Un drone pénètre dans un cratère d’explosion en Sibérie / A drone flies into an explosion crater in Siberia

Entre 2017 et 2020, j’ai rédigé plusieurs notes à propos de cratères d’explosion apparus en Sibérie, en particulier sur la Péninsule de Yamal. Plusieurs hypothèses ont été avancées pour expliquer l’existence de ces cratères ; certaines ont même fait intervenir des extraterrestres !

La formation de deux de ces cratères sur la péninsule s’est accompagnée d’explosions suivies de flammes, ce qui confirme la libération de poches de méthane. On pense que les cratères se forment lorsque le méthane du sous-sol, piégé par le permafrost pendant des milliers d’années, est libéré en raison du réchauffement climatique et explose à l’intérieur des pingos. [Le mot inuit ‘pingo’ fait référence à des monticules de glace recouverts de terre.]

Au cours de l’été 2020, un groupe de chercheurs russes a étudié le dernier cratère d’explosion de 30 mètres de profondeur à s’être formé sur la Péninsule de Yamal pendant l’été de cette même année. Il fallait atteindre le site rapidement car ces cratères se remplissent d’eau et deviennent des lacs. Les scientifiques ont utilisé un drone pour voir l’intérieur du cratère.

Un fait majeur a été la découverte de deux cavités remplies de gaz qui ont fusionné pour n’en former qu’une seule avant l’explosion. L’approche du cratère avec le drone a été particulièrement difficile. Elle supposait que le scientifique – également pilote certifié –  s’allonge au bord du cratère et tienne la radio de contrôle du drone à bout de bras. Il a failli perdre l’engin à trois reprises mais a finalement obtenu environ 80 images du cratère. Il était impossible de voir tout l’intérieur du cratère depuis sa lèvre, en particulier les éventuelles cavernes dans la partie inférieure, mais ces cavités ont pu être observées sur le montage 3D réalisé à partir des images du drone

Les vues montrent sans le moindre doute que le cratère s’est formé de manière endogène, avec la glace qui fond, puis le pingo qui gonfle en raison de l’accumulation de gaz et finit par exploser.

Grâce au modèle 3D, les chercheurs ont pu observer la cavité de glace oblongue bien préservée où le gaz s’était accumulé. Comme mentionné ci-dessus, les images indiquent qu’au départ, il n’y avait pas une mais au moins deux cavités dans l’épaisseur de la glace. Au fur et à mesure que leur taille a augmenté, ces cavités ont fusionné pour former un unique espace souterrain avec un fond de forme elliptique. Le volume de la cavité finale est estimé à 7500 mètres cubes. À une pression d’environ 15 à 20 atmosphères, cela donne environ 112 000 à 150 000 mètres cubes.

Il semble que le cratère soit lié à une faille profonde et à un flux de chaleur anormal en provenance des profondeurs de la terre. La cause de l’explosion serait donc, au moins en partie, plus profonde que le méthane qui s’était accumulé près de la surface en raison d’un dégel des couches supérieures du pergélisol.

Les modèles 3D ont permis aux scientifiques de cartographier la forme complexe de la cavité souterraine qui semble s’être formée entre le 15 mai et le 9 juin 2020. Le cratère a été aperçu pour la première fois depuis un hélicoptère le 16 juillet.

Les chercheurs ont pu étudier les conditions cryogéologiques du cratère ainsi que la composition du pergélisol. Ils ont examiné les matériaux éjectés et les conditions de température sur le sol autour du trou béant. Ces informations permettront de mieux comprendre les conditions de formation de ces cratères dans l’Arctique. Les scientifiques ont identifié dans la péninsule de Yamal quelque 7 185 pingos, dont une partie risque d’exploser. Il ne faudrait pas oublier que la région comprend des réserves de gaz naturel vitales pour l’approvisionnement en Europe. Selon les scientifiques, cinq à dix pour cent des 7 185 pingos sont potentiellement dangereux. Le port de Sabetta qui permet l’exportation du gaz naturel liquéfié fait partie des sites sous la menace de ces bombes de gaz à retardement.

Source: The Siberian Times.

Vous trouverez d’excellentes illustrations sur le Siberian Times à cette adresse :

https://siberiantimes.com/other/others/news/drone-flies-inside-giant-yamal-permafrost-crater-for-first-time-dipping-15-metres-below-the-surface/

———————————————–

Between 2017 and 2020, I wrote several posts about explosion craters that appeared in Siberia, in particular in the Yamal Peninsula. Several hypotheses were suggested to explain these craters, some of them mentioning extraterrestrial beings.

Two craters on the peninsula involved explosions followed by fire, obvious signs of the eruption of methane gas pockets under the Yamal surface. The craters are believed to form when underground methane gas, trapped by permafrost for thousands of years, is released due to the warming climate in this Arctic region and erupts inside pingo mounds. A pingo is an inuit word referring to an ice mound covered with earth.

In summer 2020, a group of Russian researchers surveyed the latest known 30-metre deep explosion crater on the Yamal Peninsula, formed in summer 2020. It was vital to get to it quickly because these holes rapidly fill with water, becoming lakes. They used a drone to get views of the inside of the crater.

A key finding was that the scientists identified two gas filled cavities which merged into one, and then exploded. The aerial survey of the crater with a drone was a very difficult task  It involved the scientist – also a certified pilot – having to lie down on the edge of the crater and dangle down his arms to control the drone. They got close to losing it three times, but got some 80 drone images from the crater. They could not see everything from above, especially the possible caverns in the lower part of the crater, but they can be seen with the 3D model made from the drone images

The results of the survey suggest unequivocally that the crater was formed endogenously, with ice melting, a heaving mound dynamically growing due to gas accumulation and finally exploding.

Thanks to the 3D model, the researchers were able to monitor a well-preserved oblong ice cavity where gas had been accumulating. As mentioned above, the images indicate that initially not one but at least two cavities were formed in the massive ice. As their size increased, these cavities merged into a single underground space with an elliptical bottom. The volume of the merged cavity is estimated at 7500 cubic metres. At a pressure of about 15-20 atmospheres, this gives approximately 112,000-150,000 cubic metres.

It seems the crater is linked to a deep fault and an anomalous terrestrial heat flow. This suggests that the reason for this eruption lay in part, at least, deeper than methane accumulating close to the surface due to a recent thawing of the upper layers of permafrost.

The 3D models allowed the scientists to map the complex shape of the underground cavity which appears to have formed between 15 May and 9 June 2020. It was seen for the first time from a helicopter on 16 July.

The researchers were able to study the cryo geological conditions of the crater along with the composition of permafrost. They examined the material ejected from the crater and  temperature conditions on the hole’s floor. This information will shed light on the conditions and formation of these unusual craters in the Arctic.

Scientists have identified in the Yamal Peninsula over 7,185 pingos, part of which has risk of exploding in a region which includes natural gas reserves vital for supplies in Europe. According to the scientists, five to ten per cent of these 7,185 pingos are really dangerous.

The port of  Sabetta which exports liquified natural gas is among the places threatened by the ticking time gas bombs.

Source: The Siberian Times. .

You will find excellent illustrations on the Siberian Times at this address:

https://siberiantimes.com/other/others/news/drone-flies-inside-giant-yamal-permafrost-crater-for-first-time-dipping-15-metres-below-the-surface/

Reconstitution de l’intérieur du cratère à l’aide des images fournies par le drone (Source :  Oil and Gas Research Institute – OGRI)

Gazoducs dans la Péninsule de Yamal (Source : Wikipedia)

A la découverte de Hunga Tonga-Hunga Ha’apai // Discovery of Hunga Tonga-Hunga Ha’apai

En 2015, une nouvelle terre a fait surface dans le Pacifique Sud. L’éruption très spectaculaire d’un volcan sous-marin a fait jaillir de la cendre et de la lave pendant plus d’un mois. Lorsque les matériaux émis se sont mélangés à l’eau de mer, ils se sont solidifiés pour former, en l’espace d’un mois, une nouvelle île qui s’est nichée entre deux masses de terre existantes: Hunga Tonga et Hunga Ha’apai, d’où son nom: Hunga Tonga-Hunga Ha’apai (HTHH). [voir les notes dans ce blog à ce sujet]
Les éruptions volcaniques sous-marines forment souvent de nouvelles petites îles, mais leur durée de vie est généralement très courte. Les vagues les érodent rapidement et elles disparaissent dans la mer. A l’image de Surtsey (Islande) en 1963, HTHH, n’a pas disparu. Au lieu de cela, elle est devenue une île de plus d’un kilomètre de large et long, et près de 120 mètres de hauteur. En 2017, les scientifiques de la NASA ont estimé qu’elle durerait entre six et trente ans, ce qui fournirait aux chercheurs un aperçu unique du début de la vie et de l’évolution d’une nouvelle terre.
A partir des processus observés sur HTHH, les chercheurs pensent qu’ils seront en mesure d’obtenir un aperçu des caractéristiques d’autres planètes comme Mars. En effet, beaucoup de phénomènes observés sur Mars l’ont été grâce à l’expérience d’interprétation des phénomènes terrestres. Les scientifiques de la NASA pensent qu’il y a eu des éruptions sur Mars à une époque où il y avait de l’eau à la surface de la planète. Ils espèrent pouvoir utiliser la nouvelle île des Tonga et son évolution pour comprendre un environnement océanique ou un environnement lacustre éphémère.
Des scientifiques du Goddard Space Flight Center de la NASA et de l’Université de Columbia se sont rendus sur l’île en octobre 2018 et l’ont explorée pour la première fois. Avant cela, leur seule approche du paysage était à partir d’images satellitaires. Après avoir passé les trois dernières années à créer un modèle 3D de HTHH, ils ont pu naviguer le long de la côte nord de l’île en prenant des mesures GPS et ont enfin mis le pied sur cette nouvelle terre.
Les chercheurs ont découvert que la majeure partie du sol était composée de graviers noirs. En outre, l’île n’était pas aussi plate qu’elle paraissait l’être sur les images satellites. Elle est certes assez plate, mais il y a des reliefs et les graviers ont formé de jolis motifs sous l’effet de l’action des vagues. Il y a aussi de l’argile qui descend du cône principal. On distingue ce matériau de couleur claire sur les images satellites. C’est en fait une boue très collante, et pas de la cendre comme le pensaient les visiteurs.
L’équipe scientifique a découvert de la végétation sur l’île, apparemment ensemencée par des fientes d’oiseaux. Les chercheurs ont d’ailleurs vu certains d’entre eux comme une chouette effraie et des centaines de sternes fuligineuses
Ils ont également fait des relevés topographiques très précis afin de produire une carte 3D à haute résolution. Cela leur permettra de surveiller l’érosion de l’île au cours des prochaines années. L’île s’érode beaucoup plus rapidement que prévu. Les chercheurs se sont concentrés sur l’érosion sur la côte sud où les vagues viennent s’abattre, mais c’est toute l’île qui est en train de s’effondrer, avec d’énormes ravines d’érosion qui deviennent de plus en plus profondes avec le temps.
L’équipe scientifique a maintenant l’intention de déterminer le volume de l’île et la quantité de cendre émise au moment de l’éruption. L’intérêt est de calculer l’évolution du paysage 3D dans le temps, en particulier son volume qui n’a été mesuré que quelques fois sur d’autres îles de même type. C’est une première étape pour comprendre la vitesse et les processus d’érosion et pourquoi HTHH résiste plus longtemps que prévu aux assauts de l’océan.
Source: Newsweek.

————————————————————

In 2015, a new land emerged in the South Pacific. The dramatic eruption of an underwater volcano sent ash and lava spewing into the sea for over a month. As the ash mixed with the warm water, it solidified into a rock and, over the course of a month, this rock built up enough to create a new island. The island was nestled in between two landmasses—Hunga Tonga and Hunga Ha’apai, hence its name: Hunga Tonga-Hunga Ha’apai (HTHH).

Underwater volcanic eruptions often form small new islands but they are normally very short-lived. The ocean waves quickly erode the rock and they disappear back into the sea. Imitating Surtsey (Iceland) in 1963, HTHH, did not vanish. Instead, it grew to be more than one kilometre wide and long, and almost 120 metres in height. In 2017, NASA scientists studying the island estimated it would last between six and 30 years, which would provide researchers with an unprecedented insight into the early life and evolution of a new land.

By understanding the processes taking place on HTHH, researchers believe they will be able to get an insight into the features on places like Mars. Indeed, many things observed on Mars are based on the experience of interpreting Earth phenomena. NASA scientists think there were eruptions on Mars at a time when there were areas of persistent surface water. As a consequence, they may be able to use the new Tongan island and its evolution as a way of understanding an oceanic environment or ephemeral lake environment.

NASA scientists from the Goddard Space Flight Center and from Columbia University travelled to the island in October 2018 and explored it for the first time. Before this, their only experience of the landscape was from satellite images. They had spent the last three years making a 3D model of HTHH. They were now able to sail around the northern coast of the island taking GPS measurements, before finally setting foot on HTHH.

The scientists discovered that most of the ground was black gravel. Besides, the island was not quite as flat as it seemed from satellite. It is pretty flat, but there are some gradients and the gravels have formed some nice patterns from the wave action. There is also clay washing out of the cone. In the satellite images, one can see this light-coloured material. It is actually a very sticky mud, and not the ash the visitors expected.

The team discovered vegetation growing on the island, apparently having been seeded by bird droppings. They also saw a barn owl and hundreds of nesting sooty terns living on HTHH.

They also took high-precision measurements of the land in order to produce a higher-resolution 3D map. This will allow them to monitor the erosion of the island over the coming years. The island is eroding by rainfall much more quickly than they imagined. The researchers were focused on the erosion on the south coast where the waves are crashing down, but the whole island is going down, with huge erosion gullies which are getting deeper and deeper with the time.

The scientific team now plans to work out the volume of the island and how much ash erupted from the volcano’s vent. The interest is to calculate how much the 3D landscape changes over time, particularly its volume, which has only been measured a few times at other similar islands. It is the first step to understand erosion rates and processes and to decipher why HTHH has persisted longer than most people expected.

Source: Newsweek.

Hunga Tonga-Hunga Ha’apai en 2019 (Crédit photo : Woods Hole Oceanographic Institution)

Vue de Hunga Tonga-Hunga Ha’apai en juin 2017 (Crédit photo: NASA)

Cette photo prise au cours de la dernière mission sur l’île montre parfaitement les nombreuses ravines d’érosion, ainsi que les déchets qui ont envahi le littoral de cette île vierge (Crédit photo: NASA)

La naissance de l’île avait été très spectaculaire, avec de superbes cypressoïdes typiques des éruptions phréato-magmatiques.

Modélisation 3D de la chambre magmatique du Stromboli // 3D model of Stromboli’s magma chamber

Les scientifiques de l’INGV (Istituto Nazionale di Geofisica e Vulcanologia) et du CNT (Centro Nazionale Terremoti) viennent de réaliser une modélisation 3D de la chambre magmatique du Stromboli, située entre 2 et 4 km de profondeur. Ils ont pu réaliser cette tâche grâce aux images acquise par technologie tomographique, semblable à celle utilisée dans les hôpitaux. Les résultats ont été publiés dans la revue Geophysical Research Letters.
Domenico Patane, chercheur à l’INGV explique que « le projet est né de la nécessité d’en savoir plus sur la structure interne du volcan.» Pour ce faire, les scientifiques ont installé 20 stations sismiques temporaires sur l’île, en plus du réseau de 13 stations permanentes, et ils l’ont complété par 10 sismomètres au fond de la mer (Ocean-Bottom Seismometers, OBS), ce qui a permis pour la première fois d’explorer la partie sous-marine du volcan.
« La surveillance géophysique et géochimique du Stromboli au cours des dernières années a été renforcée par l’INGV, surtout après la crise éruptive de 2002-2003, le tsunami du 30 décembre 2002 et le paroxysme du 5 avril 2003 ». Les recherches ont intégré les données acquises en 2006 à bord du navire de recherche Urania du CNR (Consiglio Nazionale delle Ricerche), en même temps que des enregistrements d’événements sismiques locaux effectués par le réseau permanent.
« Il a été possible de définir pour la première fois la géométrie de la chambre magmatique superficielle du Stromboli, qui s’étend depuis l’île proprement dite jusqu’au Strombolicchio. Ce dernier représente la cheminée centrale de l’ancien volcan, émergé il y a environ 200 000 ans au nord-est de Stromboli et aujourd’hui presque totalement érodé. »
Les images tomographiques montrent deux régions présentant des anomalies, à différentes profondeurs, là où est stocké le magma qui alimente l’activité permanente du Stromboli. De plus, grâce aux images tomographiques de la croûte de surface, les scientifiques possèdent maintenant un modèle physique en 3D de la géométrie de la chambre magmatique, ce qui devrait contribuer à l’avenir à effectuer de meilleures prévisions des phénomènes volcaniques.

Source : ANSA.it.

—————————————–

Scientists from INGV (CNRS) and CNT (Centro Nazionale Terremoti) have just completed a 3D model of the magma chamber of Stromboli Volcano, located between 2 and 4 km deep. They were able to perform this task with images acquired by tomographic technology, similar to that used in hospitals. The results were published in the journal Geophysical Research Letters.
Domenico Patane, a researcher at INGV, explains that « the project was born of the need to know more about the internal structure of the volcano. » To do this, scientists installed 20 temporary seismic stations on the island, beside the network of 13 permanent stations, and completed it with 10 seismometers at the bottom of the sea (Ocean-Bottom Seismometers, OBS), allowing for the first time to explore the underwater part of the volcano.
« The geophysical and geochemical monitoring of Stromboli in recent years has been reinforced by INGV, especially after the eruptive crisis of 2002-2003, the tsunami of 30 December 2002 and the eruption of 5 April 2003 ». The research incorporated data acquired in 2006 on board the research vessel Urania of CNR (Consiglio Nazionale delle Ricerche), together with records of local seismic events carried out by the permanent network.
« It was possible to define for the first time the geometry of the shallow magma chamber of Stromboli, which extends from the island proper to Strombolicchio. The latter represents the central chimney of the ancient volcano, emerged some 200,000 years ago northeast of Stromboli and now almost totally eroded.  »
The tomographic images show two regions with anomalies at different depths, where the magma that supplies the permanent activity of Stromboli is stored. Moreover, thanks to the tomographic images of the surface crust, scientists now possess a 3D physical model of the geometry of the magmatic chamber, which should contribute in the future to better predictions of volcanic phenomena.
Source: ANSA.it.

Source: INGV / La Sicilia

Photo: C. Grandpey

Renconstitution 3D d’une maison de Pompéi // 3D renconstruction of a Pompeii house

drapeau-francaisEn associant l’archéologie traditionnelle et la technologie 3D, les chercheurs de l’Université de Lund en Suède ont réussi à reconstruire une maison de Pompéi et à la présenter telle qu’elle était avant l’éruption du Vésuve en 79 après J.-C.
Après le tremblement de terre catastrophique qui a secoué l’Italie en 1980, le conservateur des ruines de Pompéi a invité la communauté internationale à effectuer des recherches sur cette ville avant qu’elle se détériore encore davantage. C’est ainsi que le Projet Pompéi a commencé à l’Institut suédois de Rome en 2000.
Depuis 2010, les recherches sont gérées par le département d’archéologie et d’histoire ancienne de l’Université de Lund. Les quartiers de la ville de Pompéi ont été scannés pendant un travail sur le terrain en 2011-2012 et les premiers modèles 3D de la ville sont maintenant terminés. Ils montrent ce qu’était la vie des habitants de Pompéi avant l’éruption du Vésuve. Les chercheurs ont même réussi à réaliser une reconstruction détaillée d’une grande maison, appartenant à Caecilius Iucundus, un homme riche de cette époque.
Entre autres choses, les chercheurs ont découvert des surfaces de plancher datant de l’année 79 ; ils ont effectué des études détaillées de l’évolution de la construction à travers l’histoire, nettoyé et documenté trois grandes propriétés, une taverne, une laverie, une boulangerie et plusieurs jardins. Dans un jardin, ils ont découvert que certains des robinets qui alimentaient une étonnante fontaine fonctionnaient au moment de l’éruption; l’eau jaillissait encore quand la pluie de cendres et de ponce s’est abattue sur Pompéi.
Les chercheurs ont parfois aussi trouvé des vestiges parfaitement intacts. Dans un magasin ils ont découvert trois fenêtres en parfait état (fabriquées à partir de gypse translucide cristallin) de la Rome antique, empilées les unes contre les autres. En étudiant les systèmes d’alimentation en eau et les égouts, ils ont pu comprendre les hiérarchies sociales de l’époque, et constater que les détaillants et les restaurants étaient tributaires des grandes familles riches pour l’eau, en sachant que les conditions se sont améliorées dans les années qui ont précédé l’éruption.
Un aqueduc a été construit à Pompéi, ce qui a permis aux habitants de ne plus avoir à compter sur les puits ou les réservoirs d’eau de pluie que possédaient les grandes familles riches.
Voici deux vidéos montrant la maison reconstruite:
https://youtu.be/btJPddjWQVc

https://youtu.be/ETd7pszxhnc

Source Université de Lund

———————————————

drapeau-anglaisBy combining traditional archaeology with 3D technology, researchers at Lund University in Sweden have managed to reconstruct a house in Pompeii to its original state before the volcano eruption of Mount Vesuvius in 79 A.D..

After the catastrophic earthquake in Italy in 1980, the Pompeii city curator invited the international research community to help document the ruin city, before the state of the finds from the volcano eruption in AD 79 would deteriorate even further. The Swedish Pompeii Project was therefore started at the Swedish Institute in Rome in 2000.

Since 2010, the research has been managed by the Department of Archaeology and Ancient History in Lund. The Pompeii city district was scanned during the field work in 2011–2012 and the first 3D models of the ruin city have now been completed. The models show what life was like for the people of Pompeii before the volcano eruption of Mount Vesuvius. The researchers have managed to complete a detailed reconstruction of a large house, belonging to the wealthy man Caecilius Iucundus.

Among other things, the researchers have uncovered floor surfaces from AD 79, performed detailed studies of the building development through history, cleaned and documented three large wealthy estates, a tavern, a laundry, a bakery and several gardens. In one garden, they discovered that some of the taps to a stunning fountain were on at the time of eruption ; the water was still gushing when the rain of ash and pumice fell over Pompeii.

The researchers occasionally also found completely untouched layers. In a shop were three intact windows (made out of translucent crystalline gypsum) from Ancient Rome, stacked against each other. By studying the water and sewer systems they were able to interpret the social hierarchies at the time, and see how retailers and restaurants were dependent on large wealthy families for water, and how the conditions improved towards the end, before the eruption.

An aqueduct was built in Pompeii, enabling residents to no longer having to rely on a few deep wells or the tanks of collected rainwater in large wealthy households.

Here are two videos showing the reconstructed house:

https://youtu.be/btJPddjWQVc

https://youtu.be/ETd7pszxhnc

Source University of Lund

pompei-blog-dec

Intérieur d’une maison à Pompéi (Photo: C. Grandpey)