L’Islande et la prévision éruptive // Iceland and eruptive prediction

Aucune nouvelle éruption n’a eu lieu pour le moment sur la péninsule de Reykjanes. Le Met Office islandais avait prévu la 8ème éruption de la série pour fin janvier 2025. L’événement semble donc en retard…. En ce qui me concerne, j’ai pensé que cette prévision du Met Office était trop optimiste. Au départ, j’avais prévu la prochaine éruption pour le mois de mars 2025 – mais sûrement pas la fin janvier – avant de corriger ma prévision et d’écrire qu’elle était plutôt susceptible de se produire vers le 15 février, jour de la St Claude ! Les prochains jours diront si j’avais raison, comme ce fut le cas lorsque j’ai écrit que l’éruption précédente commencerait le 20 novembre 2024.
Il semble que les scientifiques du Met Office islandais fassent leurs prévisions éruptives en partant du principe que l’ascension du magma suit un mouvement linéaire régulier, ce qui est inexact. Un jour, à l’Observatoire Volcanologique d’Hawaï (HVO), le regretté Jim Kauahikaua m’a expliqué que la remontée de magma à Hawaï sous la croûte terrestre suivait un processus irrégulier avec des pauses, ce qui rendait la prévision éruptive difficile. Il semble que ce soit la même chose en Islande.
Dans sa dernière mise à jour (4 février 2025), le Met Office explique que « les mesures de déformation continuent de montrer un soulèvement continu du sol et une accumulation de magma sous Svartsengi. La quantité de magma en train de s’accumuler se rapproche maintenant du seuil inférieur considéré comme nécessaire pour que se déclenche la prochaine intrusion magmatique. Si l’on regarde les récentes éruptions le long de la chaîne de cratères de Sundhnúkur, elles se sont produites entre trois jours et quatre semaines après avoir atteint ce seuil inférieur. Cependant, cela ne signifie pas que le prochain événement se produira dans un mois, mais l’expérience montre que c’est le scénario le plus probable. » Il ne nous reste plus qu’à attendre et voir si ma prévision est à nouveau exacte cette fois-ci !

Il ressort de ce que je viens d’écrire que la prévision éruptive en Islande n’a pas une importance majeure. On pourrait presque organiser des concours de pronostics autour du jour possible d’une éruption. Il y a peut-être une fenêtre pour les bookmakers anglais ! En Islande, nous sommes face à un volcanisme d’accrétion avec un dynamisme effusif. Une éruption ne cause pas de pertes humaines ; au pire, elle provoque des pertes matérielles comme ce fut le cas à Grindavik.

On a une situation bien différente des volcans situés en zone de subduction, le long de la Ceinture de Feu du Pacifique. En Indonésie ou aux Philippines, on a affaire à un dynamisme explosif, avec des phénomènes éruptifs (explosions, coulées pyroclastiques) qui peuvent causer des pertes matérielles, et surtout humaines, considérables.

Le problème, c’est que nous ne savons pas prévoir ces éruptions. À cause de cette incapacité à prévoir, on a recours au principe de précaution : il vaut mieux évacuer les populations plutôt que de risquer les envoyer à une mort certaine. Certes, la vie dans les centres d’hébergement provisoires pose des problèmes sanitaires et de promiscuité, mais c’est mieux qu’une fin tragique. Parfois, on évacue à tort car aucune éruption majeure ne se produit. C’est ce qui s’est passé sur le Mont Agung à Bali, il y a quelques années, quand le volcan s’est contenté d’émettre de volumineux panaches de cendres, mais il vaut mieux protéger des dizaines de milliers de gens plutôt que de les envoyer au casse-pipe.

Évolution de la déformation en Islande. Situation le 10 février 2025 (Source: Met Office)

—————————————————–

No new eruption has occurred yet on the Reykjanes Peninsula. The Icelandic Met Office had predicted the 8th eruption of the series for the end of January 2025. It looks as if it is overdue.As fas as I’m concerned, I thought this was much too soon. Initially, I predicted the next eruption for March 2025 – but not the end of January – then corrected my prediction and wrote it was rather likely to happen around February 15th. The next days will tell us if I was right, like when I said the previous eruption would start on November 20th, 2024.

It seems the scientists at the Icelandic Met Office make their eruptive predictions with the notion that the ascent of magma follows a regular linear movement, which is not true. One day at the Hawaiian Volcano Observatory (HVO), the late Jim Kauahikaua explained me that the ascent of magma in Hawaii beneath Earth’s crust was irregular, with pauses, which made eruptive prediction difficult. It seems to be the same in Iceland.

In its latest update (February 4th, 2025) , the Met Office explains that « deformation measurements continue to show ongoing land uplift and magma accumulation beneath Svartsengi. The amount of magma accumulating beneath Svartsengi is now approaching the lower threshold, believed to be necessary to trigger the next magma intrusion. If we look at the recent eruptions on the Sundhnúkur crater row, they have occurred anywhere between three days and four weeks after reaching this lower threshold. However, this does not mean that the next event will occur within a month, but rather that experience suggests this as the most likely scenario. » We just need to wait and see whhether my prediction is again right this time !

It is clear from what I have just written that eruptive prediction in Iceland is not of major importance. One could almost organize prediction contests around the possible day of an eruption. There may be a window for English bookmakers! In Iceland, we are faced with accretionary volcanism with effusive dynamism. An eruption does not cause human losses; at worst, it causes material losses as was the case in Grindavik.
We have a very different situation from the volcanoes located in the subduction zones, along the Pacific Ring of Fire. In Indonesia or the Philippines, we are dealing with an explosive dynamism, with eruptive phenomena (explosions, pyroclastic flows) that can cause considerable material damage and human losses.
The problem is that we do not know how to predict these eruptions. Because of this inability, one resorts to the precautionary principle : it is better to evacuate people than to risk sending them to certain death. Of course, life in temporary shelters poses health and overcrowding problems, but it is better than a tragic end. Sometimes, evacuations are wrong because no major eruption occurs. This is what happened on Mount Agung in Bali a few years ago, when the volcano simply emitted voluminous ash plumes, but it is better to protect tens of thousands of people than to send them to a certain death.

Séisme lent en Nouvelle Zélande // Slow slip event (SSE) in New Zealand

J’ai mentionné à plusieurs reprises sur ce blog l’existence de séismes lents – slow slip events, SSE, en anglais – en Nouvelle-Zélande (note du 29 janvier 2023) et à Hawaï (note du 28 mars 2018). Un séisme lent est un événement discontinu qui libère de l’énergie sur une période de quelques heures à quelques mois, et non pas quelques secondes ou quelques minutes comme un séisme classique. Lors d’un SSE, le sol ne présente pas les secousses associées à l’activité sismique conventionnelle. Les SSE soulagent les contraintes qui s’exercent dans certains secteurs d’une zone de subduction, mais peuvent aussi augmenter les contraintes dans les régions adjacentes. L’interaction peut déclencher des séismes de faible intensité et peu profonds. Plusieurs événements avec des magnitudes M2,0 et M4,0 ont déjà été enregistrés près de la péninsule de Mahia, en corrélation avec le SSE qui se déroule actuellement.

Processus de subduction au niveau de l’Île du Nord en Nouvelle-Zélande (Source : Te Ara, l’Encyclopédie de la Nouvelle-Zélande)

Un séisme lent est observé depuis début décembre 2024 dans la zone de subduction de Hikurangi, une frontière tectonique entre les plaques australienne et pacifique, qui longe la côte est de l’île du Nord de la Nouvelle-Zélande. La zone de subduction constitue la plus grande faille de Nouvelle-Zélande et la plaque pacifique se déplace à raison de 2 à 6 cm par an. Les premiers SSE ont été détectés dans la région en 2002 après que GeoNet ait déployé des stations GNSS permanentes le long de la côte.
Les stations GNSS (Global Navigation Satellite System) situées au nord de Hawke’s Bay ont enregistré des déplacements du sol d’environ 4 cm vers l’est et 1 cm vers le sud, au cours des 3 dernières semaines de décembre. Les stations entre Wairoa et Tolaga Bay ont montré des mouvements similaires; certains sites se se sont déplacés parfois de 5 à 8 cm. Cela représente jusqu’à 2 ans de mouvement de plaques tectoniques en seulement 3 semaines.
Le dernier séisme lent enregistré dans la région s’est produit en juin 2023, ce qui montre le caractère récurrent de ces phénomènes dans le secteur nord de Hawke’s Bay et de Mahia.

En cliquant sur le lien ci-dessous, vous pourrez voir une excellente vidéo de 3 »41 » (en anglais) qui explique clairement, en plusieurs chapitres, ce qu’est un séisme lent et pourquoi il se produit en Nouvelle-Zélande ; quelles en sont les conséquences sismiques et quelles sont les recherches menées pour comprendre cette situation.
https://youtu.be/xgk2zBvdOgw

—————————————————

I have mentioned several times on this blog the existence of slow-slip earthquake events (SSE) about New Zealand (29 January 2023). and Hawaii (28 March 2018). A slow earthquake is a discontinuous, earthquake-like event that releases energy over a period of hours to months, rather than the seconds to minutes characteristic of a typical earthquake. As a consequence, during a SSE, the ground does not show the shaking associated with conventional seismic activity. SSEs relieve stress in some areas of a subduction zone but may increase stress in adjacent regions. The interaction can trigger smaller, shallow earthquakes. Multiple earthquakes between magnitudes M2.0 and M4.0 have already been recorded near the Mahia Peninsula, correlated with the current SSE.

A slow-slip earthquake event has been taking place since early December in the Hikurangi Subduction Zone, a tectonic boundary between the Australian and Pacific plates. This zone runs along the east coast of New Zealand’s North Island. The Subduction Zone is the largest fault in New Zealand and experiences Pacific Plate movement at rates of 2 to 6 cm per year. SSEs were first detected here in 2002 after GeoNet deployed permanent GNSS stations along the coast.

Global Navigation Satellite System (GNSS) stations located north of Hawke’s Bay, recorded land displacements of approximately 4 cm eastward and 1 cm southward, within the last 3 weeks of December. Stations between Wairoa and Tolaga Bay exhibited similar movements with some sites moving up to 5 to 8 cm. It represents up to 2 years’ worth of tectonic plate motion occurring in just 3 weeks

The last recorded slow-slip earthquake in the area occurred in June 2023, showing the recurring nature of these phenomena in the Northern Hawke’s Bay and Mahia regions.

Here is an excellent video (3 »41 ») that explains in several chapters what a slow-slip event is and why it is occurring in New Zealand ; what the seismic consequences are, and the research made to understand the situation.

https://youtu.be/xgk2zBvdOgw

Le risque sismique dans le nord-ouest des États-Unis // The seismic hazard in northwestern United States

On le sait depuis plusieurs années, le nord-ouest des États-Unis est sous la menace d’un puissant séisme dont la source se trouverait quelque part le long de la zone de subduction de Cascadia. J’ai publié plusieurs notes à ce sujet en février 2012 et août 2018.

Avec la chaîne des Cascades et des volcans comme le mont Baker, le mont Rainier ou le mont Saint Helens, le nord-ouest des États-Unis est exposé à des éruptions majeures. Il est également exposé à de puissants séismes en raison de la tectonique de la région.
À environ 160 kilomètres au large de la côte Pacifique du nord-ouest des États-Unis, à grande profondeur sous le plancher océanique, deux plaques tectoniques accumulent des tensions et une énergie qui pourrait se libérer brutalement. Dans la zone de subduction de Cascadia, la plaque océanique Juan de Fuca plonge sous la plaque nord-américaine, mais la bordure de la plaque est verrouillée. Au fur et à mesure que la plaque continue de pousser contre ce bord bloqué, la tension ne cesse de s’accumuler.

Source: USGS

Tout est très calme pour le moment, sans sismicité significative. Les scientifiques craignent que si la tension accumulée ne se libère pas par le biais de séismes de faible intensité, la zone de subduction de Cascadia soit la source d’un méga séisme d’une magnitude pouvant atteindre M 9,0. Un sismologue a déclaré : « Ce sera la pire catastrophe naturelle que notre pays ait jamais connue ; c’est pourquoi certains l’appellent le « Big One ». En moyenne, la zone de subduction de Cascadia produit un puissant séisme tous les 200 à 500 ans. Le plus récent a eu lieu en 1700.
De mémoire d’homme, l’événement le plus proche du Big One s’est produit au Japon en 2011. Le séisme de Tohoku, d’une magnitude M 9,0, avait sa source dans une zone de subduction. Il a généré un tsunami qui a atteint 40 mètres de haut et a envahi plus de 1 920 kilomètres de côtes. Le séisme et le tsunami ont tué environ 18 500 personnes. Pendant des années après l’événement de Tohoku, des répliques ont secoué le Japon, avec un séisme de M 7,1 en 2021, qui a causé de nouveaux dégâts. De la même façon, dans le nord-ouest du Pacifique, les répliques pourraient continuer pendant des mois, voire des années, après le Big One.
S’agissant des conséquences d’un méga séisme dans cette région des États-Unis, les scientifiques ont découvert que dans les jours qui suivraient l’événement, une grande partie de l’ouest de l’Oregon et de l’État de Washington pourrait être privée d’électricité, d’Internet, de service de téléphonie cellulaire ou d’eau potable. Dans certaines zones, il faudrait probablement plus de deux semaines avant que les secours arrivent, car les glissements de terrain, les effondrements de ponts et d’autres dégâts causés aux routes pourraient rendre les déplacements impossibles. L’Oregon et l’État de Washington recommandent à la population d’avoir suffisamment de nourriture, d’eau et de médicaments à portée de main pour tenir au moins deux semaines.
Pour faire face à une telle situation, des « lignes de vie » devraient être identifiées à travers les montagnes, autrement dit des moyens d’acheminer des fournitures essentielles vers la côte.
La rénovation des vieux bâtiments est également cruciale, car beaucoup ne sont pas conçus pour résister aux méga séismes.
Contrairement aux États-Unis, le Japon connaît depuis des siècles le risque de puissants séismes et de tsunamis. C’est l’une des nations les mieux préparées à ce genre d’événements. Et pourtant, en 2011, la rupture de la zone de subduction a été dévastatrice. Les services d’urgence aux États-Unis ont passé des décennies à se préparer à un séisme majeur. Malgré cela, ils sont forcés de reconnaître que la région n’est pas prête à affronter un tel événement.
Il semble que l’urgence, pour sauver des vies en cas de méga séisme, consiste à insister sur la prévention, en mettant en place un système qui envoie des alertes précoces sur les téléphones, ce qui est déjà le cas pour de nombreux séismes, mais n’est pas une garantie à 100%. Plus tôt l’alerte téléphonique retentit, plus les gens ont le temps de se protéger. La prochaine étape consistera à poser des câbles équipés de capteurs sismiques sur le fond de l’océan, le long de la ligne de faille.
En attendant, les chercheurs travaillent à cartographier la structure de la faille. Leur dernière étude a peut-être révélé un point positif : la zone de subduction de Cascadia pourrait se rompre par segments accompagnés de séismes de faible intensité, plutôt que d’un seul coup avec un méga séisme. Cependant, il est impossible de dire quel scénario se produira. Nous ne savons toujours pas prévoir les séismes.
Adapté d’un article de Business Insider publié dans Yahoo News.

———————————————

With the Cascade Range and volcanoes like Mount Baker, Mount Rainier or Mount St Helens, Northwestern United States is exposed to major eruptions. It is also exposed to major earthquakes, due to the tectonics of the region.

About 160 kilometers offshore from the Pacific Northwest, deep beneath the seafloor, two tectonic plates are building tension that could erupt at any moment. In the Cascadia subduction zone, the Juan de Fuca oceanic plate is sliding beneath the North American plate, but its edge is stuck. As the plate keeps pushing against its locked-up edge, stress builds. Everything is very quiet at the moment, with no significant seismicity. Scientists fear that without releasing tension through smaller earthquakes, the Cascadia subduction zone is more likely to erupt in megaquake with a magnitude of about M 9.0. Said one seismologist : « It will be the worst natural disaster our country has ever seen, That’s why some call it the « Big One. » On average, the Cascadia subduction zone produces an immense earthquake every 200 to 500 years. The most recent one was in 1700.

The closest thing in human memory to the Big One occurred in Japan in 2011. That magnitude M 9.0 event, the Tohoku earthquake, also came from a subduction zone. It generated a tsunami that reached 40 meters high, inundated over 1,920kilomryrts of coastline. Together, the quake and tsunami killed an estimated 18,500 people. For years after the Tohoku event, aftershocks rippled across Japan, adding to the damage, including an M 7.1 earthquake in 2021. Likewise, in the Pacific Northwest, aftershocks could continue for months, maybe even years, following the Big One.

As far as the consequences of a megaquake in the Pacific Northwest are concerned, scientists have found that in the days following the event, much of western Oregon and Washington may be without electricity, internet, cell service, or drinking water.

In certain areas, it could be more than two weeks before help arrives because landslides, bridge collapses, and other damage to roads could make travel impossible. Both Oregon and Washington advise that all residents have enough food, water, and medicine on hand to last at least two weeks.

In order to face such a situation, « lifelines » should be identified through the mountains, ways to transport critical supplies to the coast.

Retrofitting old buildings is also crucial since many are not megaquake-resilient.

Unlike the U.S., Japan has known about its risk of giant earthquakes and tsunamis for centuries. It’s one of the most prepared nations on Earth. And still, the 2011 subduction-zone rupture was devastating. Emergency services in the U.S have spent decades preparing for a major earthquake. Still, they say the region is not ready.

It seems that an immediate strategy to save lives in case of a megaquake is to insist on prevention, through the building out of a system that sends early warnings to phones, which already happens for many earthquakes but isn’t a guarantee.

The sooner the phone warning blares, the more time people have to protect themselves The next frontier for that is laying cables with seismic instruments on the seafloor along the fault line.

In the meantime, researchers are working to map the fault’s structure. Their latest study may have uncovered some good news: The Cascadia subduction zone could rupture in segments or smaller earthquakes rather than all at once as one giant event. However, which scenario will actually happen remains unclear. We are not able yet to predict earthquakes.

Adapted from an article in Business Insider and published in Yahoo News.

Le risque tsunami en Nouvelle Zélande // The tsunami hazard in New Zealand

Outre les éruptions volcaniques comme celle de White Island (9 Decembre 2019; 22 morts ), la Nouvelle-Zélande est un pays exposé aux séismes comme l’événement de M 6.2 qui a secoué Christchurch le 21 février 2011, faisant 185 morts.

 

Photo: C. Grandpey

Destruction à Christchurch (Crédit photo : NZ Defence Force)

L’histoire montre que la Nouvelle-Zélande est également exposée aux tsunamis. Ils sont en général causés par des séismes sur la plaque Pacifique. Ils peuvent se produire localement, mais affecter aussi l’Amérique du Sud, le Japon et l’Alaska. Certains ont été attribués à des glissements de terrain sous-marins et à une activité volcanique. On a constaté que la Nouvelle-Zélande est touchée en moyenne par au moins un tsunami avec une hauteur de vague supérieure à un mètre tous les dix ans. Cependant, le recensement des tsunamis est limité par l’histoire de ce jeune pays. Il remonte seulement au début des années 1800 et se base souvent sur des traditions orales maories et des recherches effectuées sur les paléo-tsunamis, autrement dit des raz-de-marée qui ont eu lieu à des époques reculées et dont il n’existe plus que des traces géologiques.

Une nouvelle étude publiée en novembre 2023 dans le Journal of Geophysical Research : Solid Earth a toutefois montré que des vagues de tsunami de 28 mètres de haut pourraient frapper certaines parties de la Nouvelle-Zélande dans les pires scénarios de séismes.
Pour arriver à cette conclusion, les chercheurs ont utilisé une nouvelle méthode de simulation des séismes pour comprendre les risques de tsunami dans les îles du Nord et du Sud de la Nouvelle-Zélande. Ils ont constaté que les plus grosses vagues frapperaient probablement la côte nord-est de l’Île du Nord. En effet, la zone de subduction de Hikurangi, où la plaque tectonique Pacifique plonge sous la plaque tectonique australienne, se trouve juste au large de cette côte. Les auteurs de l’étude ont conclu qu’il y a un laps de temps très court entre le moment où le séisme se produit et celui où les vagues du tsunami frappent la côte.

Contexte tectonique en Nouvelle Zélande (Source: GNS Science)

Source: GeoNet

En raison de la proximité de la Nouvelle-Zélande avec des zones de subduction susceptibles de déclencher de puissants séismes générant des tsunamis, il est important de comprendre le risque lié à ces vagues dévastatrices.
Jusqu’à présent, les chercheurs se sont référés à des séismes historiques pour tenter de comprendre les risques futurs. Le problème, c’est que les documents historiques ne remontent qu’à environ 150 ans. Les études géologiques peuvent, certes, révéler des preuves de séismes plus anciens, mais ces travaux sont incomplets.
Au lieu de cela, les auteurs de la dernière étude se sont tournés vers une méthode différente : les séismes synthétiques, autrement dit une approche artificielle des séismes. Cette méthode utilise des modèles informatiques dans lesquels les chercheurs ajoutent tout ce qu’ils connaissent sur la géométrie et la physique des systèmes de failles. Ils ont ensuite simulé des dizaines de milliers d’années de séismes pour tenter de déterminer la fréquence à laquelle les séismes majeurs se produisent. La méthode n’est pas parfaite car tous les systèmes de failles ne sont pas intégralement connus, mais elle vient compléter les archives historiques et géologiques. Il faut toutefois noter que si cette méthode tend à montrer comment de tels séismes peuvent se déclencher, elle n’apporte aucune indication concernant la prévision de leur déclenchement.
Dans la nouvelle étude, les chercheurs ont créé un catalogue de simulations couvrant 30 000 années, axé sur les systèmes de failles autour de la Nouvelle-Zélande. Les résultats ont révélé 2 585 séismes d’une magnitude comprise entre M 7,0 et M 9,25. La modélisation montre que la zone de subduction de Hikurangi est la principale source de séismes majeurs déclencheurs de tsunamis près de la Nouvelle-Zélande, bien que la zone de subduction Tonga-Kermadec, un peu plus au large au nord de l’île du Nord puisse également générer de puissants séismes accompagnés de tsunamis. Les chercheurs ont été surpris de constater que le risque de tsunami était davantage causé par des failles plus petites et moins profondes au niveau de la croûte terrestre, plutôt que par les failles de subduction proprement dites.
L’équipe scientifique a découvert que la hauteur maximale d’une vague de tsunami serait de 28 mètres. Elle serait provoquée par un puissant séisme à environ 630 kilomètres au nord-est d’Auckland dans le Pacifique Sud. A titre de comparaison, le tsunami de Tohoku au Japon en 2011 a déclenché une vague de 40 mètres.
Source : Live Science.

Photo: C. Grandpey

————————————————–

Beside volcanic eruptions like the tragic one on White islans (9 December 2019 ; 22 casualties ), New Zealand is a country exposed to earthquakes like the M 6.2 event that shook Christchurch on February 21st, 2011, killing 185 people.

History shows that New Zealand is also exposed to tsunamis. They tend to be caused by earthquakes on the Pacific Plate both locally and as far away as South America, Japan, and Alaska. Some have been attributed to undersea landslides and volcanoes. New Zealand is affected by at least one tsunami with the a wave height greater than one metre every ten years on average. However, the history of tsunamis is limited by the country’s written history only dating from the early to mid-1800s with Māori oral traditions and paleotsunami research prior to that time. A new resaerch has shown that tsunami waves 28 meters high could hit parts of New Zealand in a worst-case earthquake scenario.

In the study, published in November 2023 in the Journal of Geophysical Research: Solid Earth, researchers used a new method of examining simulated earthquakes to understand possible tsunami risks to New Zealand’s North and South Islands. They found that the largest waves are likely to strike along the northeast coast of North Island. It is because the Hikurangi subduction zone, where the Pacific tectonic plate dives under the Australian tectonic plate, sits just offshore. The authors of the study concluded there was a really short timespan between the moment when these earthquakes happen and when the tsunami waves hit. VOIR CARTE TECTONIQUE

Because of New Zealand’s proximity to subduction zones, which can create large, tsunami-generating earthquakes, it is important to understand the risk of these devastating waves.

Previous efforts have used historical quakes to try to understand future risk. But historical records only go back about 150 years. Geological studies can turn up evidence of older quakes, but those records are incomplete.

Instead, the researchers turned to a different method: synthetic earthquakes. This method used computer models, into which researchers added everything they know about the geometry and physics of fault systems. They then simulated tens of thousands of years of quakes to try to determine how often major ones occur. The method is not perfect because the fault systems are not fully known, but it complements the historical and geological record. Moreover, if this method tends to show how such earthquakes can be triggered, it does not bring any indication concerning the prediction.

In the new study, the researchers created a catalog of 30,000 years of simulated time focused on the fault systems around New Zealand. The results revealed 2,585 earthquakes with magnitudes between M 7.0 and M 9.25. The model suggests that the Hikurangi subduction zone is the most dangerous source of tsunami quakes near New Zealand, though the Tonga-Kermadec subduction zone north of North Island can also generate large, tsunami-causing quakes, just a bit further from shore. The researchers were surprised to find that the tsunami hazard was caused by smaller, shallower crustal faults, rather than the subduction faults themselves.

The scientific team found the maximum height of a tsunami was 28 meters, which would result from a paowerful earthquake about 630 kilometers northeast of Auckland in the South Pacific. The 2011 Tohoku tsunami in Japan triggered a 40-meter wave, for comparison.

Source : Live Science.