Crues glaciaires mortelles // Deadly glacial outburst floods

Plus de 100 personnes sont portées disparues dans le nord-est de l’Inde après la rupture d’un lac glaciaire le 4 octobre 2023 dans l’État himalayen du Sikkim. La cause de la catastrophe a été initialement attribuée à un épisode de très fortes pluies sur le lac Lhonak, ainsi qu’au rejet d’eau du barrage de Chungthang. Cependant, la catastrophe est aujourd’hui attribuée à une crue glaciaire qui a tué au moins 19 personnes avec de nombreux disparus, et emporté des routes et des ponts.
Une crue glaciaire est la libération soudaine de l’eau qui s’est accumulée dans d’anciens lits de glaciers. Ces lacs se forment lors du recul des glaciers, un phénomène naturel accéléré par la hausse des températures due au réchauffement climatique d’origine anthropique.
L’eau de fonte des glaciers se déverse souvent dans les rivières, mais les blocs de glace et l’accumulation de débris peuvent édifier un barrage naturel derrière lequel se forme un lac glaciaire. Si ces barrages naturels se rompent, de grandes quantités d’eau peuvent s’échapper soudainement des lacs et provoquer des inondations dévastatrices.
Les barrages naturels qui retiennent les lacs glaciaires peuvent se rompre pour diverses raisons. Ce peut être une avalanche de neige ou un glissement de terrain, événements qui déclenchent une vague dans le lac. Il peut aussi s’agir d’un débordement du lac à cause de la pluie ou de la fonte des glaciers. Parfois, le barrage se dégrade progressivement au fil du temps et finit par se rompre à la suite d’un événement tel qu’un séisme.
Dans la mesure où elles peuvent être causées par de nombreux et différents facteurs, les crues glaciaires sont imprévisibles. Néanmoins, elles sont étroitement liés au réchauffement climatique actuel. En effet, la hausse des températures entraîne la fonte et la disparition des glaciers, la moitié des 215 000 glaciers de la planète devraient fondre d’ici la fin du siècle, même si le réchauffement peut être plafonné à 1,5°C, comme décidé lors de la COP 21 à Paris.
Le volume des lacs glaciaires a bondi de 50 % en 30 ans, selon une étude de 2020 basée sur des données satellitaires. Plus les lacs se forment et plus ils sont grands, plus ils représentent un risque pour les populations en aval.
Le principal danger des crues glaciaires réside dans leur imprévisibilité. La probabilité qu’un lac libère l’eau qu’il retient est difficile à estimer avec précision sans études détaillées. L’une d’elles, publiée dans la revue Nature Communications a révélé que 15 millions de personnes vivent à moins de 50 kilomètres d’un lac glaciaire et à moins d’un kilomètre d’une inondation potentielle due à une brèche dans la digue qui le retient. Le risque est plus grand dans les hautes montagnes d’Asie, une zone qui couvre une douzaine de pays, dont l’Inde, le Pakistan, la Chine et le Népal.
Ces populations sont d’autant plus vulnérables qu’elles sont souvent pauvres et peu préparées à faire face à l’arrivée soudaine d’eaux de crue catastrophiques. Les scientifiques affirment que c’est le nombre élevé de personnes et leur capacité réduite à faire face à une catastrophe qui jouent un rôle clé dans la détermination du risque de crue glaciaire. Des milliers de personnes, par exemple, ont été tuées par les crues des lacs glaciaires dans les hautes montagnes d’Asie, alors que seulement quelques unes ont péri dans le nord-ouest de l’Amérique du Nord, région qui compte deux fois plus de lacs glaciaires.
Les scientifiques appellent à davantage de recherches sur les risques posés par les crues glaciaires, en particulier dans la région andine – au Pérou, par exemple – qui reste relativement peu étudiée, mais également à une meilleure préparation des populations. Bien sûr, la meilleure solution pour prévenir les crues glaciaires serait de réduire nos émissions de gaz à effet de serre afin de diminuer l’impact du réchauffement climatique sur les glaciers, mais pour l’instant, ce n’est qu’un rêve…
Réflexions personnelles inspirées d’articles parus dans la presse internationale.

——————————————

More than 100 people are missing in India’s northeast after a glacial lake burst open on October 4th, 2023 in the Himalayan state of Sikkim . The cause of the flood was initially attributed to a cloudburst over Lhonak Lake, along with the release of water from the Chungthang dam. However, the disaster has since been identified as the result of a glacial lake outburst flood (GLOF) that killed at least 19 with many others missing, and washed away roads and bridges.

A glacial lake outburst flood (GLOF) is the sudden release of water that has collected in former glacier beds. These lakes are formed by the retreat of glaciers, a naturally occurring phenomenon that has been accelerated by the warmer temperatures of human-caused global warming.

Glacier melt is often channelled into rivers, but ice or the build-up of debris can form a natural dam, behind which a glacial lake builds. If these natural dams are breached, large quantities of water can be released suddenly from the lakes, causing devastating flooding.

The natural dams holding back glacial lakes can be breached for a variety of reasons. Causes include an avalanche of snow, or a landslide causing a wave in the lake, or overfilling of the lake… from rain or the glacier melting. Sometimes the dam has been gradually degraded over time, or is ruptured by an event like an earthquake.

Because they can be caused by so many different factors, the breaches are highly unpredictable. However, they are closely linked to the current global warming. Indeed, global warming is driving the disappearance of glaciers, with half the Earth’s 215,000 glaciers projected to melt by the end of the century, even if warming can be capped at 1.5°C, as decided during COP 21 in Paris.

The volume of glacial lakes has jumped by 50 percent in 30 years, according to a 2020 study based on satellite data. The more and larger lakes form, the greater the risk they pose to populations downstream.

The particular danger of GLOFs lies in their unpredictability. The probability of a lake releasing a GLOF is difficult to accurately quantify without detailed and localised studies. A research published in Nature Communications found that 15 million people live within 50 kilometres of a glacial lake and within one kilometre of potential flooding from a breach. The risk is greatest in Asia’s high mountains, an area that covers parts of 12 countries, including India, Pakistan, China and Nepal.

These populations are all the more vulverable as they may be poorer and less prepared to deal with the sudden arrival of catastrophic floodwaters. Scientists sai it is the high number of people and the reduced capacity of those people to cope with disaster that plays a key role in determining overall GLOF danger. Thousands of people, for example, have been killed by glacier lake outburst floods in High Mountains Asia but only a handful in North America’s Pacific Northwest, even though that region has twice as many glacial lakes.

Scientists have called for more research on the risks posed by GLOFs, particularly in the Andean region – especially in Peru – which remains comparatively understudied, but also for better preparedness. Of course, the best solution to prevent GOLFs would be to reduce our emissions of greenhouse gases in order to reduce the impact of global warming, but for the moment, this is just a dream…

Adapted from articles in the international press.

Le lac Imja, près de l’Everest, est un lac glaciaire dont la longueur a triplé depuis 1990. (Crédit photo : Planetary Science Institute)

Certaines zones des Alpes sont sous la menace de lacs glaciaires, comme celui de Rosolin à Tignes, mais ils sont étroitement surveillés (Crédit photo : RTM)

Kilauea (Hawaii) : la vie dans les zones à haut risque // Life in high risk areas

Bien qu’il s’agisse d’un volcan de point chaud avec une activité majoritairement effusive, le Kilauea n’est pas sans risques pour les habitants de Big Island. Les souvenirs de l’éruption destructrice du district de Puna dans la Lower East Rift Zone en 2018 sont encore bien présents dans les mémoires. La reconstruction continue cinq ans après que les coulées de lave ont recouvert et détruit plusieurs localités, dont Kapoho, Lanipuna Gardens, la plupart des propriétés des Leilani Estates et des parties de Pohoiki.
Depuis 2018, le Kilauea est à nouveau entré en éruption à 5 reprises, dont celle qui vient de se terminer. Toutes ces éruptions ont eu lieu à l’intérieur de la caldeira sommitale, sans menacer les personnes et les biens.
Les éruptions de la zone de Rift Est (East Rift Zone) peuvent se produire fréquemment. Depuis 1950, il y a eu des éruptions de longue durée sur le Mauna Ulu de 1969 à 1971 et de 1972 à 1974, et sur le Pu’uO’o de 1983 à 2018. L’éruption du Pu’u’O’o a été divisée en 61 épisodes d’activité ; elle a détruit 215 structures et recouvert près de 15 kilomètres de routes avec une lave dont l’épaisseur atteignait parfois 34 mètres. Elle s’est terminée juste avant le début de l’éruption de 2018. Cette éruption a également détruit Kalapana en 1990 : elle a représenté la plus longue et la plus importante émission de lave sur la zone de rift Est du Kilauea depuis plus de 500 ans.
Des éruptions de plus courte durée se sont produites 12 fois dans l’East Rift Zone entre 1955 et 1980. L’éruption de 1960 a détruit une ancienne communauté à Kapoho. Une coulée de lave a également menacé Pahoa en 2014-2015.
La zone de rift sud-ouest du volcan, moins peuplée que la zone de rift est, n’a pas été aussi active au cours des deux derniers siècles, mais des éruptions peuvent s’y produire. Les plus récentes dans cette zone ont été brèves. Un événement survenu en 1974 a duré moins d’une journée et une éruption en 1971 n’a duré que cinq jours. Cependant, des événements plus longs sont possibles, comme l’éruption du Mauna Iki qui a duré près d’un an, de 1919 à 1920.
Bien que l’événement de 2018 représente le plus grand effondrement sommital et la plus volumineuse éruption dans la Lower East Rift Zone au cours des 200 dernières années, cette éruption correspond à un comportement déjà observé sur le Kilauea. Par contre, un tel impact dans cette zone n’avait jamais été observé. Cela est dû au rapide développement urbain dans cette partie de la Grande Île. En effet, avec le nombre croissant de personnes qui y vivent et y travaillent, il est devenu de plus plus difficile de gérer le risque d’inévitables éruptions.
Si les méthodes de construction peuvent être mieux adaptées pour réduire les dégâts causés par des catastrophes naturelles telles que les ouragans et les séismes, elles ne permettent pas de lutter contre les coulées de lave. Il n’existe aucun code de construction qui puisse empêcher une maison d’être recouverte par la lave. La seule solution consiste à réduire le nombre de bâtiments et autres infrastructures dans ces zones à haut risque, tout en veillant à ce que la population soit bien informée et préparée aux catastrophes potentielles.

Les autorités hawaiiennes essayent de mettre en pratique un programme de rachat volontaire de logements et de propriétés touchées par l’éruption de 2018. Cela permet d’éviter le retour des habitants dans ces zones à haut risque. L’objectif principal est d’empêcher que ces propriétés inoccupées soient occupées par de nouvelles maisons ou des entreprises qui pourraient être exposées à de futures éruptions. Cependant, il n’est pas facile de convaincre les gens d’abandonner leurs biens et de reprendre une nouvelle vie dans un endroit plus sûr, alors qu’ils vivent depuis plus de 50 ans dans les deux zones les plus exposées au risque éruptif.
Des solutions ont été proposées, telles que l’installation de maisons modulaires qui peuvent être déplacées rapidement hors de la zone sinistrée. On a aussi testé d’autres matériaux de construction, tels que l’eucalyptus, dont l’île dispose facilement. Cela implique toutefois une modification des codes du bâtiment pour s’adapter à de telles constructions et à d’autres idées.
La Protection Civile du comté d’Hawaii met l’accent sur la préparation aux catastrophes naturelles et en particulier aux éruptions. Le comté est en train d’établir des plans de communication pouvant être utilisés lors d’une prochaine catastrophe. Il a développé des modèles de communication pour les situations les plus critiques. Des messages seront diffusés dans un délai minimal sur la messagerie des téléphones portables, la radio et la télévision, en relation avec le système de sirènes d’alerte. Cela permettra d’alerter la population pour toutes les situations d’urgence telles que les éruptions et les incendies de végétation en tout point de l’île.
Source : Big Island Now.

—————————————————–

Although it is a hotspot volcano with predominantly effusive activity, Kilauea is not without risks for Big Island residents. Memories of the destructive 2018 Lower East Rift Zone eruption in Puna are still fresh. Recovery is still ongoing five years after the lava flows wiped out several communities, including Kapoho, Lanipuna Gardens, most of Leilani Estates and parts of Pohoiki.

Just since 2018, there have been five more eruptions of Kilauea. They have all been confined to the summit caldera and posed no threat to life or property

However, East Rift Zone eruptions can occur frequently. Since 1950, there were long-lived eruptions at Maunaulu from 1969-71 and 1972-74 and Pu‘u‘ō’ō from 1983 to 2018. The eruption at Pu‘u‘ō’ō, which was divided into 61 episodes of activity, destroyed 215 structures and buried nearly 15 kilometers of highway with lava as thick as 34 meters. It ended just before the 2018 eruption began. That eruption also destroyed Kalapana in 1990 and was the longest and most voluminous known outpouring of lava from Kilauea’s East Rift Zone in more than 500 years

Shorter-lived eruptions occurred on the East Rift Zone 12 times between 1955 and 1980. The 1960 eruption destroyed a previous community at Kapoho. There also was a lava flow in 2014-15 that threatened Pahoa.

The volcano’s Southwest Rift Zone, which is less populated than the East Rift Zone, has not been as active during the past two centuries, but eruptions can still happen there. The most recent eruptions in this area were brief. An event in 1974 lasted for less than a day and an eruption in 1971 lasted for just five days. However, longer-lived vents are possible. The Maunaiki eruption lasted almost a year from 1919-20.

While the 2018 event represented the largest summit collapse and Lower East Rift Zone eruption in the past 200 years, it also fits a pattern of Kilauea’s past behaviour. What was unprecedented was the impact, which was due to the development growth in that part of the Big Island. Indeed, with more people now living, working and playing there, it has become more difficult to mitigate the high risk of inevitable future eruptions.

While structural engineering and construction methods can be adapted to reduce damage from other natural disasters such as hurricanes and earthquakes, they do not help with lava flows. There is no building code that will save a house from being inundated by lava. The only solution is to reduce buildings and infrastructure in those high-risk zones while ensuring residents are well-informed and prepared for potential disasters. The county continues to advocate for its voluntary housing buyout program which is dedicated to acquiring properties affected by the 2018 eruption to minimize the return of residents to those high-risk areas. The primary objective is to keep those properties unoccupied by new homes or businesses that could be vulnerable to future eruptions. However, it’s noteasy to ask all people to abandon their properties and pick up their entire lives to move somewhere safer, when they have lived in neighborhoods in lava zones 1 and 2, the two highest areas at risk of eruption, for more than 50 years.

Suggestions have been made such as building more modular homes that could be moved out of the area of a disaster and testing other nontraditional materials for construction, such as eucalyptus, which the island has a readily available supply. That would include taking a look at the county’s building codes and how they could be changed to accommodate such construction and other ideas.

The Hawai‘i County Civil Defense Agency emphasizes disaster preparedness related to eruptions.The County is establishing comprehensive communication plans for the next disaster.

It has developed templates for the most critical hazards so messages can be dispersed with minimal delay and is using the Public Alert Warning System to support messaging to cellphones, radio and TV in combination with the outdoor alert siren system to alert people about emergencies of all types, including natural disasters such as eruptions and wildfires anywhere on the island.

Source : Big Island Now.

L’éruption de 2018 a été particulièrement dévastatrice (Crédit photo: HVO)

Faut-il construire des centrales nucléaires dans des zones sismiques ? // Should nuclear plants be built in earthquake-prone areas ?

Les derniers séismes terriblement destructeurs en Turquie et en Syrie, avec des magnitudes de M 7,8 et M 7,5, ont ravivé le vieux débat sur la construction d’une centrale nucléaire en Turquie, sur la côte sud de la Méditerranée.
Le site de la centrale se trouve à Akkuyu, à quelque 340 kilomètres à l’ouest de l’épicentre du séisme du 6 février 2023. A l’extrémité ouest de la faille est-anatolienne, il est censé résister à de puissants séismes. Le site n’a pas subi de dégâts lors de la dernière secousse et ses répliques. Cependant, la violence de l’événement a fait renaître les doutes sur la construction de la centrale au bord d’une ligne de faille majeure.
Rosatom, l’entreprise russe en charge du projet, affirme que la centrale est conçue pour « résister aux influences externes extrêmes » d’un séisme de M 9.0. Rosatom rappelle que, par leur conception, les centrales sont conçues pour résister à des secousses plus fortes que celles enregistrées dans la passé dans la zone où elles sont implantées. Selon Rosatom, le risque que se produise un séisme de M 9,0 à proximité du réacteur d’Akkuyu « est d’environ une fois tous les 10 000 ans. C’est exactement ainsi que la notion de marge de sécurité est mise en œuvre. »
Des militants des deux côtés de Chypre (l’île est divisée sur le plan ethnique) affirment que le projet – ce sera la première centrale nucléaire en Turquie – constitue une menace. Ils ont renouvelé leurs appels à l’abandon du projet, en affirmant que le dernier séisme est une preuve évidente du risque réel posé par une centrale nucléaire à proximité d’une zone de faille sismique.
Le groupe chypriote Cyprus Anti-Nuclear, qui regroupe plus de 50 structures écologistes, des syndicats et des partis politiques chypriotes grecs et chypriotes turcs, « appelle tous les partis politiques, les organisations scientifiques et environnementales et la société civile à unir leurs efforts et à faire pression sur le gouvernement turc pour mettre fin au projet de centrale nucléaire à Akkuyu.
Dans le monde, les centrales nucléaires sont conçues pour résister aux séismes et s’arrêter en toute sécurité en cas d’événement sismique majeur. Environ 20 % des réacteurs nucléaires fonctionnent dans des zones d’activité sismique importante. Par exemple, les centrales nucléaires japonaises, y compris la centrale nucléaire de Hamaoka, se trouvent dans des régions où des séismes atteignant M 8,5 sont susceptibles de se produire. Des normes de sécurité plus strictes ont été adoptées après la catastrophe nucléaire de Fukushima en 2011. Autre exemple, la centrale de Diablo Canyon en Californie a été conçue pour résister en toute sécurité aux séismes, aux tsunamis et aux inondations dans la région.
Les autorités nucléaires turques ont accordé le permis de construire la centrale à Akkuyu en 1976 après huit années d’études sismiques pour déterminer l’emplacement le plus approprié. Le projet a été ralenti après l’accident nucléaire de Tchernobyl en 1986. La construction du premier réacteur a commencé en 2018.
Selon Rosatom, une étude effectuée par le Bureau turc pour la prévention et l’élimination des conséquences des situations d’urgence indique que le site d’Akkuyu, à environ 100 km de la côte nord de Chypre, se trouve dans la zone sismique de cinquième degré, autrement dit la région la plus sûre en termes de séismes.
La conception de la centrale nucléaire turque comprend un mur extérieur en béton armé et une coque de protection interne en «béton précontraint», avec des câbles métalliques tendus à l’intérieur de la coque en béton pour donner une solidité supplémentaire à la structure. De plus, la conception du réacteur, le VVER-1200 russe, comprend un élément de sécurité supplémentaire : un cône en acier de 144 tonnes qui, en cas d’urgence, piège et refroidit toutes les matières radioactives en fusion.
La centrale nucléaire d’Akkuyu , dont le premier des quatre réacteurs devrait être mis en service courant 2023, aura une capacité totale de 4 800 mégawatts et fournira environ 10 % des besoins en électricité de la Turquie. Selon les chiffres du gouvernement, si la centrale électrique commençait à fonctionner aujourd’hui, elle pourrait à elle seule fournir suffisamment d’électricité pour une ville d’environ 15 millions d’habitants, comme Istanbul.
Source : Yahoo Actualités.

—————————————–

The last devastating M 7.8 and M 7.5 earthquakes in Turkey and Syria have revived a longstanding debate about the building of a large nuclear power station on Turkey’s southern Mediterranean coastline.

The plant’s site is located in Akkuyu, some 340 kilometers to the west of the epicenter of the February 6th quake. It is sited off the western end of the East Anatolian Fault and is supposed to endure powerful tremors. It did not sustain any damage from the last earthquake and aftershocks. However, the size of the quake sharpened existing concerns about the facility being built on the edge of a major fault line.

Rosatom, Russia’s state-owned company in charge of the project, says the power station is designed to “withstand extreme external influences” from an M 9.0 earthquake. In nuclear power plant construction, plants are designed to survive shaking that is more extreme than what has been previously recorded in the area they are sited. According to Rosatom, the possibility of an M 9.0 earthquake occurring in the vicinity of the Akkuyu reactor “is approximately once every 10,000 years. That is exactly how the margin of safety concept is being implemented.”

Some activists on both sides of ethnically divided Cyprus say the project – the first nuclear power plant in Turkey – poses a threat. They have renewed their calls for the project to be scrapped, saying that the devastating earthquake is clear proof of the great risk posed by a nuclear power plant near seismic fault lines.

The Cyprus Anti-Nuclear platform, a coalition of over 50 Greek Cypriot and Turkish Cypriot environmentalist groups, trade unions and political parties, “calls on all political parties, scientific and environmental organizations and the civil society to join efforts and put pressure on the Turkish government to terminate its plans for the Akkuyu nuclear power plant.”

Nuclear power plants worldwide are designed to withstand earthquakes and shut down safely in the event of major earth movement. About 20% of nuclear reactors are operating in areas of significant seismic activity. For example, Japanese nuclear plants, including the Hamaoka Nuclear Power Plant, are in regions where earthquakes of up to M 8.5 may be expected. Stricter safety standards were adopted after the 2011 Fukushima nuclear disaster. Besides, the Diablo Canyon Power Plant in California was designed to safely withstand earthquakes, tsunamis and flooding that could potentially occur in the region.

Turkish nuclear regulators provided the license for the plant’s construction in Akkuyu in 1976 following eight years of seismic studies to determine the most suitable location, but the project was slowed down after the Chernobyl nuclear accident in 1986. Construction of the first reactor started in 2018.

According to Rosatom, a study by Turkey’s Office for the Prevention and Elimination of Consequences of Emergency Situations indicates that the site in Akkuyu, about 100 km from Cyprus’ northern coastline, is located in the fifth degree earthquake zone, which is considered the safest region in terms of earthquakes.

The design of the Turkish nuclear plant includes an external reinforced concrete wall and internal protective shell made of “prestressed concrete,” with metal cables stretched inside the concrete shell to give additional solidity to the structure. Moreover, the modern reactor design, Russia’s VVER-1200, includes an additional safety feature : a 144-ton steel cone that in an emergency, traps and cools any molten radioactive materials.

The nuclear plant, whose first of four reactors is scheduled to go online in 2023, will have a total capacity of 4,800 megawatts of electricity, providing about 10% of Turkey’s electricity needs. According to government figures, if the power plant started operating today, it could singlehandedly provide enough electricity for a city of about 15 million people, such as Istanbul.

Source : Yahoo News.

Image satellite de la centrale d’ Akkuyu (Source : Planet Labs PBC)

Coulées de lave et zones de risques à Hawaii // Lava flows and threatened areas in Hawaii

Dans un article récent, les géologues de l’Observatoire des Volcans d’Hawaï (HVO) expliquent comment évaluer la menace posée par les coulées de lave. Selon eux, cette approche repose sur notre connaissance du passé. La probabilité à long terme qu’une zone soit envahie par la lave est évaluée de deux manières différentes en fonction de l’activité passée des coulées.
Une première approche utilise une carte géologique pour calculer quelle surface terrestre a été recouverte par la lave au cours de différentes périodes du passé.
Une autre approche calcule la fréquence à laquelle des coulées de lave se sont produites dans des zones spécifiques au fil du temps.
Ces deux approches sont utilisées par la plupart des observatoires volcanologiques dans le monde. Les cartes montrant les coulées de lave avec des couleurs différentes selon les années sont souvent très belles.
En ce qui concerne les volcans hawaïens, la carte de 1992 – Lava-Flow Hazard Zone (LFHZ) – utilise l’approche basée la couverture par la lave sur le long terme. On ne mesure pas la vitesse à laquelle une coulée de lave avance, mais la vitesse à laquelle une zone est recouverte par la lave de plusieurs éruptions au cours des siècles.
Les nouvelles éruptions n’affectent pas de manière significative cette couverture car leurs coulées recouvrent certaines coulées de lave récentes ainsi que d’autres plus anciennes. Par exemple, la lave de 2018 a coulé entre et sur des portions des coulées de lave de 1790, 1955 et 1960. Par conséquent, la surface de lave émise depuis 1790 n’a pas été forcément augmentée par l’ensemble des coulées de 2018, mais uniquement par la partie qui est allée au-delà des coulées antérieures.
La carte LFHZ de 1992 montre que les plus forts risques de couverture par la lave se trouvent dans les zones de rift et au sommet du Kilauea et du Mauna Loa. Près de la moitié de la LFHZ 1 (la zone la plus exposée) sur les deux volcans a été recouverte par la lave depuis l’année 1790.
L’autre approche pour estimer les risques des coulées de lave sur le long terme consiste à calculer la fréquence à laquelle une zone particulière est affectée. La Lower East Rift Zone (LERZ) du Kilauea a été envahie par la lave à cinq reprises depuis 1790 – en 1790, 1840, 1955, 1960 et 2018. Ces éruptions se sont produites sur une période de plus de 200 ans avec des intervalles d’une soixantaines d’années entre elles.
La méthode de l’intervalle de récurrence des coulées est la plus largement utilisée pour calculer les risques. Elle fait reposer en général les cartes à risques sur un intervalle de récurrence moyen de 100 ans entre les coulées les plus destructrices. En utilisant la formule de probabilité la plus simple, cet intervalle de récurrence se traduit par une probabilité de 1% de coulées destructrices sur une année et de 39 % sur une période de 50 ans. La probabilité qu’une coulée majeure se produise au cours d’un siècle n’est pas de 100% mais seulement de 63%, car l’intervalle de récurrence est une moyenne d’intervalles réels qui peuvent être très différents.
Dans l’application de cette méthode par le HVO aux coulées de lave du Kilauea, un intervalle de récurrence moyen d’environ 60 ans dans la LERZ signifie qu’il y a 63 % de chances que le prochain intervalle de récurrence sans lave soit de 60 ans ; c’est aussi la probabilité qu’une autre coulée de lave affecte une partie de la LERZ d’ici 60 ans. La probabilité d’une coulée de lave dans cette zone au cours d’une période de 30 ans serait de 40% et la probabilité d’envahissement de la zone par la lave serait de 26%. Heureusement, les zones les plus exposées dans la LERZ se limitent aux régions côtières.
Les calculs et les cartes des risques de coulée de lave produits par l’U.S. Geological Survey (USGS) sont destinés à informer les propriétaires fonciers, les services de sécurité et les planificateurs gouvernementaux des risques à long terme posés par les coulées de lave.
Source : USGS/HVO.

——————————————

In a recent article, geologists at the Hawaiian Volcano Observatory (HVO) explain how one can evaluate the threat posed by future lava flows. They say that this approach relies on our knowledge of the past. The long-term likelihood of an area being invaded by lava in the future, is estimated in two different ways based on the history of lava flow activity.

One approach uses a geologic map to calculate how much land surface was covered by lava during different periods going back into the past.

Another approach calculates how frequently lava flows have occurred within specific areas over time.

Both approaches are used by most volcanological observatoriess in the world. The maps showing the lava flows with diffrenet colours according to the years are often very beautiful.

As far as Hawaiian volcanoes are concerned, The 1992 Lava-Flow Hazard Zone (LFHZ) Map represents use of the approach based on long-term coverage rates. This is not a measure of how fast an individual lava flow advances but how fast an area is covered by lava from multiple eruptions over centuries.

New eruptions don’t affect coverage rates significantly because new flows cover some of the most recent lava as well as older flows. For example, 2018 lava flowed between and over parts of the 1790, 1955, and 1960 lava flows. Therefore the “coverage” or resurfacing since 1790 did not increase by the full area of the 2018 flow, just by the portion that was beyond those earlier flows.

The 1992 LFHZ map shows that the highest coverage rates (and therefore hazards) are within the rift zones and summits of Kīlauea and Mauna Loa volcanoes. Almost half of LFHZ 1 (the most hazardous zone) on both volcanoes was covered since the year 1790.

The other approach to estimating long-term lava flow hazards is to calculate how often a particular area is impacted by lava. The lower East Rift Zone (LERZ) of Kīlauea has been overrun by lava five times since 1790—in 1790, 1840, 1955, 1960, and 2018. Those eruptions occur over a span of more than 200 years with an average of about 60 years between them.

The recurrence interval method is most widely used for calculating flood hazards, traditionally basing hazard maps on an average recurrence interval of 100 years between damaging floods. By using the simplest formula for probability, that recurrence interval translates to a 1 percent chance of damaging floods happening in any one year and a 39 percent chance in any 50-year period. The probability of such a flood happening in any century is, surprisingly, not 100 percent but 63 percent because the recurrence interval is an average of actual intervals that may be quite different.

In the HVO application to lava flows, an average recurrence interval of about 60 years in the LERZ means that there is a 63 percent chance that the next lava-free recurrence interval will be 60 years; it is also the odds that another lava flow will affect some part of the LERZ within 60 years. The probability of a lava flow in this region during the period of 30 years would be 40 percent and the probability of flooding would be a 26 percent chance. Fortunately, the region of combined significant lava and flood hazards in the LERZ is limited to coastal flooding zones.

Lava flow hazard calculations and maps produced by the U.S. Geological Survey (USGS) are intended to inform property owners, emergency managers, and government planners of the long-term hazards posed by lava flows.

Source: USGS / HVO.

Carte de 1992 des zones de risques à Hawaii. Vous trouverez la carte avec une meilleure résolution en cliquant sur ce lien: https://pubs.usgs.gov/mf/1992/2193/mf2193.pdf