Hawaii: Le séisme du 13 mars 2019 n’a pas une origine volcanique // The March 13th earthquake was not related to volcanic activity

Selon le HVO, le séisme de magnitude M 5,5 survenu sur la Grande Ile d’Hawaii le 13 mars 2019 n’était pas lié à une reprise de l’activité volcanique sur le Kilauea. Son épicentre a été localisé à 12 km au sud-sud-est de Volcano Village, à une profondeur de 7 km sous le niveau de la mer. Les séismes enregistrés à cet endroit et à cette profondeur à Hawaii sont dus à des mouvements le long d’une faille de décollement qui sépare le sommet de la croûte océanique de l’accumulation de roches volcaniques qui ont formé la Grande Ile. Cette même faille est responsable du séisme de M 6.9 enregistré en mai 2018. Le premier séisme lié par les scientifiques à la faille de décollement fut un événement de M 7,7 en novembre 1975. Il s’agit du plus puissant séisme enregistré à Hawaï au cours du siècle dernier. Le séisme de Ka’u sous le flanc sud-est du Mauna Loa en 1868 a également été provoqué par une faille de décollement.
Le séisme de M 5,5 du 13 mars 2019 est, à ce jour, la réplique la plus significative de l’événement de M 6,9 enregistré au mois de mai dernier. La séquence de répliques qui a suivi le séisme de 1975 a duré environ une décennie et on admet généralement que les répliques incluent des événements d’une magnitude inférieure à celle de l’événement principal. À cet égard, la secousse de M 5.5 du 13 mars n’est pas vraiment une surprise. Le HVO s’attend à de nouvelles répliques pendant encore plusieurs années.
Le HVO insiste sur le fait que le séisme du 13 mars 2019 n’annonce pas une augmentation de l’activité volcanique.
Source: USGS / HVO.

————————————-

HVO indicates that the M 5.5 earthquake that was felt on Hawaii Big Island on March 13th, 2019 was not related to any resumption of volcanic activity on Kilauea Volcano. It was centered 12 km south-southeast of Volcano Village, at a depth of 7 km below sea-level. Earthquakes at this location and depth in Hawaii are due to movement along a decollement or detachment fault which separates the top of the original oceanic crust from the pile of volcanic rock that has built up to form Hawaii Big Island. The same fault was responsible for the May 2018 M 6.9 event. The first earthquake in Hawaii that scientists associated with decollement faulting was an M 7.7 event in November 1975. it was, Hawaii’s largest earthquake in the past century. The great Ka‘u earthquake beneath Mauna Loa’s southeast flank in 1868 has also been interpreted as a result of decollement faulting.
The last M 5.5 earthquake is, to date, the largest event among the thousands of earthquakes considered aftershocks of last May’s M 6.9 event. The aftershock sequence following the 1975 earthquake lasted roughly a decade, and it is generally understood that aftershock sequences could include earthquakes as large as one magnitude unit lower than the mainshock magnitude. In this regard, the M 5.5 of March 13th was expected. And, HVO expects aftershocks to persist for several more years.
HVO insists that the March 13th earthquake does not signal an increase in volcanic activity.
Source: USGS / HVO.

Source: USGS / HVO

Le séisme des Célèbes (Indonésie) // The Sulawesi earthquake (Indonesia)

Un violent séisme de M 7,5, d’origine purement tectonique, a frappé l’île des Célèbes, aussi appelée Sulawesi, le 28 septembre 2018. Il s’est produit après une première secousse de M 6,1 qui a fait un mort. Le dernier séisme avait son épicentre à 78 kilomètres au nord de la ville de Palu, capitale de la province du centre des Célèbes, et a été ressenti jusque dans le sud à Makassar, la capitale de l’île. L’alerte tsunami a été levée. Un peu trop tôt semble-t-il car une vague est venue un peu plus tard s’abattre sur le littoral. Il est fait état, selon les témoignages d’une vague de 3 à 6 mètres de hauteur. Une vidéo montre plusieurs vagues s’abattre sur plusieurs bâtiments et inonder une mosquée. S’agissant des vagues de tsunami, plus que leur hauteur, c’est l’énergie qu’elle développent qui est impressionnante.   Le dernier bilan (très provisoire) est d’au moins 384 morts (NB: 832 morts le 30 septembre 2018) et des centaines de blessés dans la ville de Palu. La panique a poussé les habitants à fuir vers les hauteurs.

Le séisme est survenu à la suite d’un décrochement de faille à faible profondeur à l’intérieur de la microplaque de la Mer des Moluques. Ces événements de décrochement ont généralement une taille d’environ 120 km x 20 km. D’une magnitude de M 6,5 ou plus, ils sont souvent destructeurs, tant sur le plan humain que matériel. Le séisme le plus important avait une magnitude de M 7.9 en janvier 1996, avec l’épicentre situé à une centaine de kilomètres au nord du séisme du 28 septembre 2018. Il a fait une dizaine de victimes, plus de 60 blessés et causé d’importants dégâts aux bâtiments.

Ces derniers événements montrent à quel point nous sommes démunis en matière de prévision sismique et de tsunami. Dans certaines régions du monde, des balises océaniques permettent de suivre la progression des vagues de tsunami. Il semble que la région des Célèbes – pourtant fortement exposée au risque sismique – ne soit pas dotée d’un tel équipement.

Source : Presse internationale, USGS.

Des images terribles:

https://www.francetvinfo.fr/monde/asie/seisme-et-tsunami-en-indonesie/en-images-rues-inondees-batiments-detruits-les-premieres-images-des-degats-apres-le-seisme-suivi-d-un-tsunami-en-indonesie_2962613.html

———————————————–

A powerful tectonic M 7.5 earthquake struck Sulawesi on September 28th, 2018. It was recorded after a first  M 6.1 quake which caused one death. This last earthquake had its epicenter 78 kilometres north of the city of Palu, capital of the central province of Sulawesi, and was felt as far south as Makassar, the capital of the island. The tsunami warning was lifted. A little too early it seems because waves came later crashing down on the coast. There are reports of a wave 3 to 6 metres high. A video shows waves crashing into several buildings and flooding a mosque.  As far as tsunami waves are concerned, the energy they develop is more impressive than their height. The latest toll is at least 384 dead (NB: 832 on September 30th, 2018) and hundreds injured in the city of Palu. Panic pushed the inhabitants to flee towards the hills around the city.
The earthquake occurred as a result of a shallow strike-slip faulting inside the Moluccan Sea microplate. These strike-slip events are typically about 120 km x 20 km in size. With a magnitude of M 6.5 or more, they are often destructive, both human and material. The largest earthquake had a magnitude of M 7.9 in January 1996, with the epicenter located a hundred kilometres north of the September 2018 earthquake. It killed about ten people, injured more than 60 others and caused major damage to buildings.
These latest events show the difficulty of earthquake and tsunami forecasting. In some parts of the world, ocean beacons track the progress of tsunami waves. It seems that the Sulawesi region – although highly exposed to the seismic risk – is not equipped with such equipment.
Source: International Press, USGS.

Terrible images:

https://www.francetvinfo.fr/monde/asie/seisme-et-tsunami-en-indonesie/en-images-rues-inondees-batiments-detruits-les-premieres-images-des-degats-apres-le-seisme-suivi-d-un-tsunami-en-indonesie_2962613.html

Source: USGS

Lombok (Indonésie) : Des séismes mais pas d’éruptions // Earthquakes but no eruptions

Deux séismes d’une magnitude de M 6,3 et M 6,9 ont secoué à plusieurs heures d’intervalle, l’île indonésienne de Lombok le dimanche 19 août 2018, endommageant des constructions et provoquant des scènes de panique, deux semaines après un événement de M 7.0 qui a fait plus de 460 morts.

Le premier séisme, d’une magnitude de M 6,3, a été enregistré à 4,5 km sud-ouest de la ville de Belanting, dans l’est de Lombok, à 22h56 (heure locale). Son hypocentre a été localisé à une profondeur de 10 kilomètres. Des habitants ont affirmé que la secousse avait été fortement ressentie dans l’est de l’île.

Quelques heures plus tard, un deuxième séisme, d’une magnitude de M 6,9, a frappé l’île. L’USGS a localisé son hypocentre à une profondeur de 20 km et à environ cinq kilomètres au sud de Belanting. Aucune alerte au tsunami n’a été émise.

Dans l’immédiat, aucune victime n’a été signalée à la suite de ces séismes qui ont causé des dégâts matériels et provoqué la panique chez les habitants, notamment dans l’est de Lombok.

Selon les sismologues, cette dernière secousse a probablement activé la zone qui est juste à l’est des secousses précédentes. Les derniers événements semblent montrer que la faille le long de laquelle ils se sont produits est en train de s’activer plutôt vers l’est, ce qui serrait une bonne chose car la population est moins importante dans cette région. Le risque de tsunami est assez faible car, malgré une magnitude supérieure à M 6.0, ces événements ne sont pas très importants.

Les scientifiques font remarquer qu’il n’est pas rare d’avoir deux séismes consécutifs à deux semaines d’intervalle avec la même magnitude. Globalement, on constate que l’on a une grosse secousse puis des secousses plus petites dont le nombre décroît avec le temps. De temps en temps, une des secousses suivantes peut malheureusement être de même magnitude que le premier événement. Ainsi, le 5 août 2018, on a enregistré une secousse de magnitude M 6,9, et le 19 août un autre événement de même magnitude. On va probablement continuer à enregistrer des séismes plus petits, mais rien n’empêche que d’ici quelques semaines ou quelques mois, on enregistre un séisme d’une magnitude autour de M 7.0, mais plutôt vers l’est. Connaissant la structure des failles de cette zone, la probabilité la plus grande est que les séismes les plus puissants se déplacent vers l’est des îles et non pas vers l’ouest, vers Bali. En effet, la faille de Flores s’arrête sur l’île de Lombok et ne va pas plus vers l’ouest.

Beaucoup de gens se demandent si les nombreux événements sismiques enregistrés dans la région ne risquent pas entraîner une hausse de l’activité volcanique. Cette relation entre les deux types d’activité n’a jamais été vraiment prouvée. Dans le cas des derniers séismes de Lombok, on a affaire à une activité purement tectonique, et pas volcano-tectonique. Ils sont uniquement liés à la faille de Florès. Le risque de voir un volcan comme le Rinjani entrer en éruption est faible. L’île de Bali n’étant pas, à priori, concernée par cette activité tectonique, il y a peu de risques qu’un volcan comme l’Agung connaisse un regain d’activité. Comme je le fais remarquer lors de mes conférences, le très puissant séisme de Tohoku, d’une magnitude de M 8,9  enregistré le 11 mars 2011 au Japon n’a pas entraîné un réveil du Mont Fuji comme le craignaient certains volcanologues nippons. A l’époque, ces derniers pensaient que le Mont Fuji, emblème national, avait été touché en profondeur par le séisme qui avait provoqué la catastrophe nucléaire de Fukushima. Selon une étude franco-japonaise, publiée dans la revue Science, les entrailles du volcan, toujours actif et qui se trouve à la jonction des plaques tectoniques pacifique, eurasienne et philippine, auraient été mises sous pression par le séisme. On attend toujours l’éruption….

————————————————

Two earthquakes with a magnitude of M 6.3 and M 6.9 shook several hours apart the Indonesian island of Lombok on Sunday, August 19th, 2018, damaging buildings and causing panic scenes, two weeks after an M 7.0 event that left more than 460 dead.
The first earthquake, with a magnitude of M 6.3, was recorded 4.5 km southwest of Belanting City, east of Lombok, at 22:56 (local time). Its hypocentre was located at a depth of 10 kilometres. Residents said the quake was strongly felt in the eastern part of the island.
A few hours later, a second earthquake, with a magnitude of M 6.9, struck the island. USGS located its hypocentre at a depth of 20 km and about five kilometres south of Belanting. No tsunami warning was issued.
No casualties have been reported as a result of these earthquakes which caused material damage and panic among the inhabitants, particularly in eastern Lombok.
According to seismologists, this last jolt probably activated the area that lies just east of the previous quake. Recent events seem to show that the fault along which they occurred is becoming more active towards the east, which would be a good thing because this region is less populated. The risk of tsunami is quite low because, despite a magnitude greater than M 6.0, these events were not very powerful.
Scientists point out that it is not uncommon to have two consecutive earthquakes two weeks apart with the same magnitude. Overall, we can see that there is a big shake then smaller ones whose number decreases with time. From time to time, one of the following quakes may unfortunately be of the same magnitude as the first event. Thus, on August 5th, 2018, there was an earthquake with a magnitude of M 6.9, and on August 19th another event of the same magnitude. Smaller earthquakes will probably still be recorded, but in a matter of weeks or months, there might be another earthquake with a magnitude around M 7.0, but rather to the east. Knowing the fault structure of this area, the greatest probability is that the strongest earthquakes move east of the islands and not west towards Bali. Indeed, the Flores Fault stops on the island of Lombok and does not go further west.
Many people wonder if the numerous seismic events recorded in the region are not likely to cause an increase in volcanic activity. This relationship between the two types of activity has never really been proven. In the case of the last earthquakes at Lombok, we are dealing with a purely tectonic – but  not volcano-tectonic – activity. They are only related to the Flores Fault. The risk of seeing a volcano like Mount Rinjani erupt is low. The neighbouring island of Bali should not be affected by this tectonic activity, and there is little risk that a volcano like Mount Agung goes through a new outbreak of activity. As I often point out during my lectures, the very powerful Tohoku earthquake – with a magnitude M 8.9 – recorded on March 11th, 2011 in Japan did not cause the awakening of Mount Fuji as feared by some Japanese volcanologists. At the time, they believed Mount Fuji, the national emblem, had been deeply affected by the earthquake that caused the Fukushima nuclear disaster. According to a Franco-Japanese study, published in the journal Science, the bowels of the volcano, still active and located at the junction of the Pacific, Eurasian and Philippine tectonic plates, had been put under pressure by the earthquake. We are still waiting for the eruption …

Carte d’une partie de l’archipel indonésien avec, en particulier, les îles de Bali et Lombok (Google Maps)

Vue du Mont Fuji (Crédit photo: Wikipedia)

Les séismes lents du Kilauea (Hawaii) // Kilauea Volcano’s slow earthquakes (Hawaii)

Périodiquement, des séismes sont enregistrés sur le flanc sud du Kilauea et le HVO les attribue au glissement lent de l’édifice volcanique dans l’Océan Pacifique. Le dernier événement de ce type a eu lieu en octobre 2015 et, auparavant, en mai 2012, février 2010 et juin 2007.
Ces séismes de glissement lent se produisent lorsqu’une faille commence à glisser, mais si lentement que le phénomène prend plusieurs jours au lieu de quelques secondes dans le cas d’un tremblement de terre classique. Sur le Kilauea, les séismes lents se produisent sur la faille de décollement presque horizontale qui se trouve sous le flanc sud du volcan, à une profondeur de 6 à 8 km. C’est cette même faille qui a été responsable du séisme de magnitude M 7,7 à Kalapana en 1975. Cependant, les séismes lents ne produisent pas d’ondes sismiques et donc pas de fortes secousses destructrices comme un séisme classique. Ils permettent d’évacuer une partie de la contrainte qui s’est accumulée sur la faille.
Au cours d’un séisme lent, le flanc sud du Kilauea avance en général d’environ 3 cm vers l’océan. L’événement s’étale sur 2 ou 3 jours, et présente les mêmes caractéristiques qu’un séisme de magnitude M 6.0. Le réseau GPS du HVO montre que le flanc sud avance régulièrement vers la mer d’environ 6 cm chaque année. Les événements de glissement lent du Kilauea ont tendance à se produire uniformément dans le temps; en particulier, ceux postérieurs à 2005 qui ont eu lieu tous les deux ans et demi, à trois mois près. Ils ont été provoqués chaque fois par un glissement sur la même section de la faille et présentent la même magnitude.
Les séismes lents du Kilauea sont des exemples de « séismes types», autrement dit des événements à répétition, de magnitude et de localisation identiques, qui correspondent à une rupture la même section de la faille. Au début, la notion de « séisme type » a été avancée dans l’espoir qu’elle pourrait permettre de prévoir les séismes classiques, les plus destructeurs. Cette idée a fait suite à l’observation d’une série de séismes qui semblaient se produire tous les 22 ans près de la ville de Parkfield en Californie. Après les séismes de 1857, 1881, 1901, 1922, 1934 et 1966, tous de magnitude M 6.0 sur le même section de la faille de San Andreas, les scientifiques avaient prédit que le prochain séisme se produirait en 1988. En fait, le séisme de Parkfield n’a pas eu lieu avant 2004, soit 16 ans après la date prévue. Cependant, même si l’hypothèse de « séisme type » n’a pas permis de prévoir un séisme classique, elle est utile pour prévoir des « séismes lents » partout dans le monde. De tels événements, récurrents et prévisibles, affectent la zone de subduction de Cascadia au large des Etats de Washington et de l’Oregon. Cette faille génère tous les 15 mois des glissements lents équivalant à un séisme de magnitude M 6. Au Japon, sur la zone de subduction le long de la fosse de Nankai, des glissements importants se produisent environ tous les 7 ans et correspondent à des séismes de magnitude M 7,0.
Dans la mesure où l’événement de glissement lent le plus récent sur le Kilauea s’est produit en octobre 2015 et que les « séismes lents » ont une périodicité de 2,5 ans (à 3 mois près), le HVO pense que le prochain pourrait être enregistré d’ici août 2018, mais aucune secousse ne sera ressentie par la population. .
Source: USGS / HVO.

——————————————

Occasionally, earthquakes are recorded on the southern flank of Kilauea Volcano and HVO attributes them to the slow sliding of the volcanic edifice into the Pacific Ocean. The last slip event was in October 2015, and before then, in May 2012, February 2010, and June 2007.

Slow slip events are sometimes called “slow earthquakes.” They happen when a fault begins sliding, just like in a regular earthquake, but so slowly that it takes several days to finish instead of several seconds. At Kilauea, slow earthquakes occur on the nearly flat-lying décollement fault that underlies the volcano’s south flank at a depth of 6-8 km. This is the same fault that was responsible for the M 7.7 Kalapana earthquake in 1975. However, slow earthquakes produce no seismic waves and, therefore, none of the damaging shaking of a regular earthquake. They help relieve a small amount of stress on the fault.

During a slow earthquake, the south flank usually surges seaward by about 3 cm. This additional motion occurs over 2-3 days, and is about the same amount that would happen in a regular M 6.0 earthquake. HVO’s GPS monitoring network shows that the south flank moves steadily seaward about 6 cm every year. Kilauea slow slip events tend to occur evenly in time; in particular, events after 2005 have occurred every 2.5 years, give or take 3 months. They are also caused by slip on the same section of the fault every time and tend to be about the same size.

Kilauea slow slip events are examples of so-called “characteristic” earthquakes, a series of several earthquakes of similar magnitude and location, which indicates that they are breaking the exact same part of the fault again and again. The characteristic earthquake hypothesis was originally developed in hope that it could predict regular, and possibly damaging, earthquakes. This idea emerged from observations of a series of earthquakes that seemed to strike about every 22 years near the town of Parkfield, California. After earthquakes in 1857, 1881, 1901, 1922, 1934, and 1966, all of which occurred as M 6.0 events in the same part of the San Andreas Fault, scientists predicted the next earthquake would occur in 1988. As it turned out, the next Parkfield earthquake did not occur until 2004, 16 years after the predicted date. However, even though the characteristic earthquake hypothesis was not successful at predicting a regular earthquake, it has been useful for forecasting the occurrence of slow slip events around the world. Locations where recurring, predictable slow slip events happen include the Cascadia Subduction zone offshore of Washington and Oregon. This fault produces slow slip events equivalent to an M 6.7 earthquake every 15 months. In Japan, on the subduction zone along the Nankai Trough, major slow slip events occur approximately every 7 years and are equivalent to M 7.0 earthquakes!

Because the most recent slow slip event on Kilauea happened in October 2015, and the events have a recurrence time of 2.5 years (give or take 3 months), HVO can forecast that the next one might occur between now and August 2018. But there won’t be any shaking that could be easily felt by individuals.

Source: USGS / HVO.

Sur le schéma ci-dessus, les flèches noires montrent l’intensité des séismes lents (voir échelle en bas du schéma), ainsi que leur orientation telle qu’elle a été enregistrée par le réseau GPS du HVO en octobre 2015. Les couleurs font référence à la topographie, depuis le niveau de la mer (en vert) jusqu’à 1200 m d’altitude (en marron). L’océan est en bleu. (Source : HVO)

Le temps des catastrophes // Future disasters

Le magazine Newsweek a récemment mis en garde les Américains contre les «Big One» susceptibles de se produire dans la partie Pacifique des Etats Unis.

La première catastrophe aurait pour cause la plaque océanique Juan de Fuca  qui, dans un processus de subduction, essaye de se frayer un passage sous la plaque nord-américaine, ce qui a déjà provoqué un séisme de magnitude M 9,0 en 1700. Un tel événement est censé se produire tous les 500 ans environ. Bien que l’on ne sache pas exactement quelles seront les conséquences d’un tel séisme, les chercheurs de l’Université de Washington ont récemment présenté 50 scénarios possibles.
Le séisme en question, baptisé le « Really Big One », aura lieu là où les plaques Juan de Fuca et d’Amérique du Nord se rencontrent le long de la zone de subduction de Cascadia, juste au nord de la ligne de faille de San Andreas. Le séisme affecterait les habitants de la côte, dans les Etats de Washington, de l’Oregon, de la Colombie-Britannique et du nord de la Californie. Un article du New York Times indiquait que le séisme et le tsunami qu’il provoquerait pourraient affecter 7 millions de personnes.
L’équipe scientifique de l’Université de Washington a présenté les scénarios optimistes et pessimistes d’un séisme de M 9,0 sur la zone de subduction de Cascadia lors de la réunion annuelle de la Geological Society of America le 24 octobre 2017. Leurs 50 simulations utilisent différentes associations de facteurs, comme l’épicentre, l’impact du séisme à l’intérieur des terres et les endroits, le long de la faille, où les secousses seraient les plus fortes. Ils ont effectué leurs simulations sur des superordinateurs.
Certaines prévisions mentionnées dans le rapport indiquent que le séisme serait moins sévère à Seattle si l’épicentre se trouvait sous la partie nord-ouest de l’Etat de Washington, bien que les sédiments sur lesquels a été construite la ville de Seattle accentueraient davantage les secousses que dans des zones de montagnes. Le séisme à Seattle pourrait durer jusqu’à 100 secondes. Les simulations prévoient également que les zones côtières seraient les plus touchées.
Les scientifiques indiquent que le ‘Really Big One’ se produira probablement dans le court terme, mais le magazine Newsweek a tenu a rassurer ses lecteurs et conclut son article en affirmant qu’il n’y a pas de quoi paniquer. En effet, les simulations ne sont qu’une partie d’un vaste projet collaboratif connu sous le nom de projet M9. Mis en place par l’Université de Washington, il vise à développer des moyens de mieux prévoir un séisme afin de donner à la population le temps de se mettre en sécurité.

Source: Wikipedia

La faille la plus célèbre d’Amérique, la faille de San Andreas, est connue pour provoquer des séismes fréquents. Le problème c’est qu’une partie du système de failles, la zone de San Jacinto Fault, dans l’arrière-pays californien, est restée étonnamment calme ces 200 dernières années. De récentes mesures ont détecté de petites secousses profondes sous le système de failles, ce qui laisse supposer qu’il n’est pas aussi calme qu’on le pensait et pourrait déclencher un puissant séisme dans un avenir proche.
La zone de la faille San Jacinto dans le sud de la Californie ne se trouve pas réellement en limite de plaque ; elle sert plutôt de point de libération de contraintes entre la plaque nord-américaine et la plaque Pacifique qui frottent l’une contre l’autre au niveau de la faille de San Andreas. Une partie de la zone de faille de San Jacinto, connue sous le nom d’Anza Gap, est au centre de la dernière étude. Les secousses tectoniques détectées sous l’Anza Gap sont le résultat d’un mouvement lent de la plaque qui provoque des tremblements de terre lents de 13 à 25 km sous la surface de la Terre. L’étude a révélé que, à tout moment, le glissement au niveau de l’Anza Gap est susceptible de s’accélérer sans prévenir. La découverte est importante car c’est la première fois que des preuves de séismes tectoniques spontanés ont été découvertes dans cette partie de la ligne de faille.
Comme indiqué précédemment, le problème est – bien que le sud de la Californie soit connu pour ses séismes fréquents – que l’Anza Gap est resté relativement calme pendant les 200 dernières années. La question est de savoir s’il a libéré l’énergie qui continue de s’accumuler suite au frottement de la plaque nord-américaine contre la plaque Pacifique. C’est la raison pour laquelle de nombreux scientifiques craignent que cette zone soit prête à déclencher un puissant séisme qui provoquerait des dégâts.
Ici encore, le magazine Newsweek tient à rassurer ses lecteurs. Selon le nouveau rapport, les découvertes récentes ne doivent pas inquiéter la population dans l’immédiat. Elles devraient permettre aux géologues de mieux prévoir les séismes dans la région. Certes, nous ne pouvons pas empêcher l’activité sismique, mais une bonne préparation peut réduire son impact sur les populations.
Source: Newsweek.

—————————————

Newsweek recently warned Americans against ‘Big Ones” to come in the near future in the Pacific part of the U.S..

The last time the Juan de Fuca oceanic plate jolted under the North American plate, unleashing an M 9.0 earthquake, was in 1700. With the event scheduled to happen once every 500 years or so, the magazine thinks we are due for another any day now. Although it is not clear what will happen when this mega quake does hit, researchers at the University of Washington recently presented 50 possible scenarios of how the event might unfold.

The predicted earthquake, dubbed the “Really Big One,” will take place where the Juan de Fuca and North American plates meet along Cascadia subduction zone, just north of the San Andreas fault line. The earthquake would affect those living in coastal Washington, Oregon, British Columbia and Northern California, and a 2015 New Yorker article predicted the quake and its subsequent tsunami could affect 7 million people.

The team presented both best- and worst-case scenarios of a potential M 9.0 earthquake on the Cascadia subduction zone at the Geological Society of America’s annual meeting on October 24th 2017. Their 50 simulations use different factor combinations, such as where the epicenter may be, how far inland the earthquake would travel, and where along the fault the shaking would be the strongest. They were run on supercomputers.

Some of the report’s predictions include that the quake will be less severe in Seattle if the epicentre were beneath the tip of northwest Washington, although the sediment grounds in Seattle would cause it to shake more than areas on hard rocky mountaintops. Shaking in Seattle could last as long as 100 seconds. The simulations also predict that coastal areas would be hit the hardest.

Although all science suggests that the Really Big One will occur, and that this will likely be sooner than later, Newsweek reassures its readers and concludes by saying there really isn’t a need for panic. These simulations are just one part of a huge collaborative project known as the M9 Project. Created at the University of Washington, this project aims to develop ways to better predict an earthquake as soon as possible to give people ample time to seek safety.

America’s most famous fault line, the San Andreas Fault, is known for its frequent earthquakes, but one part of the system, the San Jacinto Fault zone in inland Southern California, has been surprisingly quiet for the last 200 years. Now, new research has detected small tremors deep under the fault system, suggesting it is not as calm as we once thought and may be ready to release a massive earthquake sometime soon.

The San Jacinto Fault zone in southern California is not actually a plate boundary but rather serves as the stress release point between the North American plate and the Pacific Plate as they grind together at the San Andreas Fault. An area of the San Jacinto Fault zone, known as the Anza Gap, is the main focus of the recent study. The tectonic tremors detected underneath the Anza Gap are the result of slow plate movement resulting in slow earthquakes anywhere from 13 to 25 km beneath the Earth’s surface. The new research has revealed that at any given time the Anza Gap is spontaneously slipping at a far greater rate than researchers previously believed. The finding is significant because it’s the first time evidence of spontaneous tectonic tremors have been uncovered in this part of the fault line.

The problem is, although southern California is known for its frequent earthquakes, the Anza Gap has been relatively quiet for the past 200 years. Such a period of tectonic peacefulness raises the question of how the Anza Gap has been releasing the stress it continues to accumulate from both the North American plate and the Pacific Plate. For that reason, many experts suspect that this area is ripe to produce a damaging earthquake.

Here again, Newsweek reassures its readers. According to the new report, the recent findings are not cause for imminent concern, but rather may help geologists better predict earthquakes in the future. While we cannot prevent seismic activity, preparation can reduce its dramatic toll.

Source: Newsweek.

Dans la Faille de San Andreas! (Photo: C. Grandpey)

L’Italie continue de trembler // Italy is still trembling

drapeau-francaisUne nouvelle secousse sismique de M 5 a de nouveau secoué la nuit dernière le centre de l’Italie, peu avant 2 h 00 du matin. On ne signale pas de dégâts pour l’instant. L’épicentre a été localisé à 51,5 km au sud-est de Perugia, à une profondeur de 10 kilomètres.

Selon les sismologues italiens de l’INGV, les violents séismes qui ont lieu dans le centre de l’Italie pourraient encore durer plusieurs semaines. Selon eux, un séisme de M 6 ou plus (comme ceux enregistrés ces dernières semaines) engendre des tensions qui sont redistribuées dans les failles adjacentes et peuvent les conduire à la rupture.

Les Apennins sont tailladés par une série de failles dans la croûte terrestre, chacune ayant en moyenne dix à vingt kilomètres de longueur. Un puissant séisme affaiblit une faille adjacente dans la continuité d’un effet domino susceptible de s’étirer sur des centaines de kilomètres.

La dernière fois qu’une telle suite de séismes a eu lieu remonte à 1997 dans la région d’Assise, dans le centre du pays. Le premier, avec une magnitude de M 6,4, avait fait 11 morts et avait été suivi d’une autre secousse, le lendemain, et d’un autre encore, une vingtaine de jours plus tard, sans compter les nombreuses répliques. Il se pourrait que cette séquence de 1997 soit semblable à ce que nous constatons actuellement.

Les médias ont mis en ligne la photo d’une faille qui a été ouverte dimanche dernier par le séisme sur le Monte Vettore, près de Nurcia. Beaucoup d’habitants de la région redoutent des glissements de terrain qui seraient provoqués par la fragilité de la montagne.

http://www.bfmtv.com/mediaplayer/video/seisme-en-italie-regardez-l-enorme-fissure-qui-a-fendu-la-montagne-881619.html

Source : Presse italienne.

—————————————-

drapeau-anglaisA new M 5 earthquake shook again last night Central Italy, shortly before 2:00 am. There are no reports of damage yet. The epicenter was located 51.5 km southeast of Perugia, at a depth of 10 kilometers.
According to Italian seismologists at the INGV, the violent earthquakes that are observed in central Italy could last several weeks. They explain that an M 6 earthquakeor more (such as those in recent weeks) creates tensions that are redistributed to adjacent faults and can lead to their rupture.
The Apennines are slashed by a series of faults in the earth’s crust, each with an average of ten to twenty kilometers in length. A powerful earthquake weakens an adjacent fault in the continuity of a domino effect that can stretch over hundreds of kilometers.
The last time such a sequence of earthquakes occurred was in 1997 in Assisi region in central Italy. The first event, with a magnitude of M 6.4, killed 11 people and was followed by another shock, the next day, and then another, twenty days later, with numerous aftershocks. It could be that this 1997 sequence was similar to what we are seeing right now.
The media have posted a photo of a fault that was opened last Sunday by the earthquake on Monte Vettore near Nurcia. Many locals fear landslides that would be caused by the fragility of the mountain.
http://www.bfmtv.com/mediaplayer/video/seisme-en-italie-regardez-l-enorme-fissure-qui-a-fendu-la-montagne-881619.html

Source: Italian newspapers.

Activité sismique à grande profondeur en Californie // Deep seismicity in California

drapeau-francaisUne nouvelle étude publiée début octobre dans la revue Science nous apprend que des sismologues qui travaillaient sur le terrain en Californie du Sud ont détecté une activité sismique à une profondeur surprenante.

L’activité sismique profonde ou faible est souvent très difficile à contrôler, en particulier dans les zones urbaines, en raison de la distance entre les capteurs et du bruit causé par la circulation et les activités industrielles. Afin de mieux étudier ces micro signaux, un groupe de chercheurs a installé des détecteurs le long de la faille Newport-Inglewood (NIF), qui s’étire sur près de 80 kilomètres entre Culver City et Newport Beach, en Californie du Sud *.
On sait que la plupart des dégâts sont infligés par les séismes les plus puissants, mais les petits séismes comme ceux observés le long de la NIF se produisent beaucoup plus fréquemment, et leur localisation peut être utilisée pour mettre en évidence des failles actives et leur profondeur.
En filtrant le bruit, les chercheurs ont constaté que l’activité le long de la NIF était extrêmement profonde et fréquente comparée à des failles semblables dans la région. Ils se sont donc concentrés sur ce qui semble être le prolongement profond de la faille Newport-Inglewood dans le manteau supérieur. Les chercheurs pensent que ces signaux pourraient conduire à une meilleure compréhension de la profondeur à laquelle les séismes se produisent, et pourraient permettre de mieux comprendre la structure de la faille.
La profondeur surprenante de ces séismes soulève des questions sur la surveillance sismique. Les scientifiques ne savent pas si ces petites secousses se produisent à grande échelle et si on ne les a pas détectées sur d’autres failles en raison de la difficulté à contrôler les petits séismes profonds, ou si la NIF est unique avec une sismicité profonde qui s’étend jusqu’au manteau supérieur.
La faille Newport-Inglewood est également remarquable pour la fréquence de ses séismes. Ces derniers suivent d’habitude une loi d’échelle qui prédit le rapport entre le nombre de petits et grands séismes qui se produisent sur un segment spécifique d’une faille. Ce rapport est généralement constant. Cependant, les sismologues présents sur la FNI ont constaté que dans les parties les plus profondes de la faille le nombre de petits séismes est beaucoup plus important que le nombre de grands séismes. Ils pensent que ce rapport différent le long de la NIF est peut-être dû à des changements de température, de pression ou à la minéralogie des roches à ces profondeurs. Des recherches supplémentaires seront nécessaires pour en déterminer la véritable cause.
La fréquence et la profondeur différentes des séismes sur la NIF pourraient également signifier que la profondeur maximale de l’activité sismique est peut être beaucoup plus grande qu’on le pensait jusqu’à présent. Par exemple, le séisme de 2012 à Sumatra (Indonésie) a eu lieu sous l’Océan Indien à une bien plus grande profondeur que celle à laquelle les sismologues s’attendaient sur la base des mesures précédentes de sismicité. Depuis cet événement, les chercheurs se demandent si la même chose pourrait se produire sur des failles continentales, comme en Californie.
Jusqu’à présent, les recherches ne montrent pas que ces régions de failles profondes produisent des séismes plus puissants. Le dernier événement majeur le long de la faille Newport-Inglewood  a été le séisme de Long Beach, d’une magnitude de M 6.4, qui s’est produit au sud de Los Angeles le 10 mars 1933.
Source: Live Science

* En 2015, des scientifiques ont découvert une fuite d’hélium naturel en Californie du Sud. Ce phénomène a prouvé que la faille Newport-Inglewood était plus profonde qu’on le pensait, avec une connexion directe entre la surface de la Terre et le manteau. Les chercheurs ont trouvé des niveaux élevés de l’hélium-3 dans des puits de pétrole jusqu’à 3 kilomètres de profondeur dans le comté d’Orange, le long d’un tronçon de 48 kilomètres entre le Westside de Los Angeles et Newport Beach.

 ——————————————-

drapeau-anglaisA new study published early in October in the journal Science informs us that seismologists working on the field in Southern California found seismic activity at deeper-than-expected levels.

Deeper or smaller seismic activity can be very difficult to monitor, especially in urban areas, due to the distance between seismicity monitors and the noise caused by traffic and industrial activities. In order to better see these so-called micro signals, a group of researchers deployed detectors along the Newport-Inglewood Fault (NIF), which stretches over nearly 80 kilometers, from Culver City to Newport Beach, in Southern California*.

Most of the damage is inflicted by large earthquakes, but these small earthquakes like the ones we observe at NIF occur much more frequently, and their location can be used to highlight active faults and their depth.

By filtering out the noise, the researchers found that activity along the NIF was unusually deep and frequent compared to similar faults in the region. They are concentrated in what appears to be the deep continuation of the Newport-Inglewood fault down into the upper mantle. The researchers said these signals could lead to a better understanding of the depths at which earthquakes can occur, and could further illuminate the structure of the fault.

The unexpected depths of these earthquakes raise questions about quake monitoring. Scientists don’t know whether these temblors are widespread and have simply been missed at other faults because of the difficulty in monitoring small, deep quakes, or, if the NIF is unique and somehow the fault has deep seismicity that extends to the upper mantle.

The Newport-Inglewood Fault is also remarkable in another way: the frequency of its quakes. Earthquakes statistically follow a scaling law that predicts the ratio between the number of small and large earthquakes that will occur on a specific fault segment. That ratio is generally constant. However, on the NIF seismologists found that for the deeper sections of the fault, the number of the small earthquakes is much larger than the number of large earthquakes. They suggested that the different ratio along the NIF could be due to changes in temperature, pressure or the mineralogy of the rocks at those depths, but said that further research is needed to determine the root cause.

The NIF’s unique frequency and depth of earthquakes could also mean that the maximum depth of seismic activity may be much deeper than was previously thought. For example, the 2012 Sumatra earthquake in Indonesia occurred deep beneath the Indian Ocean, penetrating much deeper than expected based on previous measures of seismicity. Since then, researchers have been wondering if something similar could happen on continental faults like in California

Fortunately, this research thus far does not show that these deep fault regions will produce larger earthquakes. The last major earthquake along the NIF was the M 6.4 Long Beach earthquake that struck south of Los Angeles on March 10th, 1933.

Source : Live Science.

*In 2015, scientists discovered a natural helium leak in Southern California. It revealed that the Newport-Inglewood fault was deeper than once thought, with a direct connection from the Earth’s surface to the mantle. They found high levels of helium-3 in oil wells up to 3 kilometers deep in Orange County, along a 48-kilometer stretch from Los Angeles’ Westside to Newport Beach.

nif

Faille Newport-Inglewood (Mine-engineer.com)

Suite à la diffusion de cette article, des précisions ont été apportées par l’ancien Directeur de l’Observatoire des Sciences de l’

Univers de Grenoble.  Je vous invite à les lire attentivement:

« Je voudrais apporter quelques précisions sur les magnitudes et les intensités. La magnitude est liée à l’énergie libérée sous forme d’ondes sismiques enregistrées par les capteurs. . L’énergie libérée totale comprend aussi l’énergie de déformation des roches et la chaleur libérée. Le rapport entre l’énergie sismique et l’énergie totale est appelé rendement sismique. On l’estime souvent (mais arbitrairement) à la valeur 0.1 .
La région épicentrale n’est pas obligatoirement la zone de plus forte intensité. Cette définition est purement théorique en supposant le séisme réduit à un point. On ne l’utilise que pour la détermination spatiale des séismes historiques. Dans la réalité, un séisme est une rupture qui se propage à quelques km/s le long d’une faille horizontalement et en profondeur d’où la notion de surface de la faille (déterminée à partir des répliques) qui intervient dans le calcul du moment sismique. On appelle foyer du séisme le lieu du départ de la rupture. L’épicentre est placé à la verticale du foyer. Si on regarde les isoséistes du séisme de Provence de 1909, les intensités maximales VIII et IX ont une enveloppe de forme elliptique allongée quasiment E-W de 25 x 10 km. L’épicentre se trouverait au centre de cette surface (entre Rognes et Lambesc). D’autre part, il existe des effets de site qui augmente le déplacement du sol donc l’intensité associée, et des effets de propagation des ondes sismiques comme par exemple en 1985 au Mexique, où les dégâts les plus importants ont été observés à Mexico située à 400 km de l’épicentre du séisme ».