Mesures du dioxyde de soufre (SO2) sur le Kilauea (Hawaii) // SO2 measurements on Kilauea Volcano (Hawaii)

Dans un nouvel article, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) expliquent comment ils analysent les panaches de dioxyde de soufre (SO2) émis par le Kilauea
Les analyses des panaches de SO2 sont essentielles pour surveiller et comprendre l’activité éruptive. Le HVO s’appuie aussi sur les mesures d’émission de SO2 pour les prévisions concernant le vog (brouillard volcanique) et pour évaluer les émissions de lave.
Le HVO utilise des caméras – aussi bien visuelles que thermiques – pour décrire l’activité volcanique. Un troisième type de caméra, la caméra ultraviolet (UV), permet aux volcanologues de visualiser des panaches de SO2. Le SO2 absorbe la lumière ultraviolette, ce qui la fait apparaître dans les images UV alors qu’elle n’est pas visible avec les caméras classiques.
Des caméras UV sont utilisées sur le Kilauea depuis 2010. En 2013, une collaboration entre le Cascades Volcano Observatory (CVO) et le HVO a permis l’installation d’un système de caméra UV automatisé au sommet du Kilauea. Ce réseau de caméras a été retiré en 2018 lorsqu’il a été menacé par l’ouverture de fractures au sol au cours de l’effondrement de la caldeira sommitale.
Avec le retour de la lave et d’un fort dégazage de SO2 au sommet du Kilauea fin 2020, le HVO et le CVO ont fait équipe avec des collègues de l’Université de Sheffield au Royaume-Uni. Les scientifiques britanniques ont mis au point une nouvelle génération de petites caméras UV qui utilisent la technologie Raspberry Pi. Le Raspberry Pi est un nano-ordinateur monocarte à processeur ARM de la taille d’une carte de crédit conçu par des professeurs du département informatique de l’université de Cambridge dans le cadre de la fondation Raspberry Pi. Le HVO a déjà utilisé la technologie Raspberry Pi dans d’autres applications.
Les nouvelles caméras – PiCams – seront testées fin juillet 2022 et pourront être utilisées comme outils de terrain portables ou installées comme stations permanentes dans le réseau de surveillance du HVO. En attendant le résultat des premiers tests, le HVO prévoit d’installer au moins une PiCam en permanence au sommet du Kilauea. Une deuxième PiCam sera soit portable, soit installée en permanence près du sommet du Mauna Loa.
Les mesures des émissions de SO2 peuvent également être dérivés des images des caméras UV. Les mesures traditionnelles des émissions de SO2 sont effectuées en se plaçant sous le panache avec un spectromètre UV monté sur une voiture. Il faut compter une dizaine de minutes, voire davantage, pour effectuer chaque mesure, et seulement 6 à 10 de ces mesures peuvent être réalisées chaque jour. À partir de 2012, le HVO a installé un réseau de spectromètres continus pour mesurer les émissions de SO2 du Kilauea avec une meilleure résolution temporelle que les mesures à partir de véhicules, mais le réseau ne fournit pas d’informations spatiales sur le panache de SO2.
Une fois que les PiCams seront prêtes à l’emploi,elles fourniront une vue bidimensionnelle du panache de SO2 du Kilauea, mais aussi une résolution temporelle élevée et une série temporelle continue de mesures du taux d’émission de SO2.
Les données continues fournies à propos des émissions de SO2 faciliteront l’étude du dégazage en relation avec d’autres ensembles de données continues, comme l’activité sismique et la déformation du sol. Cela donnera une meilleure idée du rôle du dégazage dans des événements éruptifs spécifiques, ce qui n’a pas toujours été facile à réaliser dans le passé. Des travaux semblables ont été effectués au cours de la dernière décennie sur de nombreux volcans à travers le monde, y compris sur le Kilauea où il a été démontré que l’activité sismique et les émissions de SO2 étaient liées au cours des variations de niveau du lac de lave en 2010. Le lac de lave actuel dans le cratère de l’Halema’uma’ u a une configuration et un comportement différents de ceux du lac de lave de 2008-2018. Le HVO est impatient de voir ce que les nouvelles PiCams révéleront sur le dégazage du nouveau lac.
Source : USGS, HVO.

———————————————-

In a new article, scientists at the Hawaiian Volcano Observatory (HVO) explain how they analyse the sulphur dioxide (SO2) plumes emittes by Kilauea

Observations of SO2 are essential to both monitoring and understanding eruptive activity. HVO relies heavily on measurements of SO2 emission rate which are critical for vog (volcanic air pollution) forecasts and can be used for calculating lava eruption rates.

HVO also relies heavily on cameras to document activity, including both visual and thermal cameras. A third type of camera—an ultraviolet (UV) camera—allows volcanologists to visualize otherwise invisible, SO2 plumes. SO2 absorbs ultraviolet light, which makes it visible in UV imagery even when it cannot be seen by standard cameras.

UV cameras have been used at Kilauea since 2010. Later, in 2013, a combined effort between the Cascades Volcano Observatory (CVO) and HVO resulted in the installation of an automated UV camera system at the summit of Kilauea. That camera station was removed in 2018 when it was threatened by ground cracking associated with summit caldera collapse events.

With lava and strong SO2 degassing having returned to Kilauea summit in late 2020, HVO and CVO are teaming up with colleagues at the University of Sheffield in the United Kingdom. The UK scientists have developed a new generation of small UV cameras that use Raspberry Pi technology. A Raspberry Pi is a small, low-cost computer, about the size of a credit card, and HVO has used them in other applications before.

The new cameras—PiCams—will be tested later this month and can be used as portable field tools or installed as permanent stations in HVO’s monitoring network. Pending the outcome of the initial tests, HVO plans to install at least one PiCam permanently at Kilauea’s summit. A second PiCam will either be kept portable or will eventually be permanently installed near Mauna Loa’s summit.

SO2 emission rates can also be derived from UV camera images. Traditional SO2 emission rate measurements are made by traversing beneath the plume with a UV spectrometer mounted on a car, so that each measurement takes ten or more minutes, with only 6–10 of those measurements made per day. Beginning in 2012, HVO pioneered a network of continuous spectrometers to measure Kilauea’s SO2 emission rate at a much higher temporal resolution than possible with vehicle-based measurements, but the network did not provide spatial information about the SO2 plume.

Once the PiCams are ready for use, they will provide both a 2-dimensional view of Kilauea’s SO2 degassing as well as a high-temporal resolution, continuous timeseries of SO2 emission rate measurements.

The continuous SO2 emission rate data will make it easier to study degassing in conjunction with other continuous datasets, like earthquake activity and ground deformation. This will give greater insight into the role of degassing in specific eruptive events, something that has not always been easy to do in the past. Similar work has been done over the past decade at many volcanoes around the world, including at Kilauea, where earthquake activity and SO2 emissions were shown to be linked during lava lake rise-fall events in 2010. The current lava lake in Halema‘uma‘u has a different configuration and set of behaviours from the 2008–18 lava lake, and HVO is eager to see what the new PiCams will reveal about the degassing of the new lake.

Source: USGS, HVO.

Panache émis par le lac de lave du Kilauea avant l’éruption de 2018 (Photos: C. Grandpey)

Au cas où le Mont Fuji (Japon) entrerait en éruption… // In case Mt Fuji (Japan) should erupt…

Le mont Fuji (3776 m) sur l’île de Honshū, est le volcan le plus connu et le plus populaire du Japon. Il s’agit d’un stratovolcan actif dont la dernière éruption s’est déroulée de 1707 à 1708. L’événement a déposé quelques centimètres de cendres sur Edo (aujourd’hui Tokyo) et a formé un grand cratère sur le flanc est. Le mont Fuji a été ajouté à la Liste du patrimoine mondial de l’UNESCO en tant que site culturel le 22 juin 2013. Selon l’Organisation, le mont Fuji a « inspiré des artistes et des poètes et fait l’objet de pèlerinages depuis des siècles »
Le volcan se trouve à la triple jonction entre la plaque de l’Amour, la plaque d’Okhotsk et la plaque des Philippines qui forment respectivement la partie occidentale du Japon, la partie orientale du Japon et la péninsule d’Izu.
Aucune activité éruptive n’a été observée sur le mont Fuji depuis 1708. Les Japonais craignent que le volcan se réveille soudainement, entraînant des problèmes pour les régions environnantes, jusqu’à Tokyo qui se trouve à une centaine de kilomètres au nord-est du volcan. C’est la raison pour laquelle l’Agence de Police Nationale japonaise (NPA) a commencé à lancer une campagne de préparatifs pour le cas où le mont Fuji se réveillerait.
Une simulation réalisée par le Conseil de gestion des catastrophes en avril 2020 a montré que si une éruption semblable à celle de 1707-1708 (avec un VEI 5) devait se produire aujourd’hui, la ville de Tokyo pourrait se retrouver complètement paralysée en seulement trois heures, avec d’importantes perturbations de l’électricité, de l’eau potable et de la circulation.
En juin 2021, la Commission nationale de la sécurité publique et la NPA ont révisé les mesures à prendre en cas de catastrophe, en ajoutant pour la première fois l’achat d’équipements nécessaires au traitement des cendres volcaniques. En conséquence, la NPA a l’intention d’acheter environ 95 000 masques anti-poussière et environ 6 000 lunettes de protection destinés aux services de police lors des opérations de secours. La NPA a estimé que quelque 36 000 policiers seraient mobilisés.
La police de la préfecture de Kanagawa a prévu deux chargeuses sur pneus pour éliminer les cendres volcaniques des routes, tandis que les services de police métropolitaine de Tokyo ont prévu d’augmenter le nombre de groupes électrogènes à utiliser pendant les pannes d’électricité. Les services de police préfectoraux de Kanagawa, Yamanashi et Shizuoka ont également prévu des exercices en vue d’une éventuelle éruption du mont Fuji.
L’éruption du mont Fuji de 1707-1708 a commencé 49 jours après un séisme de M 8,6 le 28 octobre, le plus puissant événement au Japon avant le séisme de Tohoku de 2011. Bien qu’il n’y ait eu aucun décès associé directement à l’éruption, de nombreuses personnes sont mortes (certaines estimations indiquent 20 000 décès) en raison de la quantité de cendres (environ 800 millions de mètres cubes) vomie par le volcan. Le secteur agricole a été décimé, ce qui a provoqué de la famine. Les cendres se sont également retrouvées dans les ruisseaux et les rivières, jusqu’à les obstruer et former des barrages. En août 1708, certains de ces barrages se sont rompus, provoquant des inondations de boue et de cendres volcaniques qui ont recouvert les régions en aval.
Il convient de noter qu’à la suite du séisme et du tsunami destructeurs de Tohoku en 2011, plusieurs volcanologues japonais craignaient que l’événement n’augmente la pression sur le mont Fuji et ne déclenche une éruption. Aucun événement de ce type ne s’est produit jusqu’à présent…
Source : The Watchers.

——————————————

Mount Fuji (3776 m) on the island of Honshū, is Japan’s best known and most popular volcano. It is an active stratovolcano that last erupted from 1707 to 1708. The event deposited a few centimeters of ash on Edo (today’s Tokyo) and formed a large new crater on the east flank. Mount Fuji was added to the World Heritage List as a Cultural Site on June 22, 2013. According to UNESCO, Mount Fuji has « inspired artists and poets and been the object of pilgrimage for centuries »

The volcano is located at the triple junction where the Amurian Plate, the Okhotsk Plate, and the Philippine Sea Plate meet. Those plates form the western part of Japan, the eastern part of Japan, and the Izu Peninsula, respectively.

No eruptive activity has been observed since 1708. Japanese fear the volcano might wake up suddenly and cause problems to surrounding areas, as far as Tokyo which is located 100 km to the north-east. This is the reason why Japan’s National Police Agency (NPA) has started making comprehensive preparations for a possible eruption of Mount Fuji.

A simulation made by the government’s Central Disaster Management Council in April 2020 showed that if an eruption similar to the one that occurred in 1707/08 (with a VEI 5) were to happen today, Tokyo could end up completely paralyzed within just three hours, with major power, drinking water, and traffic disruptions.

In June 2021, the National Public Safety Commission and the NPA revised their disaster countermeasures, adding for the first time the procurement of equipment needed for dealing with volcanic ash. As a result, NPA is now looking to purchase about 95 000 dust masks and roughly 6 000 goggles for distribution to local police departments for rescue and relief activities. NPA estimated that some 36 000 police officers would be mobilized.

The Kanagawa Prefectural Police have secured two wheel loaders for removing volcanic ash from roads, while Tokyo’s Metropolitan Police Department has increased the number of power generators for use during outages. The Kanagawa, Yamanashi and Shizuoka prefectural police departments have also conducted drills in preparation for a possible eruption of Mount Fuji.

The 1707-1708 Mount Fuji eruption started 49 days after an M8.6 earthquake on October 28th, Japan’s largest earthquake before the 2011 Tohoku earthquake. While there were no direct deaths associated with the eruption, many people died (some estimates suggest 20 000) as a consequence of the massive amount of ash (an estimated 800 million cubic meters) released by the volcano.The agricultural sector was decimated, causing many people to starve to death. Ash also ended up in streams and rivers, filling them up and even damming them. In August 1708, these dams broke, causing a flood of mud and volcanic ash, which blanketed the downstream regions.

It should be noted that in the wake of the destructive 2011 Tohoku earthquake and tsunami, several Japanese volcanologists feared that the event might raise pressure on Mt Fuji and trigger an deruption. No such event has occurred so far.

Source : The Watchers.

Le mont Fuji a inspiré les artistes japonais comme Katsuhika Hokusai et ses Trente-six vues du Mont Fuji (Source: Wikipedia)

Quelles mesures pour empêcher que Reynisfjara tue à nouveau? // What measures to prevent Reynisfjara from killing again?

Suite au décès survenu sur la plage de Reynisfjara (Islande) le 10 juin 2022 (voir mon article du 13 juin), le cinquième de ce type au cours des sept dernières années, une réunion a été organisée pour discuter de l’opportunité de fermer Reynisfjara complètement, partiellement ou de mettre en place une autre mesure.
La ministre du Tourisme a déclaré que cette situation ne pouvait plus durer, et cette remarque ne s’applique pas seulement à Reynisfjara, mais aussi à d’autres endroits en Islande qui, bien qu’ils soient d’une grande beauté, peuvent s’avérer dangereux pour les non-initiés.
La ministre a suggéré de fermer temporairement Reynisfjara. Elle a ajouté : « Personne ne parle de fermer complètement Reynisfjara. Juste pendant les périodes où les marées peuvent s’avérer mortelles. Nous agirons bien sûr en coopération avec les propriétaires fonciers et l’industrie du tourisme.
Bien que la plupart des guides disent aux touristes d’éviter de s’approcher des vagues, tout le monde n’écoute pas et rappeler aux gens que cette zone est dangereuse n’est pas toujours chose aisée. L’un des guides a déclaré: « Après le dernier gros incident, nous avons crié aux gens de s’éloigner de l’océan. Certaines personnes nous ont écouté, mais il y en a d’autres qui sont venues vers nous et ont dit : « Qui êtes-vous, la police ? » Ils nous ont insultés et nous ont dit d’aller nous faire foutre.
Ce guide touristique n’est pas en faveur de la fermeture complète de Reynisfjara. Il pense que la surveillance devrait être assurée par « des spécialistes formés à la gestion de grands groupes de personnes se trouvant dans une situation potentiellement dangereuse. Des personnes ayant le pouvoir d’agir ». Il pense qu’il pourrait y avoir deux personnes à tout moment de la journée, en particulier quand il ne fait pas nuit.
Pour le moment, les autorités islandaises n’ont pas envisagé officiellement la mise en place de services de sécurité à Reynisfjara, mais les pourparlers entre l’État, les propriétaires terriens et l’industrie du tourisme sont toujours en cours.
Source : Reykjavik Grapevine.

—————————————–

Following the death at Reynisfjara beach (Iceland) on June 10th, 2022 (see my post of June 13th), the fifth such death in the past seven years, discussion has renewed over whether to close Reynisfjara completely, partially, or try another strategy.

The Minister of Tourism said this situation could not be accepted for much longer, and this does not only apply to Reynisfjara but to other locations in Iceland that, while certainly beautiful, can prove dangerous for the uninitiated.

The Minister suggested to close Reynisfjara temporarily. She added : “No one is talking about closing Reynisfjara completely. Just when the tides are at such a point that they can prove deadly. But we will of course do this in cooperation with the landowners and the tourism industry.”

A tour guide said that while he and most other tour guides tell tourists to avoid the waterline, not everyone listens, and trying to call people back from the waterline is not always effective. He said: “After the last big incident, we’d be down there, screaming at people to get away from the ocean. Some people listen to us, but then there’s some people who will confront us and say ‘What are you, police?’ They’ll be swearing at us, telling us to f*ck off and all this.”

This tour guide does not believe Reynisfjara should be closed altogether. He thinks there should be « specialists trained in how to manage large groups of people coming into a potentially dangerous situation. People with the authority to act. » He thinks there might be two people at any one time throughout the day, particularly through the hours of daylight.

For the time being, increasing the human security presence at Reynisfjara has not entered the discussion on any official level, but talks between the state, the landowners and the tourism industry are still ongoing.

Source: Reykjavik Grapevine.

Photos: C. Grandpey

Nouvelles mesures sur le Kilauea (Hawaii) // New measurements on Kilauea Volcano (Hawaii)

Alors que l’éruption sommitale du Kilauea se poursuit dans le cratère de l’Halema’uma’u, les géologues du HVO sont impliqués dans deux projets qui devraient leur permettre de mieux comprendre comment fonctionne le volcan, ainsi que le déroulement de l’éruption et l’effondrement du sommet du Kīlauea en 2018.
Les deux projets qui débuteront cet été mettent en jeu le transport aérien d’une boucle de fil oblongue d’une part, et l’enfouissement de bobines de fil d’autre part. La zone cible est l’ensemble du Kilauea, depuis la pointe orientale de Kumukahi au sud-ouest, jusqu’à Punaluʻu. Les deux projets détermineront la distribution des résistivités électriques sous la surface, ce qui peut être utilisé pour cartographier le magma. Le projet aéroporté cartographiera également les variations du champ magnétique pour déterminer dans quelle mesure le champ terrestre est présent dans les minéraux magnétiques du Kilauea.
Le premier projet consistera à enfouir des électrodes et des bobines de fil à faible profondeur pour mesurer l’énergie électromagnétique (EM) générée par la foudre autour de l’équateur. Les orages accompagnés de foudre sont courants dans les régions équatoriales. Ils produisent un bruit électromagnétique constant qui se déplace autour du globe dans l’atmosphère entre la surface de la Terre et l’ionosphère. La réponse de la Terre à cette stimulation EM distante peut indiquer aux géologues les propriétés électriques de la Terre sous les bobines à des profondeurs d’environ 10 km. Le système, d’une surface d’un mètre carré, sera déplacé vers quelque 125 emplacements au sol sur le volcan. Les données obtenues serviront à mettre au point une image détaillée du fonctionnement interne de Kilauea. Cette étude s’étalera sur deux saisons : la première en 2022 durant les mois de mai et juin; la deuxième à l’été 2023.
La deuxième partie du projet utilisera une boucle de fil de forme ovale de 15 m par 25 m suspendue à 30 m sous un hélicoptère survolant la majeure partie du volcan.

 

Source: USGS

La boucle transmettra et recevra de l’énergie EM à très basse fréquence et devra voler à 35–50 m au-dessus du sol ou de la cime des arbres. Un petit capteur mesurera également l’intensité du champ magnétique. Il s’agit de cartographie électromagnétique et magnétique aéroportée (AEM).
Les données AEM permettront d’obtenir une image de la structure peu profonde (600 m de profondeur) du volcan, y compris les eaux souterraines et les schémas d’altération causés par les fluides hydrothermaux comme ceux qui se sont infiltrés dans le lac d’eau de l’Halema’uma’u en 2019-2020. Le champ magnétique terrestre le long de la trajectoire de vol permettra de cartographier également la signature du dyke qui a acheminé le magma vers le district de Puna en 2018. Cette partie du projet est également prévue au cours des mois de juin et juillet 2022.
Les survols actuels ne concernent aucune zone résidentielle ni aucune autre région interdite par la Federal Aviation Administration (FAA) ou le Parc national des volcans d’Hawaï. En revanche, les prochains vols auront lieu de jour et seront coordonnés avec la FAA. Des pilotes expérimentés spécialement formés pour le vol à basse altitude piloteront l’hélicoptère. Aucun des instruments utilisés pendant le projet ne présente de risque pour la santé des personnes ou des animaux.
L’AEM et le champ magnétique terrestre ont été cartographiés pour la dernière fois en 1978 sur le Kilauea et le Mauna Loa. Les résultats ont montré que l’East Rift Zone du Kilauea présentait une forte aberration de champ magnétique typique des dykes verticaux qui alimentent d’innombrables éruptions latérales à partir de la zone sommitale.
L’équipement et le logiciel utilisés pour ces projets ont été beaucoup améliorés au cours des 20 dernières années et les géophysiciens qui supervisent le projet actuel ont utilisé avec succès les nouvelles techniques pour cartographier d’autres volcans aux Etats Unis. La finalité du projet en cours est de produire une image de l’ensemble du système magmatique du Kilauea.
Source : USGS, HVO.

A noter que l’étude aéroportée du volcan a déjà été mise en oeuvre sur le Piton de la Fournaise (Ile de la Réunion). Voir ma note du 22 décembre 2019:

https://claudegrandpeyvolcansetglaciers.com/2019/12/22/nouvelle-approche-de-lile-de-la-reunion-et-son-volcan-new-approach-of-reunion-island-and-its-volcano/

———————————————–

While the summit eruption of Kilauea is continuing within Halema’uma’u Crater, HVO geologists are involved in two projects that will help scientists better understand how the volcano works and how the 2018 eruption and collapse of Kīlauea summit happened.

The two projects that will start this summer employ flying an oblong wire loop and burying wire coils. The target area is the entire volcano of Kilauea, from the eastern point of Kumukahi southwest almost to Punaluʻu. Both project will determine the distribution of electrical resistivities below the surface, which can be used to map magma. The airborne project will also map variations in the magnetic field to determine how well the Earth’s field is frozen into Kīlauea’s magnetic minerals.

The first project will deploy electrodes and wire coils buried at shallow depths to passively measure the electromagnetic (EM) energy generated by lightning strikes around the equator.. Lightning storms are common in equatorial regions and those storms produce surprisingly constant electromagnetic noise that travels around the globe in the atmosphere between the Earth’s surface and the ionosphere. The response of the earth to this distant EM stimulation can tell geologists the electrical properties of the earth below the coils to depths of about 10 km. The one-square-meter setup will be moved to about 125 ground locations on the volcano. The resulting data will be used to develop a detailed picture of Kilauea’s inner workings. This study will be done over two field seasons with the first season in 2022 during the months of May and June. The second season will be in the summer of 2023.

The second part of the project will use a 15 by 25 m oval-shaped wire loop suspended 30 m beneath a helicopter flying over most of the volcano. (see image above) The loop assembly will transmit and receive very low frequency EM energy and will need to be flown 35–50 m above the ground or treetops. A small sensor will also be measuring magnetic field strength. The technique is called airborne electromagnetic and magnetic (AEM) mapping.

AEM data will allow imaging of the shallow (upper 600 m) structure of the volcano including groundwater and patterns of alteration caused by hydrothermal fluids like those that seeped into Halemaʻumaʻu water lake in 2019–2020. Earth’s magnetic field along the flight path will also map the signature of the cooling dike that transported magma to lower Puna in 2018. This part of the project is also scheduled for 2022 in the months of June and July.

Currently planned flight lines do not fly over any residential areas or other regions excluded by the Federal Aviation Administration (FAA) or Hawaiʻi Volcanoes National Park. Flights will occur during daylight hours and be coordinated with the FAA. Experienced pilots specially trained and approved for low-level flying will operate the helicopter. None of the instruments in either part of the project pose a health risk to people or animals.

AEM and Earth’s magnetic field were last mapped in 1978 over both Kilauea and Mauna Loa. The 1978 results showed that Kilauea’s East Rift Zone was clearly outlined by a strong magnetic field aberration typical of vertical dikes that fed countless eruptions laterally from the summit area.

The equipment and software have been much improved in the past 20 years and the geophysicists overseeing the current project have successfully used the technique to map other US volcanoes. Their hope is now to produce a picture of the entire magmatic system of Kilauea.

Source: USGS, HVO.

It should be noted that the airborne technology was already used on Piton de la Fournaise (Reunion Island). See my post of December 22nd, 2019:

https://claudegrandpeyvolcansetglaciers.com/2019/12/22/nouvelle-approche-de-lile-de-la-reunion-et-son-volcan-new-approach-of-reunion-island-and-its-volcano/

Vue de la zone couverte par la campagne de mesures ‘Source: HVO)