La source magmatique de l’Agung et du Batur (Bali / Indonésie) // The magma source of Agung and Batur volcanoes (Bali / Indonesia)

Grâce aux informations fournies par les satellites de la mission Copernicus Sentinel-1 sur les déformations du sol, les scientifiques ont désormais une meilleure idée de la localisation de la chambre magmatique à l’origine de l’éruption du Mont Agung sur l’île de Bali en novembre 2017. Le volcan a émis des panaches de cendre qui ont entraîné la fermeture de plusieurs aéroports et bloqué des milliers de touristes. Les autorités ont évacué quelque 100,000 personnes, mais aucune éruption majeure n’a eu lieu. Un événement précédent, en 1963, avait toutefois coûté la vie à près de 2 000 personnes; ce fut l’une des éruptions les plus meurtrières du 20ème siècle. L’Agung est resté actif depuis 2017 et il connaît périodiquement des épisodes éruptifs mineurs.

Bali abrite deux stratovolcans actifs, l’ Agung et le Batur, mais on sait relativement peu de choses sur leurs systèmes d’alimentation magmatique. On avait toutefois remarqué en 1963 que l’éruption de l’Agung avait été suivie d’une petite éruption du Batur qui se trouve à 16 km de distance.

Un article publié récemment dans Nature Communications décrit comment une équipe de scientifiques de l’Université de Bristol (Angleterre) a utilisé les données radar de la mission Copernicus Sentinel-1 pour surveiller les déformations du sol autour de l’Agung. Sentinel-1 est une constellation de deux satellites pouvant fournir des informations interférométriques tous les six jours, ce qui est important pour surveiller les variations rapides de déformation du sol. Ces données peuvent jouer un rôle important en matière de prévision d’éruptions dans la région. Les chercheurs ont utilisé l’interférométrie radar à synthèse d’ouverture (InSAR), avec laquelle deux images radar ou plus sur la même zone sont associées pour détecter d’infimes variations de déformation de la surface du sol. Comme je l’ai expliqué dans des notes précédentes, les moindres modifications au sol entraînent des différences dans le signal radar et font naître des interférences de couleur arc-en-ciel dans l’image combinée, ce qui donne naissance à des interférogrammes (voir l’image ci-dessous). Ces interférogrammes révèlent comment la terre se soulève ou s’affaisse et indiquent donc si du magma juvénile se déplace sous le volcan.

Dans leur étude, les membres de l’équipe de l’Université de Bristol ont détecté une inflation d’environ 8 à 10 cm du flanc nord de l’Agung au cours de la période de forte activité sismique qui a précédé la dernière éruption. Ils ont également remarqué que l’activité sismique et le signal de déformation du sol se trouvaient à cinq kilomètres du sommet du volcan, ce qui signifie que le magma se déplaçait probablement aussi bien latéralement que verticalement. L’étude fournit la première preuve géophysique que les volcans Agung et Batur pourraient avoir un système d’alimentation connecté. Cela pourrait expliquer l’apparition d’éruptions simultanées, comme ce fut le cas en 1963.

Source: Université de Bristol.

——————————————————

Thanks to information on ground deformation provided by the Copernicus Sentinel-1 mission, scientists now have a better idea of the magma chamber that caused the eruption of Mount Agung on the island of Bali in November 2017. The volcano emitted ash plumes which caused airport closures and stranded thousands of visitors. Authorities evacuated about 100,000 people to safety, but no majotr eruption occurred. A previous event in 1963, however, claimed almost 2000 lives and was one of the deadliest volcanic eruptions of the 20th century. Agung has remained active, slowly erupting on and off since 2017.

Bali is home to two active stratovolcanoes, Agung and Batur, but relatively little is known of their underlying magma plumbing systems. A clue came from the fact that Agung’s 1963 eruption was followed by a small eruption at its neighbouring volcano, Batur, which stands 16 km away.

A paper published recently in Nature Communications describes how a team of scientists, led by the University of Bristol (England), used radar data from the Copernicus Sentinel-1 mission to monitor the ground deformation around Agung. Sentinel-1 is a two-satellite constellation that can provide interferometric information every six days, which is important for monitoring rapid changes of ground deformation. Their findings may have important implications for forecasting future eruptions in the region. They used the remote sensing technique of interferometric synthetic aperture radar, or InSAR, where two or more radar images over the same area are combined to detect slight surface changes. As I already explained in previous posts, tiny changes on the ground cause differences in the radar signal and lead to rainbow-coloured interference patterns in the combined image, creating interferograms (see image below). These interferograms can show how land is uplifting or subsiding, and indicate whether fresh magma is moving beneath the volcano.

In their study, the University of Bristol team detected an uplift of about 8–10 cm on Agung’s northern flank during the period of intense earthquake activity prior to the eruption. They also noticed that both the seismic activity and the ground deformation signal were five kilometres away from the summit, which means that magma was probably moving sideways as well as vertically upwards. The study provides the first geophysical evidence that Agung and Batur volcanoes may have a connected plumbing system. This could explain the occurrence of simultaneous eruptions such as in 1963.

Source: University of Bristol.

L’image InSAR du satellite Sentinel-1 montre un soulèvement du sol sur le flanc du Mont Agung entre août et novembre 2017, avant l’éruption du volcan le 27 novembre.