Glissements de terrain et réchauffement climatique // Landslides and global warming

Au cours des dernières décennies, les phénomènes extrêmes (effondrements, glissements de terrain, laves torrentielles, etc) sont devenus de plus en plus fréquents, que ce soit en haute montagne ou à basse altitude. Les scientifiques se demandent dans quelle mesure ces événements peuvent être liés au réchauffement climatique.
En Californie du Sud, la ville côtière de Rancho Palos Verdes, à environ 50 kilomètres au sud de Los Angeles, attire depuis longtemps les gens aisés avec ses vues sur l’océan Pacifique et sa végétation luxuriante. Le problème, c’est qu’elle se trouve au sommet d’une zone sujette aux glissements de terrain lents qui sont apparus dans les années 1950. Jusqu’à ces derniers temps, le déplacement du sol atteignait en moyenne une dizaine de centimètres par an. Récemment, après d’intenses pluies hivernales, le phénomène s’est accéléré, avec des conséquences dramatiques pour la population. Les maisons sont aujourd’hui disposées de manière désordonnée sur un sol instable. Les routes se sont déformées et l’électricité a été coupée dans plus de 200 foyers. L’état d’urgence vient d’être déclaré dans la localité.
Les scientifiques préviennent que ces glissements de terrain vont devenir plus fréquents avec le réchauffement climatique qui engendre des précipitations plus intenses et des tempêtes plus puissantes, le tout remodelant les paysages. Ils expliquent que les glissements de terrain dépendent de trois facteurs : la pente, le type de roche et le climat.
En Californie, le réchauffement climatique a un impact sur le paysage. Les scientifiques ont découvert des liens évidents entre la crise climatique et des précipitations plus intenses. En effet, une atmosphère plus chaude peut retenir plus d’humidité, ce qui signifie des précipitations plus intenses et des océans plus chauds qui alimentent des tempêtes plus puissantes.
Le réchauffement climatique augmente également d’autres types de glissements de terrain. L’élévation du niveau de la mer et les déferlantes lors des tempêtes rongent les falaises. Les étés plus chauds et plus secs augmentent la fréquence et la gravité des incendies de forêt. Au final, le paysage devient plus vulnérable aux glissements de terrain.
Les glissements de terrain sont un phénomène mondial et les scientifiques ont identifié le lien entre glissements de terrain et réchauffement climatique dans le monde. Par exemple, le cyclone Gabriel en Nouvelle-Zélande a déclenché plus de 140 000 glissements de terrain cartographiés, mais peut-être plus de 800 000 en réalité.
Le réchauffement climatique n’est pas le seul facteur augmentant la probabilité de glissements de terrain ; le comportement humain a également un impact. Les travaux de nivellement dans les pentes pour aplanir les zones destinées aux habitations ou aux routes peuvent fragiliser les flancs des montagnes en les rendant instables. La déforestation est un autre facteur. Les racines des arbres et des plantes maintiennent le sol et leur arrachement est susceptible de le déstabiliser.

Fracture trahissant le mouvement du sol à Rancho Palos Verdes (Crédit photo : presse californienne)

En Europe, les climatologues rejoignent l’approche de leurs collègues américains avec toutefois un peu plus de réserve. Ils insistent sur le fait que si le lien entre glissements de terrain et réchauffement climatique est la plupart du temps évident en montagne, il est parfois moins net à plus basse altitude.
Plusieurs événements dans les Alpes et les Pyrénées ont montré le lien entre les fortes pluies déclenchées par le réchauffement climatique et les glissements de terrain qui en découlent. A cela s’ajoutent les glissements de terrain causés par le dégel du permafrost de roche en montagne. Parfois, c’est la cohabitation entre les fortes pluies et les roches fragilisées par le dégel du permafrost qui provoque des glissements de terrain majeurs et des laves torrentielles. Ce qui s’est passé dans le village de La Bérarde dans les Alpes françaises illustre probablement cette situation. En dégelant, le permafrost n’est plus le ciment qui maintient les roches, de sorte que les chutes de pierres et les effondrements sont de plus en plus fréquents. Les refuges d’altitude sont également menacés et plusieurs d’entre eux ont dû être fermés (voir ma note du 16 septembre 2024). Les alpinistes qui y font halte ont également dû modifier leurs courses en montagne.

Le village de La Bérarde envahi par des torrents de boue (Crédit photo : Alpine Mag)

Il arrive que des effondrements se produisent sans avoir été déclenchés par le réchauffement climatique et/ou le dégel du permafrost. Ils sont simplement causés par des mouvements de terrain. Un bon exemple est l’effondrement d’une paroi pendant l’été 2023 en Maurienne (France). Toute une partie de la montagne s’est effondrée sur une voie ferrée, paralysant le trafic entre la France et l’Italie. De tels effondrements peuvent également être déclenchés par des séismes, mais il n’y a pas eu de secousses dans la région au moment de l’incident.
Selon les scientifiques français, « nous ne pouvons pas affirmer aujourd’hui que le réchauffement climatique est responsable d’une augmentation du nombre de phénomènes gravitaires (autrement dit d’effondrements). L’hypothèse selon laquelle le changement des systèmes de précipitations peut déstabiliser les terrains reste mal démontrée ». En revanche, les nouveaux extrêmes climatiques sont impliqués au moins indirectement dans ces événements. Ce fut le cas lorsque la tempête Alex a dévasté les vallées de la Tinée et de la Vésubie dans le sud-est de la France en 2020.
Les phénomènes extrêmes sont relativement nouveaux et notre société est mal préparée à y faire face.

Source : CNN, France Info.

——————————————————

In the past decades, extreme phenomena (collapses,landslides,cold lava flows, etc.) have become more and more frequent, whether in the mountains or at lower altitudes. Scientists wonder whether they should be linked to global warming.

In Southern California, the affluent coastal city of Rancho Palos Verdes, around 50 kilometers south of Los Angeles, has long enticed people with its Pacific Ocean views and lush greenery. But it sits atop a complex of slow-moving landslides that have been active since the 1950s, causing the land to shift by roughly a tens of centimeters a year. Recently, after intense winter rain, the pace and scale of movement has increased, with devastating consequences. Homes now lie sprawled unevenly across distorted ground, roads have buckled and power has been shut off to more than 200 households. A state of emergency has just been declared in the city.

Scientists warn that such landslides are set to become more frequent as the climate crisis fuels heavier rainfall and more powerful storms, reshaping landscapes. They explain that landslides depend on three factors: the slope, the rock type and the climate.

In California the changing climate is forcing the landscape to respond. Scientists have found clear links between the climate crisis and heavier rain. A warmer atmosphere can hold more moisture, meaning more intense rain or snow when it falls, and hotter oceans fuel more powerful storms.

The climate crisis raises other landslide risks too. Sea level rise and storm surge are eating away at cliffs. Hotter, drier summers are increasing the frequency and severity of wildfires, leaving the landscape vulnerable to mudslides.

Landslides are a global phenomenon, and scientists are identifying climate change-fueled landslide risks across the world. For instance, Cyclone Gabriel in New Zealand triggered more than 140,000 mapped landslides, and possibly more than 800,000 in total.

Global warming is not the only factor increasing the likelihood of landslides; human behavior has an impact too. Cutting into slopes to flatten areas for houses or roads can weaken them and mountain-sides, making both unstable. Deforestation is another factor. Tree and plant roots hold the soil together and ripping them out can destabilize the ground.

In Europe, climate scientists agree with their American colleagues and insist that if the link betweeen landslides and global warming is obvious most of the time in the mountains, it should be mitigated at lower altitudes.

Several events in the Alps and the Pyrenees have shown the link between the heavy rains triggered by global warming and the ensuing landslides. This should be added to the landslides caused by the thawing of rock permafrost in the mountains. Sometimes it is the mixture of heavy rains and fragile rocks because of the thawing permafrost that cause major landslides and cold lava flows. What happened in the village of La Bérarde in the French Alps probably illustrates this situation. When thawing, the permafrost is no longer the cement that holds the rocks together, so that rocfalls and collapses are getting more and more frequent. High altitude refuges are under threat as well and several of them had to be closed (see my post of 16 Sepyember 2024). The climbers who stop in them also had to change their routes in the mountains.

Sometimes, collapses may occur without having been triggered by global warming and /or the thawing of permafrost. They are just caused by ground movements. A good example is the collapse of a mountain wall during the summer 2023 in the French Maurienne where a whole part of the mountain collapsed on the railway track, paralysing the trafic between France and Italy. Such collapses may also be triggered by earthquakes, but there was no shaking of the erath in the region when the incident happened.

.ccording to French scientists, « we cannot say today that global warming is responsible for an increase in the number of gravitational phenomena (i.e. collapses). The hypothesis that changing precipitation systems can destabilize the terrain remains poorly demonstrated. » On the other hand, these new extremes are at least indirectly involved in these events. This was the case when Storm Alex devastated the Tinée and Vésubie valleys in southeastern France in 2020.

Extreme phenomena a relatively new and aour society is badly prepared to face them.

Source : CNN, France Info.

Hydroélectricité et risques naturels en Inde // Hydroelectricity and natural hazards in India

J’ai écrit dans plusieurs notes sur ce blog que l’Himalaya est le château d’eau de l’Asie. La neige et les glaciers fournissent de l’eau à 270 millions de personnes en Asie du Sud. L’Himalaya est donc une source d’eau douce vitale qui s’étend sur 2 400 kilomètres dans une zone qui comprend les plus hauts sommets du monde.

Source: NASA

Cependant, le réchauffement climatique fait reculer les glaciers et les climatologues avertissent que le niveau des rivières commencera à baisser vers 2050. Avec ses nombreux cours d’eau, la région devrait être en mesure de fournir une grande quantité d’ énergie hydroélectrique. Pourtant, seuls 20 % de ce potentiel estimé à 500 GW sont actuellement exploités.

L’immense chaîne de l’Himalaya, avec ses glaciers et ses grands cours d’eau, traverse l’Inde, le Pakistan, le Népal, l’Afghanistan, la Chine et le Bhoutan. La partie indienne de l’Himalaya couvre environ 16,2 % de la superficie du pays et forme sa frontière nord.
Le potentiel hydroélectrique exploitable en Inde a été estimé à environ 84 GW. L’essentiel se concentre dans les États de l’Arunachal Pradesh, de l’Himachal Pradesh et du Jammu-et-Cachemire, ainsi que dans l’État septentrional de l’Uttar Pradesh.
L’Himachal Pradesh possède un fort potentiel de production d’énergie hydroélectrique grâce à la fonte des glaciers et des lacs gelés. L’État héberge la plus grande capacité hydroélectrique installée en Inde, avec plus de 10 500 MW. Le gouvernement prévoit de doubler cette capacité, même si 97 % de la superficie de l’Himachal Pradesh est sujette aux glissements de terrain.

Centale hydroélectrique dans l’Himachal Pradesh (Crédit photo: Electrical India)

Bien que l’hydroélectricité offre des avantages autres que la production d’électricité en assurant la régulation du débit des rivières, l’irrigation et l’eau potable, les risques associés au développement de cette source d’énergie dans l’Himalaya sont plus importants que les avantages.
En effet, les glaciers de l’Himalaya fondent de plus en plus vite en raison du réchauffement climatique, avec l’apparition de grands lacs glaciaires retenus par de fragiles moraines. Ces moraines peuvent s’éventrer et provoquer d’énormes crues soudaines. Une étude de 2019 a révélé que plus de 5 000 lacs glaciaires dans la région étaient susceptibles de déclencher des inondations importantes qui pourraient avoir des conséquences sociétales catastrophiques.

Lac glaciaire dans l’Himalaya (Crédit photo: Planetary Science institute)

Un autre risque découle des effets du réchauffement climatique dans la région. On observe de plus en plus de précipitations extrêmes qui peuvent détruire les infrastructures hydroélectriques et inonder les villages.
De plus, l’Himalaya est soumis à une instabilité géologique et présente un sérieux risque de séismes. De tels événements peuvent briser des barrages et provoquer des inondations soudaines qui détruisent les routes, les habitations et les terres agricoles. Lors du séisme de 2015 au Népal, plus de 30 projets hydroélectriques ont subi des dégâts, principalement suite à des glissements de terrain. Cette catastrophe naturelle a provoqué la perte de 34 % de la capacité hydroélectrique installée dans le pays.

Glissement de terrain dans l’Himachal Pradesh (Crédit photo: India Today)

Les grands projets d’infrastructures tels que les centrales hydroélectriques sont également en grande partie responsables de la disparition des sources dans la région. Les statistiques gouvernementales montrent que la moitié des sources dans l’Himalaya indien se sont taries, avec de graves pénuries d’eau dans des milliers de villages.
De même, en Inde, trois projets hydroélectriques dans l’État himalayen de l’Uttarakhand ont subi des dommages lors d’inondations et de glissements de terrain en 2013 et 2021. Ces trois projets font partie de sept projets hydroélectriques en cours de construction auxquels le gouvernement indien a récemment donné le feu vert. Suite à cette approbation gouvernementale, un groupe de plus de 60 scientifiques, hommes politiques, environnementalistes et autres citoyens en proie à l’inquiétude ont écrit une lettre ouverte au Premier ministre indien. Ils ont demandé son intervention pour arrêter tout autre projet hydroélectrique dans l’Himalaya. Ils ont souligné que de tels projets étaient « voués à être détruits ou gravement endommagés » par des événements naturels.
Source : The Times of India et autres médias d’information internationaux.

—————————————————-

As I put it in several posts, the Himalayas are the water tower of Asia. The snow and the glaciers provide water to 270 million people in South Asia. The Himalayas are a vital freshwater source covering 2,400 kilometres in an area that includes the world’s highest peaks. However, global warming is shrinking the glaciers, and the river level will begin to decrease around 2050. The region has become a hydropower hotspot. However, only 20% of the estimated 500-GW potential is currently tapped.

The immense mountain range of the Himalayas, which includes glaciers and large rivers, passes through India, Pakistan, Nepal, Afghanistan, China and Bhutan. The Indian part of the Himalayas covers about 16.2% of the country’s area and forms its northern boundary.

Exploitable hydropower potential in India has been estimated at about 84 GW. The bulk of this potential lies in the fragile Indian Himalayan states of Arunachal Pradesh, Himachal Pradesh and Jammu and Kashmir, as well as the northern state of Uttar Pradesh.

Himachal Pradesh has a potential for hydropower generation due to the thawing of glaciers and frozen lakes. The state is home to India’s highest installed hydropower capacity of over 10,500 MW. The government plans to double this capacity, even though an estimated 97% of Himachal Pradesh’s geographical area is prone to landslides.

While hydropower offers benefits beyond electricity generation by providing flood control, irrigation support and clean drinking water, the risks associated with developing this energy source in the Himalayas outweigh the benefits.

Indeed, glaciers in the Himalayas are increasingly melting due to climate change and creating big glacier lakes. These lakes can burst and cause huge flash floods. A 2019 study found that more than 5,000 glacier lakes in the region were at risk of extensive flooding and could cause catastrophic societal impacts.

Another risk stems from the changing weather patterns in the region, leading to more extreme rainfall events which can ruin hydropower infrastructure and flood villages.

Additionally, the Himalayas are plagued by geological instability and are at serious risk from earthquakes. Such disasters can fracture dams and release sudden floods that ruin roads, homes and agricultural land. During the 2015 Nepal earthquakes, more than 30 hydropower projects underwent damage, mostly by landslides. This natural disaster caused the loss of 34% of the country’s installed hydropower capacity.

Big infrastructure projects such as hydropower stations are also largely responsible for springs dying in the region. Government statistics show that half of the springs in the Indian Himalayas have dried up, resulting in acute water shortages across thousands of villages.

Similarly, in India, three hydropower projects in the Himalayan state of Uttarakhand suffered damage from floods and landslides in 2013 and 2021.These are among seven under-construction hydropower projects that India’s government recently allowed to restart. Following this approval, a group of more than 60 concerned scientists, politicians, environmentalists and other citizens wrote an open letter to the Indian Prime Minister. They requested his intervention in stopping any more hydroelectric projects in the Himalayas. They highlighted that such projects were “bound to be destroyed or extensively damaged” by natural events.

Source : The Times of India and other international news media.

Sous la menace du Nevado del Ruiz… // Under the threat of Nevado del Ruiz…

On peut lire ces jours-ci dans The Guardian un article très intéressant sur Manizales, une ville du centre de la Colombie, qui, selon le journal anglais, est «la plus dangereuse au monde». L’expression est tout à fait justifiée, car Manizales a été confrontée à des situations graves, voire désespérées. Ainsi, dans la soirée du 13 novembre 1985, les habitants ont entendu un grondement qu’ils ont d’abord attribué à un camion qui venait de se renverser. Puis, des cris se sont fait entendre. Les habitants du fond de la vallée venaient de se faire emporter par une coulée de boue en provenance du Nevado del Ruiz, un volcan à 15 kilomètres à l’est. Il a fallu des mois pour nettoyer et évacuer les matériaux laissés par le lahar et récupérer les corps.
A l’est du volcan, les dégâts ont été catastrophiques. Lorsqu’un pilote a téléphoné au président d’alors, Belisario Betancur, pour lui dire que la ville d’Armero avait été «rayée de la carte», le président lui a dit qu’il exagérait. Le pilote disait la vérité: les deux tiers des 29 000 habitants avaient péri dans la coulée de boue, la pire catastrophe naturelle de l’histoire de la Colombie.
Répartie sur une série de crêtes montagneuses dominée par le Nevado del Ruiz, cette zone urbaine est confrontée à une série de catastrophes naturelles, comme nulle part ailleurs dans le monde.

La ville de Manizales, la capitale du département de Caldas, a été secouée par six séismes majeurs au 20ème siècle, dont un avec une magnitude de M 6,2 qui a causé la mort de 2 000 personnes dans la ville voisine d’Armenia. Les violentes éruptions du Nevado del Ruiz, comme celle de 1985, sont rares mais le volcan crache souvent des nuages de cendre qui recouvre la ville et ferme l’aéroport. En outre, le relief montagneux de la région crée un microclimat propice aux pluies diluviennes et donc à des conditions idéales pour les glissements de terrain.
Les 400 000 habitants de Manizales ont appris à cohabiter avec cette situation précaire. Ils ont tiré les leçons de la tragédie d’Armero et sont connus pour leur bonne politique de gestion des risques. Manizales est devenu une référence mondiale dans ce domaine.

Sur les murs du Colombian Geological Survey, une douzaine d’écrans montrent en direct l’activité sismique, les images satellite et celles diffusées par la webcam orientée vers le volcan tout proche. Avec près de 150 capteurs et autres points de données, le Nevado del Ruiz est l’un des volcans les plus surveillés au monde.
Dans les banlieues les plus pauvres de la ville, des travaux sont en cours pour stabiliser les pentes herbeuses des collines avec du béton et pour creuser des canaux d’évacuation des eaux pluviales afin de limiter le risque d’inondations. La ville dispose d’une carte qui évalue les risques aux infrastructures, y compris les bâtiments individuels. Des capteurs fournissent également une analyse automatisée en temps réel des inondations et des séismes.

La ville de Manizales est connue dans le monde entier pour son approche innovante en matière de prévention et de réaction aux catastrophes. Cette approche repose sur la politique plutôt que sur la technologie. Le gouvernement colombien exige que toutes les municipalités entreprennent des activités d’évaluation et de prévention des risques naturels, mais ces initiatives souffrent souvent d’un manque de volonté politique. Les maires préfèrent donner la priorité à des projets visibles de tous, tels que les écoles ou les stades, qui sont de meilleurs investissements pour leur propre avenir politique, plutôt que de dépenser de l’argent pour des mesures de protection de la population qui sont moins spectaculaires.
Manizales finance ses projets de différentes façons. Il y a une taxe environnementale. Une prime d’assurance solidaire est perçue sur les biens immobiliers, ce qui signifie que les quartiers où les habitants ont les revenus les plus élevés viennent en aide à ceux habités par les personnes les plus démunies. Des allégements fiscaux sont également accordés aux propriétaires qui réduisent la vulnérabilité de leurs biens.
Chaque mois d’octobre, la ville organise une «semaine de prévention» au cours de laquelle des exercices d’urgence sont prévus, non seulement pour les catastrophes naturelles, mais également pour les accidents de la route et les incendies. En avril 2017, des précipitations intenses ont provoqué plus de 300 glissements de terrain et tué 17 personnes. Pourtant, en l’espace d’une semaine, grâce à une organisation bien huilée, les routes ont été nettoyées et la ville a retrouvé une vie normale.
Néanmoins, les dangers liés au manque de préparation de la population sont omniprésents. Ainsi, dans la ville de Mocoa, dans le sud du pays, une tempête a provoqué l’un des désastres les plus meurtriers de la dernière décennie en Colombie, avec des glissements de terrain qui ont tué plus de 250 personnes. 30 000 autres ont été évacuées et la remise en ordre de la ville a pris près de six mois.
Source: The Guardian.

—————————————————

One can read these days in The Guardian a very interesting article about Manizales in central Colombia which, the English newspaper says, is “the world’s riskiest.” The expression is quite justified as Manizales has been confronted with serious and even desperate situations. On the evening of November 13th1985, the inhabitants heard a roar which they believed first was a truck overturning. Then screams could be heard. The people living in the lower part of the valley were swept to their deaths by the water and rocks propelled by the eruption of Nevado del Ruiz, 15 kilometres to the east. It took months to clear the debris and recover the bodies.

On the volcano’s eastern side, the damage was catastrophic. When a pilot telephoned then-president Belisario Betancur to tell him the town of Armero had been “wiped from the map”, the president told him not to exaggerate. But he wasn’t: two-thirds of the 29,000 inhabitants had died in the mudslide, the worst natural disaster in Colombia’s history.

Sprawled over a series of mountain ridges in the shadow of Nevado del Ruiz, this urban area faces a panoply of natural disaster risks that are unmatched anywhere else in the world.

The city of Manizales, the capital of Caldas, experienced six major earthquakes in the 20th century, including one with an M 6.2 event which killed 2,000 people in the neighbouring town of Armenia. Powerful eruptions of Ruiz like the one in 1985 are rare, but the volcano frequently belches ash that coats the city and closes the airport. Besides, the region’s mountainous terrain creates a microclimate prone to torrential rains and ideal conditions for mudslides.

The city’s 400,000 citizens have learned to live with their precarious situation. Spurred on by the bitter lessons of the Armero tragedy, they have now earned a new reputation for good public policy. Manizales has become a global reference for disaster-risk reduction.

On the walls of the Colombian Geological Survey office, a dozen plasma screens relay seismic activity, satellite imagery and webcam footage of the nearby volcano. With nearly 150 sensors and data points, Ruiz is one of the most closely monitored volcanoes in the world.

In the city’s outlying poorer neighbourhoods, work is in progress to stabilise the grassy hillside slopes with concrete, and to dig runoff channels to mitigate floods. The city has a map that evaluates risk down to individual buildings. Sensors also provide automated, real-time analysis of floods and earthquakes.

Manizales is recognised around the world for its innovative approach to preventing and responding to disasters. The city’s particular success is based on policy, rather than technology. Colombia requires all municipalities to undertake risk assessments and mitigation activities, but these initiatives often suffer from a lack of political will. Governors and mayors tend to view visible projects, such as schools or sports stadiums, as better investments for their own political prospects rather than spending on less visible disaster resilience.

Manizales funds its projects through a variety of methods. There is an environmental tax. A cross-subsidised collective insurance premium is charged on properties, meaning higher-income sectors cover poorer groups. Tax breaks are also offered to homeowners who reduce the vulnerability of their properties.

Each October the city holds “prevention week”, in which emergency drills are practised, not just for natural disasters, but for traffic accidents and fires, too. In April 2017, intense rainfall caused more than 300 landslides and killed 17 people. Yet within a week, thanks to accurate warning and response systems, blocked roads were cleared and the city was functioning again.

Nevertheless, reminders of the perils of unpreparedness are everywhere. In the city of Mocoa in the country’s south, a storm resulted in one of the most deadly disasters in Colombia of the last decade, when landslides killed more than 250 people. Another 30,000 were evacuated and recovery efforts took close to six months.

Source: The Guardian.

Carte à risques du Nevado del Ruiz avec, en rouge, les coulées de boues de l’éruption de 1985. La ville de Manizales se trouve au NO du volcan (Source: Colombian Geological Survey)

 

Un séisme bloque des randonneurs sur le Mont Rinjani (Indonésie) // An earthquake traps hikers on Mt Rinjani (Indonesia)

Un violent séisme de magnitude M 6,4 a secoué l’île indonésienne de Lombok à 6:47 (heure locale) le 29 juillet 2018. L’hypocentre était situé à une profondeur comprise entre 6,4 et 10 kilomètres, selon les sources. Le séisme a été suivi de plus de 60 répliques, dont un événement de M 5,7. Plusieurs glissements de terrain se sont produits pendant le séisme, bloquant les routes et coupant l’approvisionnement en électricité et en eau de certaines maisons. Le bilan provisoire est de 14 morts. Au moins 160 personnes ont été blessées et au moins 1 000 maisons ont été endommagées.
Le parc national du Mont Rinjani a été fermé en raison de glissements de terrain. Lundi matin, 560 randonneurs étaient encore pris au piège sur la montagne, incapables de descendre car les glissements de terrain provoqués par le séisme ont bloqué les sentiers. Une équipe de sauveteurs composée de militaires, de la police et d’équipes de secours, a été déposée par hélicoptère pour évacuer les randonneurs en détresse. Au total, 165 personnes participent à l’opération, tandis que deux hélicoptères ont été mis en service. Les randonneurs sont originaires de différents pays comme la Thaïlande, la France, les Pays-Bas et la Malaisie.
Dans le même temps, des centres d’hébergement ont été mis à la disposition des personnes affectées par le tremblement de terre.

————————————————–

A powerful M 6.4 earthquake shook Indonesia’s Lombok 6:47 (local time) on July 29th, 2018. The hypocentre was located at a depth between 6.4 and 10 kilometres, according to the sources. The quake was followed by more than 60 aftershocks, with an event of  M 5.7. Several landslides occurred during the quake, blocking roads and cutting off electricity and water supply to some homes. At least 14 people have been killed and the death toll could still rise. More than 160 people have been injured and at least 1,000 homes have been damaged.

Mount Rinjani National Park has been closed due to landslides. On Monday morning, 560 hikers were reportedly still trapped on the mountain, unable to descend as landslides triggered by the earthquake have blocked trails. A joint team of rescuers consisting of the military, police, and search and rescue, was lowered to evacuate the trapped climbers. A total of 165 personnel are on the rescue, while two helicopters have been deployed. The hikers are of multiple nationalities, including Thailand, France, the Netherlands, and Malaysia.

Meanwhile, evacuation camps have been set up for people affected by the earthquake.

Image satellite dans l’infrarouge de l’île de Lombok avec le Mont Rinjani identifiable par son lac de cratère (Crédit photo : Wikipedia).