L’intelligence artificielle arrive en volcanologie // Artificial intelligence arrives in volcanology

Des scientifiques de l’Université de Grenade ont développé un algorithme d’apprentissage automatique très précis censé prévoir les éruptions volcaniques. [L’apprentissage automatique (machine learning en anglais) est un champ d’étude de l’intelligence artificielle qui vise à donner aux machines la capacité d’« apprendre » à partir de données, via des modèles mathématiques].

Les travaux de ces scientifiques, publiés récemment dans Frontiers in Earth Science, montrent que cette technologie peut permettre de mieux comprendre et prévoir l’activité volcanique. Au final, elle permettra une meilleure préparation aux catastrophes et réduira les risques volcaniques.
Les chercheurs ont analysé un vaste ensemble de données sismiques de l’Etna (Sicile) couvrant plusieurs décennies. En appliquant le modèle d’apprentissage automatique à des données historiques, ils ont pu identifier les signaux sismiques qui précédaient systématiquement les éruptions. La capacité prédictive de l’algorithme a ensuite été testée en utilisant des données sismiques plus récentes. On aboutit à un taux de précision impressionnant, de plus de 90 %.​  Les chercheurs insistent sur le fait que cette approche peut être appliquée à différents systèmes volcaniques à travers le monde.
En appliquant des techniques de traitement du signal aux enregistrements sismiques, les scientifiques ont fait apparaître quatre caractéristiques sismiques différentes, qui évoluent lorsque le système volcanique s’approche d’un épisode éruptif. Ils ont ensuite élaboré une matrice temporelle avec ces paramètres et attribué une étiquette à chaque instant temporel en fonction de l’état réel de l’activité volcanique (simple activité, situation pré-éruptive, situation éruptive). Restait à résoudre le problème du développement de systèmes d’alerte précoce transférables entre volcans. Pour cela, les auteurs de l’étude ont appliqué leur méthodologie à des bases de données associées à différents systèmes volcaniques, y compris des données concernant des épisodes explosifs et effusifs, enregistrées dans plusieurs scénarios volcaniques à conduits ouverts et fermés. Les volcans pris en compte sont l’Etna (Sicile), le Bezymianny (Kamchatka), Volcán de Colima (Mexique), le Mont St. Helens et l’Augustine. (États Unis).
On peut être optimiste quant à la capacité de l’algorithme d’apprentissage automatique à prévoir correctement les éruptions d’autres volcans actifs à travers le monde. Cette technologie peut faciliter l’approche des catastrophes en fournissant des alertes précoces et en permettant aux autorités de mettre en œuvre des plans d’évacuation et de prévoir d’autres mesures de sécurité.
L’étude montre le potentiel de l’apprentissage automatique et d’autres avancées technologiques dans la recherche géophysique. La capacité des algorithmes d’apprentissage automatique à analyser des informations complexes et à identifier des modèles cachés peut être utilisée dans un large éventail d’applications des sciences de la Terre, notamment la prévision des séismes et la modélisation climatique. Les chercheurs vont maintenant s’efforcer d’améliorer leur modèle et de tester sa pertinence dans divers environnements volcaniques.

Référence:

Universal machine learning approach to volcanic eruption forecasting using seismic features – Pablo Rey Devesa et al. — Frontier in Earth Science, June 26, 2024 – https://doi.org/10.3389/feart.2024.1342468

Source : The Watchers.

Episode éruptif sur l’Etna (Photo: C. Grandpey)

°°°°°°°°°°

L’utilisation de l’intelligence artificielle dans la prévision volcanique et celle d’autres phénomènes naturels semble prometteuse. Cependant, il faut garder à l’esprit que l’intelligence artificielle fait partie de la science exacte alors que les éruptions dépendent des caprices de la Nature qui sont souvent imprévisibles !

Des progrès ont été réalisées au cours des dernières décennies en matière de prévision éruptive, mais il reste encore beaucoup à faire pour déjouer les traquenards mis sur le chemin des scientifiques par Dame Nature. L’intelligence artificielle permettra peut-être aussi un jour d’empêcher que des populations se fassent tuer par de puissants séismes.

—————————————————

Scientists at the University of Granada developed a very accurate machine-learning algorithm for predicting volcanic eruptions. Their work, published recently in Frontiers in Earth Science, demonstrates how this technique can assist us in better understanding and forecasting volcanic activity, which is a crucial step toward increasing disaster preparedness and decreasing volcanic dangers.

The researchers analyzed a large dataset of seismic recordings from Mount Etna gathered over several decades. By training the machine learning model on historical data, they were able to identify seismic signals that consistently preceded eruptions. The algorithm’s prediction capacity was then tested against more recent seismic data, and it achieved an impressive accuracy rate of more than 90%.​  The researchers insist that it is transferable to different volcanic systems around the world.

By applying signal processing techniques on seismic records, the scientists extracted four different seismic features, which usually change their trend when the system is approaching an eruptive episode. Then, they built a temporal matrix with these parameters and defined a label for each temporal moment according to the real state of the volcanic activity (Unrest, Pre-Eruptive, Eruptive). To solve the remaining problem of developing early warning systems that are transferable between volcanoes, the authors of the study applied their methodology to databases associated with different volcanic systems, including data from both explosive and effusive episodes, recorded at several volcanic scenarios with open and closed conduits: Mt. Etna, Bezymianny, Volcán de Colima, Mount St. Helens and Augustine.

The machine learning algorithm’s performance in properly predicting eruptions bodes well for its application to other active volcanoes across the world. This technology can help with disaster planning by providing early warnings and allowing authorities to enact evacuation plans and other safety measures on time.

The study demonstrates the greater potential of machine learning and other such technological advancements in geophysical research. Machine learning algorithms’ capacity to analyze complicated information and identify hidden patterns can be applied to a wide range of earth science applications, including earthquake prediction and climate modeling. The researchers intend to enhance their model further and test its relevance to various volcanic environments.

Reference:

Universal machine learning approach to volcanic eruption forecasting using seismic features – Pablo Rey Devesa et al. — Frontier in Earth Science, June 26, 2024 – https://doi.org/10.3389/feart.2024.1342468

Source : The Watchers.

°°°°°°°°°°

The use of artificial intelligence in volcanic prediction and the prediction of other natural phenomena looks promising. However, onse should keep in mind that artificial intelligence is part of exact science whereas eruptions depend on Nature’s whims which can be unpredictable !

Progress has been made in recent decades in eruptive prediction, but much remains to be done to thwart the traps put in the path of scientists by Mother Nature. Artificial intelligence may one day make it possible to prevent populations from being killed by powerful earthquakes.

Islande : des prévisions hasardeuses // Iceland : risky predictions

L’éruption qui a débuté le 29 mai 2024 sur la péninsule de Reykjanes est désormais terminée. Un soulèvement du sol est toujours observé sous le secteur de Svasrtsengi, bien que plus lent qu’auparavant. Cela signifie-t-il qu’une nouvelle éruption se produira à court terme ? Personne ne sait.
De la même manière, les conclusions d’une nouvelle étude publiée dans la revue Terra Nova le 26 juin 2024 vont peut-être un peu trop loin. Les auteurs expliquent que la série d’éruptions volcaniques obsevée ces derniers temps en Islande pourrait durer des décennies, voire des siècles. Peut-être que oui, peut-être que non ; personne ne sait. Alors que nous ne sommes pas capables de faire des prévisions volcaniques à court terme, il est assez risqué de faire de telles déclarations.
La série actuelle d’éruptions a commencé en 2021 sur la péninsule de Reykjanes où vit une grande partie de la population islandaise. Elle abrite en outre l’aéroport international de Keflavik et plusieurs centrales géothermiques – Svartsengi étant la plus importante – qui approvisionnent le pays en eau chaude et en électricité.
Il y a eu cinq éruptions majeures depuis le seul mois de décembre 2023. La lave a été émises par des fissures éruptives, un dynamisme typique du volcanisme islandais. Les scientifiques ont analysé les données sismiques des trois dernières années et comparé les propriétés chimiques et physiques de la lave provenant de divers endroits pour savoir si la source se trouvait dans la même chambre magmatique.
Ils ont découvert qu’il s’agissait effectivement d’un magma aux propriétés pétrographiques identiques. Cela révèle la présence d’un système magmatique cohérent. Au vu des données sismiques, les chercheurs pensent qu’il existe une zone de stockage de magma de taille moyenne à une profondeur d’environ neuf à onze kilomètres, et qui s’étend sur une largeur de dix kilomètres. Ce réservoir se serait formé entre 2002 et 2020.
Les auteurs de l’étude concluent que la série d’éruptions actuelle pourrait être le début d’un long épisode, même s’ils ne sont pas en mesure de prévoir combien de temps durera cette série.
Source : agence de presse allemande DPA Internatioanl.

29 mars 2024 : une éruption fissurale classique en Islande

————————————————–

The eruption that started on May 29th, 2024 on the Reykjanes Peninsila is now over. Ground uplift is still observed beneath the Svasrtsengi area, although slower than before. Does this mean a new eruption will occur in the short term ? Nobody knows.

In the same way, the conclusions of a new study published in the journal Terra Nova on June 26th, 2024, may be going a bit too far. The authors explain that the latest series of volcanic eruptions in Iceland could last for decades or even centuries. Maybe yes, maybe no ; nobody knows. At a time when we are not able to make short-term volcanic predictions, it is quite risky to make such statements.

The current series of eruptions began in 2021 on the Reykjanes Peninsula, with large part of the Icelandic population living in the affected region. It is also home to the Keflavik international airport and several geothermal power plants – Svartsengi being the most important one – that supply the country with hot water and electricity.

There have been five major volcanic eruptions since December 2023 alone. Lava flowed out of elongated cracks in the earth during fissure eruptions typical of Icelandic volcanism. The researchers analysed seismic data from the past three years and compared the chemical and physical properties of lava from various locations to determine whether it came from the same underground magma chamber.

They found that it was indeed magma with similar petrographic properties. This suggests a coherent underground magma system. Taken with the seismic data, the researchers believe that there is a moderately large magma accumulation at a depth of around nine to eleven kilometres, which extends over a width of ten kilometres. It formed between 2002 and 2020.

The authors of the study conclude that the current series of eruptions could be the beginning of a long episode, though they cannot predict how long the series will last.

Source : German press agency DPA International.

Islande : résultats des analyses de la lave // Iceland : results of lava analysis

Les dernières analyses de la lave émise par l’éruption actuelle ont révélé que le magma est sensiblement différent de celui des éruptions précédentes. Il ressemble davantage au magma de l’éruption du Geldingadalir en mars 2021.

Deux échantillons de lave ont été analysés, un premier issu de téphras et un deuxième de lave, collectés à la surface au début de l’éruption, le 29 mai 2024. Ce qui a surpris les scientifiques, c’est le rapport dioxyde de potassium/dioxyde de titane. La lave des éruptions précédentes sur la chaîne de cratères de Sundhnúkagígar avait un rapport relativement élevé de dioxyde de potassium par rapport au dioxyde de titane, semblable à ce qui s’est produit lors de l’éruption de Litli-Hrútur en 2022 et de l’éruption dans la Meradalir en 2022. En revanche, au début de l’éruption dans la Geldingadalir en mars 2021, le magma a présenté un rapport potassium-titane très similaire à celui de l’éruption actuelle. Un scientifique a déclaré : « C’est comme si le magma qui est émis aujourd’hui avait la même source que celui qui est apparu pour la première fois dans la Geldingadalir.

Eruption dans la Meradalir en 2022 (image webcam)

Les similitudes entre les deux éruptions, survenues à trois ans d’intervalle, sont intéressantes pour plusieurs raisons. L’une d’elles est que l’éruption se produit dans deux systèmes volcaniques différents. Une autre raison est que le magma qui émis dans la chaîne de cratères de Sundhnúkagígar provient d’une chambre magmatique sous Svartsengi. Après une brève période d’accumulation, il remonte à la surface, mais il s’est refroidi et un peu cristallisé dans la chambre, et est donc plus avancé. Ce n’était pas le cas lors de l’éruption dans la Geldingadalir. Cependant, personne ne sait pourquoi le magma qui remonte maintenant à la surface semble avoir la même composition que celui qui est apparu dans la Geldingadalir en 2021. Un scientifique islandais a déclaré : « Il faudrait le demander au Diable !. » On pense que ce magma pourrait provenir d ‘une zone entre la croûte et le manteau. Des analyses supplémentaires seront nécessaires pour espérer obtenir une réponse.

Image webcam de l’éruption du 29 mai 2024

On peut lire sur le site Internet de l’Institut des Sciences de la Terre de l’Université d’Islande : « Des échantillons de téphras et de lave ont été collectés au nord de Fiskidalsfjall et à l’est de Sýlingarfell le 1er et le 4ème jour de l’éruption qui a débuté le 29 mai 2024. Le verre volcanique présent dans les échantillons a été analysé avec la microsonde électronique de l’Institut des Sciences de la Terre de l’Université d’Islande. La lave et les tephras sont composés de cristaux de plagioclase, d’olivine et de clinopyroxène. Le verre des tephras est exempt de microlites, tandis que les échantillons de lave en contiennent des quantités variables. Dans l’ensemble, les caractéristiques pétrographiques de la nouvelle lave sont assez semblables à celles des laves émises précédemment sur la fissure de Sundhnúksgígar depuis décembre 2023. »

Source  : Iceland Monitor..

Remarques personnelles à propos des dernières éruptions sur la péninsule de Reykjanes.

Les dernières analyses et celles effectuées lors des éruptions précédentes sont intéressantes car elles révèlent que le magma qui alimente les éruptions sur la péninsule de Reykjanes a sa source à grande profondeur, dans le manteau ou dans la zone entre le manteau et la croûte. La différence de composition chimique de la lave entre les différents échantillons prélevés est probablement liée au séjour – ou au non séjour – du magma dans une chambre magmatique comme celle sous Svartsengi.

Quelle que soit la zone source du magma, on peut remarquer que la composition chimique de la lave n’a guère d’influence sur le processus éruptif. Les événements observés sur la péninsule de Reykjanes ces dernières années se sont tous déroulés de la même façon. Ils sont d’ailleurs liés à la position de l’Islande sur le rift médio-atlantique.

Du fait de de la source profonde du magma, on a affaire à une lave à haute température, donc très fluide qui crée des intrusions en s’infiltrant dans les fractures qui tranchent l’Islande du nord-est au sud-ouest. Ces intrusions s’accompagnent généralement de fortes crises sismiques comme on l’a vu quand l’une d’elles a atteint Grindavik.

Une fois la surface atteinte, le magma ouvre des fractures et donne naissance à des éruptions fissurales. Telle une boutonnière, plusieurs bouches s’ouvrent le long de la fracture. Leur activité décline au fil des jours avec l’évacuation du magma et l’éruption se termine en général avec une seule bouche active, comme c’est le cas avec la dernière éruption.

Le Met Office islandais indique que la chambre magmatique sous Svartsengi est probablement à nouveau en cours de remplissage. Si c’est le cas, on peut s’attendre à de nouveaux événements éruptifs, à moins que le magma décide de séjourner dans la chambre et d’attendre un temps plus ou moins long avant de percer la surface. Ainsi va la vie volcanique dans cette partie de l’Islande…

——————————————–

The latest analyses of the lava emitted by the current eruption have revealed that the magma differs significantly from its predecessors. It is more similar to the magma from the Geldingadalir eruption in March 2021.

Two lava samples have been analyzed, a tephra deposit and secondly a lava deposit, which came to the surface when the eruption began on May 29th, 2024. What surprised the scientists was the ratio of potassium dioxide to titanium dioxide. The lava from previous eruptions on the Sundhnúkagígar crater row has had a relatively high ratio of potassium dioxide to titanium dioxide, similar to what came up in the Mt Litli-Hrútur eruption in 2022 and the Meradalur eruption in 2022. By contrast, at the beginning of the eruption in Geldingadalir in March 2021, magma came up with a very similar potassium-titan ratio as in the current eruption, One scientis said : “It’s like the magma that’s coming up now is of the same strain as the one that first appeared in Geldingadalir.”

The similarities between the two eruptions, which occurred three years apart, are interesting for several reasons. One reason is that the eruption occur in two different volcanic systems. Another reason is that magma that comes up at Sundhnúkagígar crater row is first collected in a magma chamber under Svartsengi. After a brief accumulation period there, it then pops onto the surface, but then the magma has cooled, crystallized a little, and is usually more advanced. This was not the case in the eruption in Geldingadalir. However, nobody knows why the magma that is now rising to the surface appears to be of the same strain as the one that came in Geldingadalir 2021. An Icelandic scientist said : “You have to ask the devil about that.” It is thought that this magma may come from the area between crust and mantle. More analyses will be necessary to hope to get some answer.

One can read on the website of the Institute of Earth Sciences of the University of Iceland : “Samples of tephra and quenched lava were collected north of Fiskidalsfjall and east of Sýlingarfell on the 1st day and 4th day of the eruption at Sundhnúksgígar that started on May 29th, 2024. The volcanic glass in the samples was analysed with the electron microprobe of the Institute of Earth Sciences, University of Iceland. The lava and tephra are composed of vesicular glass, plagioclase, olivine and clinopyroxene crystals. The tephra glass is microlite-free, whereas quenched lava samples contain variable amounts of microlites. Overall, the petrographic features of the new lava resemble those of previous lavas erupted at Sundhnúksgígar since December 2023 .”

Source : Iceland Monitor.

Personal remarks about the latest eruptions on the Reykjanes Peninsula.

The latest analyzes and those carried out during previous eruptions are interesting because they reveal that the magma which fuels the eruptions on the Reykjanes Peninsula has its source at great depth, in the mantle or in the zone between the mantle and the crust. The difference in chemical composition of the lava between the different samples is probably linked to the stay – or non-stay – of the magma in a magma chamber like the one under Svartsengi.

Whatever the source area of ​​the magma, it can be noted that the chemical composition of the lava has little influence on the eruptive process. The events witnessed on the Reykjanes Peninsula in recent years have all developed in the same way. They are also linked to Iceland’s position on the mid-Atlantic rift.

Due to the deep source of the magma, we are dealing with lava at high temperature, therefore very fluid, which creates intrusions by infiltrating the fractures which cut Iceland from the north-east to the south-west. These intrusions are generally accompanied by strong seismic crises as could be seen when one of them reached Grindavik.

Once it reaches the surface, the magma opens fractures and triggers fissure eruptions. Like a buttonhole, several vents open along the fracture. Their activity declines over the days as the magma evacuates and the eruption generally ends with only one active vent, as is the case with the current eruption. The Icelandic Met Office says the magma chamber beneath Svartsengi is likely filling again. If this is the case, we can expect new eruptive events, unless the magma decides to stay in the chamber and wait a longer or shorter time before breaking through the surface. Such is volcanic life in this part of Iceland…

Compréhension en profondeur des éruptions // Deep understanding of eruptions

Les derniers événements en Islande ont montré que les scientifiques savent qu’une éruption est susceptible de se produire, mais ils ne peuvent pas prédire le moment précis où elle débutera. Lorsqu’ils sont sur le point d’entrer en éruption, les volcans montrent des signes qui sont enregistrés par des instruments tels que des sismomètres, des inclinomètres ou même par les satellite. Ces paramètres concernent les couches les plus superficielles de la croûte terrestre.
De nouvelles recherches, menées par des équipes de l’Imperial College de Londres et de l’Université de Bristol, révèlent que nous devrions observer ce qui se passe plus profondément, jusqu’à 20 km sous terre. Certains indices annonciateurs d’éruptions pourraient nous aider à améliorer nos prévisions.

Les auteurs de l’étude se sont concentrés sur la compréhension des réservoirs magmatiques, là où une chaleur extrême fait fondre les roches solides et les transforme en magma à des profondeurs d’environ 10 à 20 kilomètres.
Après avoir collecté des données sur cette zone, l’équipe scientifique les a intégrées dans des modèles informatiques. Les chercheurs ont découvert que certaines conditions au sein des réservoirs magmatiques profonds pouvaient donner des indications sur la taille, la composition et la fréquence des éruptions volcaniques. En d’autres termes, en étudiant ce qui se passe en bas, nous pouvons mieux prévoir ce qui pourrait se passer en haut.
La flottabilité du magma est peut-être l’un des indicateurs les plus surprenants d’une éruption. Contrairement aux théories émises jusqu’à présent, la nouvelle étude montre que c’est la flottabilité du magma, plus que la proportion de roches solides et fondues, qui déclenche les éruptions. Une fois que la densité du magma lui permet de flotter, donc de s’élever, il crée des fractures dans la roche solide sus-jacente. ; il s’engouffre alors très rapidement dans ces fractures et provoque une éruption.
Un autre facteur est la taille du réservoir magmatique proprement dit. Un réservoir magmatique de grande taille ne signifie pas forcément que l’éruption sera plus importante. En effet, plus le réservoir est grand, plus la chaleur est dispersée, ce qui réduit la vitesse de fusion des roches et leur transformation en magma. De plus, plus le magma reste longtemps sous terre, plus l’éruption sera réduite.
Un auteur de l’étude affirme qu' »en améliorant notre compréhension des processus à l’origine de l’activité volcanique et en fournissant des modèles qui mettent en lumière les facteurs contrôlant les éruptions, la nouvelle étude constitue une étape cruciale vers une meilleure surveillance et prévision de ces puissants événements géologiques ».
Source : Science Advances.

Vous pourrez lire l’étude (en anglais) et découvrir les illustrations en plus grande taille en cliquant sur ce lien :

https://www.science.org/doi/10.1126/sciadv.add1595

——————————————————-

The recent events in Iceland have shown that scientissts know that an eruption is likely to erupt. However, they cannot predict the precise moment an eruption will begin. When tey are bout to erupt,volcanoes often show signs that are recorded by instruments suchas seismometers, tiltmetersor even satellite images. These parameters concern the topmost layers of Earth’s crust.

New research, led by teams from Imperial College London and the University of Bristol, suggests we should look deeper, down to 20 km underground, at different eruption clues that might help us improve our predictions.

The authors of the study focused on understanding magma source reservoirs deep beneath our feet, where extreme heat melts solid rocks into magma at depths of around 10 to 20 kilometers.

After collecting data from this part of the Earth’s crust, the team fed that data into computer models. What they found was that certain conditions within deep magma reservoirs could indicate the size, composition and frequency of volcanic eruptions. In other words, by studying what is going on below, we can better predict what might happen above.

Magma buoyancy is perhaps one of the most surprising indicators of an eruption. Contrary to previous beliefs, the new study suggests that the buoyancy of the magma, rather than the proportion of solid and molten rock, is what drives eruptions, Once the magma becomes buoyant enough to float, it rises and creates fractures in the overlying solid rock ; it then flows through these fractures very rapidly, causing an eruption.

Another factor is the size of the reservoir itself. While it is true that larger reservoirs hold more magma, that doesn’t always mean the eruption will be greater. The larger the reservoir, the more heat is dispersed, reducing the rate of melting rock into magma. Plus, the longer magma sits underground, the smaller the eruption will be.

One author of the study says that « by improving our understanding of the processes behind volcanic activity and providing models that shed light on the factors controlling eruptions, the new research is a crucial step towards better monitoring and forecasting of these powerful geological events. »

Source : Science Advances.

You can read the whole  study and discover the full-scale  illustrations by clicking on this link :

https://www.science.org/doi/10.1126/sciadv.add1595