle numérique sur la physique des glaciers, l’animation témoigne de la vaste étendue des glaciers pendant la dernière période glaciaire et de leur retrait progressif jusqu’à aujourd’hui. On remarquera en particulier qu’il y a environ 25000 ans, les glaciers alpins remplissaient la plupart des vallées et s’étendaient même dans les plaines

https://vimeo.com/320693650

—————————————————-

Here is a very interesting timelapse video showing the advances and retreats of alpine glaciers during the last ice age. Directed by glaciologist Julien Seguinot, it shows the retreat of glaciers in the Alps for 120,000 years. Based on ice traces taken from the field and a digital model on glacier physics, the video shows the vast expanse of glaciers during the last ice age and their gradual retreat until today. It should be noted that about 25,000 years ago, alpine glaciers filled most valleys and even spread over the plains

https://vimeo.com/320693650

En Suisse, les glaciers Aletsch et du Rhône reculent de façon spectaculaire (Photos: C. Grandpey)

CO2 dans l’atmosphère : Ça continue ! // More and more CO2 in the atmosphere

Ce n’est pas une surprise, mais c’est une mauvaise nouvelle pour le climat et pour les glaciers. Les émissions mondiales de CO2 ont de nouveau augmenté en 2018, tirées par une consommation d’énergie toujours plus forte. C’est ce que viennent de révéler des données publiées par l’Agence Internationale de l’Energie (AIE). Après avoir stagné entre 2014 et 2016, la dynamique a changé en 2017 et 2018. Selon l’Agence, la croissance économique « n’a pas été obtenue grâce à une meilleure efficacité énergétique, les technologies bas carbone ne se sont pas développées aussi rapidement que la croissance de la demande d’énergie », qui a atteint 2,3%, sa plus rapide progression en une décennie. Ainsi l’an dernier, les émissions de CO2 liées à la production et à la combustion de toutes les énergies (pétrole, gaz, charbon, électricité renouvelable, etc.) ont progressé de 1,7% à un niveau « historique » de 33,1 gigatonnes (soit 33,1 milliards de tonnes).

La Chine, l’Inde et les Etats-Unis sont responsables de 85% de cette hausse. Cette progression est en effet essentiellement due à la consommation de charbon en Asie pour produire de l’électricité. La situation est d’autant plus inquiétante pour l’avenir que les centrales à charbon y ont une moyenne d’âge de 12 ans, alors que leur durée de vie est d’environ 50 ans.

A l’inverse, les émissions ont diminué au Royaume-Uni et en Allemagne, du fait de l’expansion des énergies vertes. Elles ont également chuté au Japon, grâce notamment à la remise en service de réacteurs nucléaires. La France a également des résultats encourageants grâce à de bons niveaux de production des barrages hydroélectriques et des centrales nucléaires.

Malgré une croissance à deux chiffres de l’éolien et du solaire, ce sont encore les énergies fossiles (charbon, pétrole, gaz) qui ont assouvi l’appétit mondial en énergie. Sa consommation s’est accrue l’an dernier du fait de la croissance économique et des besoins plus importants pour le chauffage et la climatisation dans certaines régions du monde.

Dans la conclusion de son rapport, l’AIE écrit que ces données démontrent une nouvelle fois qu’une action plus urgente est nécessaire sur tous les fronts,  que ce soit le développement des solutions d’énergie propre ou dans le domaine des innovations, notamment dans la capture et le stockage du carbone.

La courbe de Keeling, tracée au vu des concentrations se CO2 au sommet du Mauna Loa (Hawaii), confirme cette hausse des émissions de dioxyde de carbone. Depuis plusieurs semaines elles dépassent le seuil de 410 ppm, ce qui est considérable et inquiétant.

Source : France Info.

———————————————–

This does not come as a surprise, but it is bad news for the climate and the glaciers. Global CO2 emissions increased again in 2018, driven by ever-increasing energy consumption. This is what has been revealed by data just published by the International Energy Agency (IEA). After stagnating between 2014 and 2016, the situation accelerated in 2017 and 2018. According to the Agency, economic growth « has not been achieved through better energy efficiency, low carbon technologies have not developed as quickly as the growth in energy demand « , which reached 2.3%, its fastest growth in a decade. Last year, CO2 emissions from the production and combustion of all forms of energy (oil, gas, coal, renewable electricity, etc.) increased by 1.7% to a « historic » level of 33,1 gigatonnes (33.1 billion tonnes).
China, India and the United States are responsible for 85% of this rise. This increase is essentially due to the consumption of coal in Asia to produce electricity. The situation is all the more worrying for the future as coal-fired power plants have an average age of 12, while their lifespan is around 50 years.
Conversely, emissions decreased in the United Kingdom and Germany due to the expansion of green energy. They also fell in Japan, partly thanks to the reactivation of nuclear reactors. France also has encouraging results thanks to good production levels of hydroelectric dams and nuclear power plants.
Despite double-digit growth in wind and solar energy, fossil fuels (coal, oil, gas) continued to fuel the global energy appetite. Consumption increased last year as a result of economic growth and increased heating and cooling requirements in some parts of the world.
In the conclusion of its report, the IEA writes that these data demonstrate once again that more urgent action is needed on all fronts, whether the development of clean energy solutions or in the field of innovations, in particular in carbon capture and storage.
The Keeling Curve, drawn in the light of CO2 concentrations at the summit of Mauna Loa (Hawaii), confirms this rise in carbon dioxide emissions. For several weeks they have exceeded the threshold of 410 ppm, which is considerable and worrying.
Source: France Info.

Source: Scripps Institution of Oceanography