Les volcans à Noisy-le-Grand (93160) !

Le samedi 30 novembre 2019 à 14h40, je présenterai à Noisy-le-Grand une conférence intitulée « Muons et Volcans. »

J’ai toujours rêvé de pouvoir disposer d’un tomographe géant pour ausculter l’intérieur d’un édifice volcanique. L’utilisation des particules cosmiques constitue peut-être une ouverture dans ce domaine. Les dernières expériences sont encourageantes.

La conférence aura lieu dans le cadre des animations de la délégation L.A.V.E . Ile-de-France à la Maison des Associations, 111 Piazza Mont d’Est.

Parking gratuit à proximité. Accès par RER A, direction Marne-la-Vallée, sortie à la station « Noisy-Monts d’Est ».

D’autres animations sur l’Islande, l’Erta Ale et l’Ol Doinyo Lengai ponctueront l’après-midi entre 14heures et 18 heures.

Entrée libre.

La technologie muonique pour étudier le Stromboli (Sicile) // Muon technology to study Stromboli (Sicily)

Dans des notes publiées en novembre 2015 et 2017, et en juillet 2016, j’ai attiré l’attention sur l’intérêt que représentait la technologie muonique dans le domaine volcanique. Déjà en 2007, les scientifiques japonais essayaient d’observer l’intérieur des volcans en utilisant cette nouvelle technologie basée sur l’utilisation de particules chargés positivement ou négativement, en provenance des couches supérieures de l’atmosphère

La technique de radiographie muonique est basée sur un principe similaire à celle utilisant les rayons X, mais elle présente l’avantage de pouvoir être utilisée pour étudier des objets beaucoup plus volumineux, tels que les pyramides ou les volcans.
La Protection Civile italienne nous apprend aujourd’hui que la radiographie muonique a été appliquée au Stromboli. C’est le fruit de la collaboration d’un groupe de chercheurs de l’Institut National de Physique Nucléaire (INFN) et de l’Institut National de Géophysique et de Volcanologie (INGV), sans oublier des instituts de recherche japonais. Les résultats de l’étude sur le Stromboli ont été publiés dans la revue Scientific Reports qui couvre toutes les sciences naturelles. Ils révèlent la présence d’une zone de faible densité dans la région sommitale du volcan. Cette zone correspond à une structure d’effondrement formée dans la zone des cratères lors de l’éruption effusive de 2007. Cette zone a ensuite été remplie de matériaux pyroclastiques produits par l’activité explosive strombolienne. Cette structure, qui a influencé le style éruptif du volcan après l’éruption de 2007, a une densité de plus de 30% inférieure à celle du reste du substrat rocheux.
Les muons produits par l’interaction des rayons cosmiques avec l’atmosphère pénètrent dans la roche volcanique et peuvent la traverser de part et d’autre. Cependant, en fonction de la densité et de l’épaisseur de la roche, seule une partie est absorbée. Par le nombre de muons arrivant sur le détecteur, on peut comprendre la densité de la matière qu’ils ont traversée. Des radiographies périodiques du sommet du volcan peuvent être utilisées pour suivre l’évolution de sa structure interne. Le résultat obtenu servira à mieux comprendre les processus éruptifs stromboliens et la dynamique de la Sciara del Fuoco qui a été à plusieurs reprises affectée par des glissements de terrain générateurs de tsunamis.
Le détecteur de muons utilisé pour analyser le Stromboli est basé sur les technologies développées pour l’expérience OPERA ; elles ont étudié les propriétés du faisceau de neutrinos du CERN au Laboratoire national du Gran Sasso de l’INFN. Le premier défi auquel les scientifiques ont été confrontés a été la nécessité de concevoir un détecteur compact à haute résolution angulaire ne nécessitant pas d’alimentation électrique et pouvant être transporté sur les pentes d’un volcan tout en résistant aux éléments. Le détecteur est constitué de 320 films d’émulsions nucléaires, plaques photographiques spéciales qui permettent de « photographier » avec une grande précision le passage des particules qui les traversent. La surface du détecteur est d’environ un mètre carré. Le détecteur a été placé sur le site de Le Roccette, à une altitude de 640 mètres, et a recueilli les traces des muons qui ont traversé le volcan pendant environ 5 mois.

Source : Revue de la Protection Civile Italienne.

 ——————————————————

 In several posts published in November 2015 and 2017, and in July 2016, I drew attention to the interest of the muon technology in the volcanic field. Already in 2007, Japanese scientists had tried to observe the interior of volcanoes using this new technology based on the use of positively or negatively charged particles from the upper layers of the atmosphere
The muon radiography technique is based on a principle similar to that using X-rays, but it can also be used to study much larger objects, such as pyramids or volcanoes.
The Italian Civil Protection informs us today that muon radiography has been applied to Stromboli. This is the result of the collaboration of a group of researchers from the National Institute of Nuclear Physics (INFN) and the National Institute of Geophysics and Volcanology (INGV), not to mention Japanese research institutes. The results of the study on Stromboli were published in the journal Scientific Reports which covers all natural sciences. They reveal the presence of a low density area in the summit area of the volcano. This zone corresponds to a collapse structure formed in the crater zone during the effusive eruption of 2007. This area was then filled with pyroclastic materials produced by strombolian explosive activity. This structure, which influenced the eruptive style of the volcano after the eruption of 2007, has a density more than 30% lower than the rest of the bedrock.
The muons produced by the interaction of cosmic rays with the atmosphere penetrate the volcanic rock and can cross it on both sides. However, depending on the density and thickness of the rock, only a part is absorbed. By the number of muons arriving on the detector, one can understand the density of the material which they crossed. Periodic radiographs of the summit of the volcano can be used to follow the evolution of its internal structure. The result will be used to better understand Strombolian eruptive processes and the dynamics of the Sciara del Fuoco which has been repeatedly affected by tsunami-generating landslides.
The muon detector used to analyze Stromboli is based on the technologies developed for the OPERA experiment; they studied the properties of the CERN neutrino beam at the INFN’s Gran Sasso National Laboratory. The first challenge that scientists had to face was the need to design a compact, high-resolution angular detector that does not require power and can be transported on the slopes of a volcano while resisting the elements. The detector consists of 320 films of nuclear emulsions, special photographic plates that allow to « photograph » with a great precision the passage of the particles which cross them. The surface of the detector is about one square metre. The detector was placed on the site of Le Roccette, at an altitude of 640 metres; it collected traces of muons that crossed the volcano for about 5 months.
Source: Journal of Italian Civil Protection.

Photo: C. Grandpey

Le Stromboli vu par les muons (Source: Protection Civile / INFN)

Muographie : volcans et pyramides // Muography : volcanoes and pyramids

Entre 2007 et 2015, j’ai écrit plusieurs articles (voir le moteur de recherche de ce blog) expliquant que les scientifiques japonais essayaient d’observer l’intérieur des volcans en utilisant une nouvelle technologie basée sur l’utilisation des muons, particules chargés positivement ou négativement, en provenance des couches supérieures de l’atmosphère. Lorsque le rayonnement cosmique produit par les explosions de supernovae et autres évènements dans l’espace lointain atteint la Terre et entre en collision avec l’atmosphère, cela génère un grand nombre de muons. Ils représentent 70% des rayons cosmiques qui atteignent la surface de la Terre. Comme ils ont une masse très faible, les muons passent à travers tous les objets, mais certaines substances les bloquent plus que d’autres, de la même façon que les os interfèrent avec des particules des rayons X. Pour les volcanologues, la radiographie par les muons, ou muographie, est un outil relativement nouveau qui pourrait permettre de percer certains mystères qui entourent l’activité volcanique.

Depuis le début des années 1950, les scientifiques utilisent la muographie pour étudier l’intérieur de structures massives telles que les pyramides d’Egypte. La technologie a également été utilisée pour tenter de déterminer l’emplacement du combustible nucléaire à la centrale de Fukushima après le séisme qui a frappé le Japon en mars 2011.

S’agissant des pyramides d’Egypte, la muographie vient de permettre une découverte majeure. Des scientifiques ont annoncé, le jeudi 2 novembre 2017, avoir découvert l’existence d’une énorme cavité à l’intérieur de la pyramide de Khéops. L’expérience a été réalisée à trois reprises par trois instituts distincts : l’université de Nagoya, le laboratoire de recherches sur les particules japonais KEK et le CEA français. Tous trois ont conclu à l’existence de cette cavité.

Cette découverte de la cavité à l’intérieur de la pyramide de Khéops est une parfaite illustration du progrès scientifique et représente une vraie surprise pour les chercheurs. Plus de 4 500 ans après la construction de la pyramide, son existence était encore inconnue. La passion des égyptologues pour ces cavités ne date pourtant pas d’hier car les premières ont, elles, été découvertes au 9ème siècle. Toutefois, c’est la première fois depuis le 19ème siècle qu’une telle cavité est découverte. Cet événement devrait permettre d’en apprendre davantage sur les méthodes de construction des pyramides égyptiennes, toujours enveloppées de mystère.

++++++++++

Un archéologue égyptien  – à la tête du comité scientifique qui supervise le projet ScanPyramids – a critiqué le 4 novembre 2017 l’annonce très médiatique de l’existence d’une immense cavité au sein de la pyramide de Khéops. Selon ce groupe d’archéologues égyptiens, « la pyramide est pleine de cavités mais cela ne veut pas dire qu’elles abritent des chambres secrètes, ou qu’il s’agit d’une nouvelle découverte. »

Le secrétaire général du comité gouvernemental des antiquités abonde dans ce sens. Selon lui, l’équipe scientifique n’aurait pas dû se précipiter et n’aurait pas dû utiliser des termes comme ‘découverte’ ou ‘cavité de la taille d’un avion’.

Cela confirma la petite guerre qui a toujours existé entre les archéologues égyptiens et leurs homologues européens.

Source : France Info.

—————————————–

Between 2007 and 2015, I wrote several articles (use the search engine of this blog) explaining that Japanese scientists were trying to see the inside of the volcanoes by using a new technology based on the use of muons, particles which are charged positively or negatively, coming from the upper layers of the atmosphere.
When cosmic radiation from supernova explosions and other events in deep space reaches Earth and collides with the atmosphere, large numbers of muons are generated. They account for 70% of the cosmic rays that reach the surface of the Earth. Because they have such an extremely small mass, muon particles pass through about everything, but some substances block them more than others, similar to how bones interfere with X-ray particles.
For volcanologists, cosmic-ray muon radiography, or muography, is a relatively new tool that could eventually help unravel the mysteries surrounding volcanic activity.

Since the early 1950s, scientists have used muography to study the interior of such massive structures as the pyramids of Egypt. The technology was also used to try to ascertain the location of nuclear fuel at the Fukushima nuclear power plant after the earthquake that struck Japan in March 2011.

Regarding the pyramids of Egypt, muography has just allowed a major discovery. Scientists announced on Thursday, November 2nd, 2017, they had discovered the existence of a huge cavity inside the pyramid of Cheops. The experiment was conducted three times by three different institutes: the University of Nagoya, the Japanese particle research laboratory KEK and the French CEA. All three have concluded that this cavity does exist.
This discovery of the cavity inside the Cheops pyramid is a perfect illustration of scientific progress and represents a real surprise for scientists. More than 4,500 years after the construction of the pyramid, its existence was still unknown. Egyptologists’ passion for these cavities does not date from yesterday, however, as the first ones were discovered in the 9th century. However, it is the first time since the 19th century that such a cavity has been discovered. This event should allow to learn more about the methods of construction of the Egyptian pyramids, which are still shrouded in mystery.

++++++++++

An Egyptian archaeologist – head of the scientific committee that oversees the ScanPyramids project – criticized on November 4th, 2017 the announcement in the media of the existence of a huge cavity in the pyramid of Cheops. According to this group of Egyptian archaeologists, « the pyramid is full of cavities, but that does not mean that they contain secret chambers, or that it is a new discovery. »
The Secretary General of the Government Committee of Antiquities agrees with this. In his opinion, the scientific team should not have rushed and should not have used words like ‘discovery’ or ‘airplane-sized cavity’.
All this confirms the small war that has always existed between Egyptian archaeologists and their European counterparts.

Source: France Info.

Vue de la pyramide de Khéops (Crédit photo: Wikipedia)

Image muonique de la Soufrière de la Guadeloupe (Source: CNRS)

Une nouvelle génération de détecteurs de muons // A new generation of muon detectors

drapeau francaisIl y a quelques semaines, j’ai expliqué dans plusieurs notes que la muographie pourrait jouer un rôle crucial pour mieux comprendre les chambres magmatiques qui se cachent à l’intérieur des volcans. Jusqu’à présent, le problème était que cette nouvelle technologie était lourde et coûteuse à mettre en œuvre. Cependant, une nouvelle technique de pointe en matière d’imagerie est en passe de devenir plus facile d’utilisation et moins coûteuse, grâce à une innovation majeure mise au point par des chercheurs japonais et hongrois.
Rappelons que les muons, un type de particules élémentaires, sont semblables aux électrons, mais au moins 200 fois plus lourds. Les muons que l’on rencontre à la surface de la Terre proviennent des collisions de rayons cosmiques avec des particules dans l’atmosphère terrestre et ils peuvent pénétrer profondément dans le sol. De la même façon qu’une plaque de rayons X capte le rayonnement traversant le corps, un équipement spécial est utilisé pour capturer les muons qui traversent les volcans et d’autres objets.
Une conférence internationale qui s’est tenue au Japon en 2015 a conduit à l’élaboration conjointe – par une institution japonaise et son homologue hongrois – de détecteurs prototypes incorporant des détecteurs de gaz. En mai 2016, les deux institutions ont signé un accord qui met l’accent sur les applications commerciales de la nouvelle technologie.
Les chercheurs vont continuer à collaborer afin de créer des détecteurs de muons commercialement viables et assez petits pour être transportés dans un sac. L’équipement actuellement utilisé pèse en général plusieurs tonnes et coûte environ 973 000 dollars (environ 872 500 euros).
La première génération de détecteurs se composait de plaques d’émulsion nucléaires qui enregistraient les traces de particules chargées qui les traversaient, comme un film photographique enregistre les traces de lumière.
Les équipements de deuxième génération, maintenant largement utilisés, associent des détecteurs en plastique et des tubes à dérive (PDT) pour capturer la lumière émise par muons qui les traversent, une amélioration qui permet aux instruments de recueillir des données en continu. Cependant, cette technologie de deuxième génération nécessite de nombreux tubes photo, ce qui augmente le prix des instruments et ne permet guère de réduire leur taille.

Les détecteurs de gaz de troisième génération en cours de fabrication aujourd’hui se composent de tubes remplis d’un mélange d’argon et de dioxyde de carbone. Une grille de fils électriques très fins capture les petits éclairs produits lorsque les muons traversent le gaz ionisé. Tout en étant plus petits et moins coûteux, les nouveaux instruments permettent également d’obtenir des images de résolution plus élevée en réduisant la distance entre les fils électriques. Certains défis technologiques ont dû être surmontés. Les détecteurs de gaz sont vulnérables aux vibrations, ce qui peut provoquer un court-circuit au niveau des fils électriques ; ils sont aussi sensibles aux changements de température. L’Académie des Sciences de Hongrie réussi à surmonter ces problèmes. En combinant les tubes, les chercheurs hongrois ont mis au point un prototype sous la forme d’une plaque de 80 cm de long sur 80 cm de large.
Le nouveau détecteur coûte environ 200 000 yens (environ 1.750 euros) le mètre carré, soit moins de 10% du coût des équipements de deuxième génération. Il pèse une dizaine de kilogrammes, soit un septième du poids de son prédécesseur. Il offre une résolution de 1cm, soit deux fois la performance des instruments actuellement utilisés.
Les nouveaux détecteurs de muons peuvent trouver une vaste gamme d’applications. Ils peuvent être mis à profit, par exemple, pour détecter des signes de vieillissement à l’intérieur des bâtiments et des routes. Ils peuvent également être utilisés pour inspecter les conditions à l’intérieur des fours dans le cadre du contrôle de la qualité des produits sidérurgiques.
Les chercheurs ont l’objectif ambitieux de développer un détecteur de muons qui ne coûterait que 100 000 yens (environ 875 euros). Si le projet réussit, le marché de tels équipements pourrait se développer rapidement.
Source: Nikkei Asian Review: http://asia.nikkei.com/

——————————————–

drapeau anglaisA few weeks ago, I explained in several notes that muography could play a crucial to understand the magma chambers that are hidden inside volcanoes. Up to now, the problem was that this new technology was rather cumbersome and costly to implement. However, a cutting-edge imaging technique may become more accessible and affordable, thanks to a major innovation by Japanese and Hungarian researchers.

Let’s recall that muons, a type of elementary particle, are similar to electrons but more than 200 times heavier. The muons found at the Earth’s surface are created by collisions of cosmic rays with particles in the Earth’s atmosphere and can penetrate deep into the ground. Just like an X-ray plate captures radiation passing through the body, special equipment is used to capture muons passing through volcanoes and other objects.

An international conference held in Japan in 2015 led to the joint development of prototype equipment for muography that uses gas detectors, by a Hungarian and a Japanese scientific institution. In May 2016, the two institutions signed an agreement that focuses on joint efforts to explore commercial applications of the new technology.

The researchers will continue working together to create a commercially viable muography instrument that is small enough to be carried in a bag. The equipment currently used typically weighs several tons and costs about 973,000 dollars (about 872,500 euros).

The first generation of muography equipment featured nuclear emulsion plates that recorded the traces of charged particles passing through, just as photographic film records the traces of light.

Second-generation equipment, now used widely, utilizes a combination of plastic detectors and photo drift tubes (PDT) to capture light emitted by muons as they pass through, an improvement that enables the instruments to gather data continuously. However, the second-generation technology requires many photo tubes, making instruments expensive and difficult to downsize.

The gas detectors now being developed in the third generation feature tubes filled with a mixture of argon and carbon dioxide. A grid of fine electric wires captures small bolts of lightning produced when muons pass through ionized gas. In addition to being smaller and cheaper, the new instruments also allow higher-resolution images by narrowing distances between electric wires. Some technological challenges had to be overcome. Gas detectors are vulnerable to vibrations, which can cause a short circuit in the electrical wiring, and also to changes in temperature. The Hungarian Academy of Sciences has contributed to overcoming these issues. By combining tubes, it has developed a prototype muon detector in the form of a plate that is 80cm in length and width.

The detector costs around 200,000 yen (about 1,750 euros) per square metre, less than 10% of the cost of second-generation equipment, and weighs about 10kg, or one-seventh the weight. It offers a resolution of 1cm, twice the performance of current instruments.

The new instruments may find a wide range of applications. They can be put to use, for instance, to detect signs of aging inside buildings and highways. They can also be used to inspect conditions inside furnaces as part of quality control for steel products.

The researchers have an ambitious goal of developing a muography instrument that costs only about 100,000 yen (about 875 euros). If the project succeeds, the market for muography equipment could grow sharply.

Source : Nikkei Asian Review : http://asia.nikkei.com/

 Muons Soufrière

Image muonique de la Soufrière de la Guadeloupe (Source: CNRS)

La tomographie muonique appliquée à la Soufrière de la Guadeloupe // Muon tomography at the Soufriere volcano (Guadeloupe)

drapeau francaisJ’ai écrit entre 2007 et 2016 plusieurs articles à propos de l’utilisation des muons dans le domaine volcanique. Ces particules cosmiques devraient permettre aux scientifiques de faire des progrès considérable dans la compréhension de la structure interne d’un volcan. Je vous invite à relire ma note du 10 février 2016 pour obtenir des explications sur cette technologie.

La tomographie muonique n’est pas très récente ; c’est sa mise en place sur le terrain qui pose le plus de problèmes. Elle a été utilisée par les Japonais pour visualiser la structure interne de volcans comme l’Asama, l’Iwate ou encore le volcan Satsuma-Iojima dans la préfecture de Kagoshima. Les scientifiques savaient que ce volcan dissimulait un réservoir magmatique, mais la tomographie muonique a révélé que la quantité de magma était beaucoup plus grande que prévu.

Les scientifiques français ont eux aussi utilisé la tomographie muonique dans le cadre du projet DIAPHANE sur le volcan de la Soufrière à la Guadeloupe. Des équipes du CNRS ont installé des capteurs de muons cosmiques sur les flancs du volcan. La technologie a permis de «suspecter la présence d’importantes cavités» à l’intérieur de l’édifice volcanique.

En cliquant sur le lien ci-dessous, vous pourrez visionner un excellent document montrant la mise en place du projet DIAPHANE (IPNL / Géosciences Rennes / IPGP / ANR Diaphane 2014-2018) sur la Soufrière en avril-mai 2015. Il a fait suite à plusieurs mois de préparation, construction, tests et calibrations des détecteurs à muons employés sur le terrain, avec l’appui et l’expertise des services techniques de l’Institut de Physique Nucléaire de Lyon (IPNL), bureau d’études, mécanique, chaudronnerie, informatique et électronique.

Lors de la mission d’installation, quatre nouveaux détecteurs ont été déployés autour du volcan, en des endroits dont l’accès n’était pas toujours facile et nécessitait l’intervention de spécialistes.

Le but du projet est d’augmenter la couverture tomographique du dôme du volcan, conformément au planning de l’Agence Nationale de la Recherche (ANR) Diaphane, accepté en juillet 2014. Il s’agit aussi de fournir des données uniques, non seulement d’imagerie structurelle, mais surtout du suivi dynamique du système hydrothermal du volcan. Le rapport entre le niveau d’eau liquide et gazeuse est en effet un des points essentiels dans la compréhension du fonctionnement d’un volcan de ce type, constamment arrosé par les pluies tropicales (8 à 10 mètres de précipitations annuelles !), et siège de fréquentes éruptions phréatiques.

Les détecteurs à muons sont aujourd’hui en opération permanente et produisent des données reçues et traitées à l’IPNL.
https://vimeo.com/139232294

———————————–

drapeau-anglaisI wrote between 2007 and 2016 several articles about the use of muons in volcanology. These cosmic particles should allow scientists to make considerable progress in understanding the internal structure of a volcano. I invite you to reread my note of 10 February 2016 for an explanation of the technology.
Muon tomography is not very recent; it is its implementation on the ground that poses the most problems. It was used by the Japanese to visualize the internal structure of volcanoes like Mt Asama, Mt Iwate or Mt Satsuma-Iojima in Kagoshima Prefecture. Scientists knew that the volcano concealed a magma chamber, but muon tomography revealed that the amount of magma was much larger than expected.
French scientists have also used muon tomography in the DIAPHANE project on the Soufriere volcano in Guadeloupe. CNRS teams have installed  cosmic muon sensors on the flanks of the volcano. The technology has « suspect the presence of large cavities » within the volcanic edifice.
By clicking on the link below, you can watch an excellent document showing the implementation of the DIAPHANE project (IPNL / Geosciences Rennes / IPGP / ANR Diaphane 2014-2018) on the Soufriere in April-May 2015. It followed several months of preparation, construction, testing and calibration of the muon detectors tob used on the field, with the support and expertise of the technical services of the Institute of Nuclear Physics of Lyon (IPNL), engineering, mechanics, computers and electronics.
During the installation mission, four new detectors were deployed around the volcano, in places whose access was not always easy and required the intervention of specialists.
The goal of the project is to increase the tomographic coverage of the dome of the volcano, according to the schedule of the National Research Agency (ANR), agreed in July 2014. The project is also expected to provide unique data not only about the structural imaging, but also about the dynamic monitoring of the hydrothermal system of the volcano. The relationship between the level of liquid and gaseous water is indeed a key point in understanding a volcano like this, constantly watered by tropical rains (8 to 10 meters of annual rainfall!) and the seat frequent phreatic eruptions.
The muon detectors are now in permanent operation and produce data received and processed by IPNL.
https://vimeo.com/139232294

Voici l’image obtenue pour la Soufrière de La Guadeloupe :

Muons Soufrière

Source: CNRS.

La tomographie muonique: de la Soufrière (Guadeloupe) au Puy de Dôme (Auvergne) // Muon tomography: from the Soufrière to the Puy de Dôme

drapeau-francaisIl y a quelques jours, j’ai assisté à une conférence intitulée « La tomographie muonique » et donnée à Limoges dans le cadre de Récréasciences par un jeune chercheur en poste au CEA de Saclay.

En mai 2007 et décembre 2010, et plus récemment le 21 novembre 2015, j’ai écrit des articles expliquant que les scientifiques japonais essayaient d’observer l’intérieur des volcans en utilisant une nouvelle technologie basée sur l’utilisation des muons. Lorsque le rayonnement cosmique produit par les explosions de supernovae et autres événements dans l’espace lointain atteint la Terre et entre en collision avec l’atmosphère, cela génère un grand nombre de muons. Ils représentent 70% des rayons cosmiques qui atteignent la surface de la Terre. Comme ils ont une masse très faible, les muons passent à travers tous les objets, mais certaines substances les bloquent plus que d’autres, de la même façon que les os interfèrent avec des particules des rayons X. Pour les volcanologues, la radiographie par les muons, ou tomographie muonique, est un outil relativement nouveau qui pourrait permettre de percer les mystères qui entourent l’activité volcanique.
La tomographie muonique a été utilisée par les Japonais pour visualiser la structure interne de volcans comme l’Asama, l’Iwate ou encore le volcan Satsuma-Iojima dans la préfecture de Kagoshima. Les scientifiques savaient que ce volcan dissimulait un réservoir magmatique, mais la nouvelle technologie a révélé que la quantité de magma était beaucoup plus grande que prévu.

Les scientifiques français ont eux aussi utilisé la tomographie muonique dans le cadre du projet DIAPHANE sur le volcan de la Soufrière à la Guadeloupe. Des équipes du CNRS ont installé un capteur de muons cosmiques sur le flanc du volcan. La technologie a permis de « suspecter la présence d’importantes cavités » à l’intérieur de l’édifice volcanique.

Une autre application de la tomographie muonique  a eu pour cadre le vénérable Puy de Dôme en Auvergne. Le but du projet TOMUVOL était « la connaissance de l’historique du volcan de par sa structure pour prédire le comportement futur – Preuve de la faisabilité de la muographie sur un grand volcan (~ 2 km à la base). »
La tomographie de ces deux volcans est très bien décrite à cette adresse :
http://www.cnrs.fr/mi/IMG/pdf/gibert_instrumlimites_07jan2014.pdf

Voici l’image obtenue pour la Soufrière de La Guadeloupe :

Muons Soufrière

  (Source : CNRS)

La conclusion des équipes scientifiques qui ont mené les observations à la Guadeloupe et en Auvergne est fort intéressante. Il ne fait aucun doute que la tomographie muonique  a de beaux jours devant elle en volcanologie. Cette technologie n’en est qu’à ses débuts et des améliorations devront être apportées pour pouvoir « radiographier des volcans en éruption ».
Son application devra aussi surmonter certains obstacles tel le coût, à une époque où il est demandé aux laboratoires de se serrer la ceinture. D’autre part, dans un domaine comme la volcanologie, elle suppose la présence de deux équipes, l’une spécialisée en physique des particules et l’autre experte en volcanologie.

————————————-

drapeau anglaisA few days ago, I attended a conference entitled « The muon tomography » and given in Limoges by a young researcher at the CEA of Saclay.

In May 2007 and December 2010, most recently on November 21st, 2015, I wrote articles explaining that Japanese scientists had tried to observe the inside of volcanoes using a new technology based on the use of muons. When the cosmic radiation produced by supernova explosions and other events in deep space reaches the Earth and collides with the atmosphere, it generates a large number of muons. They represent 70% of the cosmic rays that reach the surface of the Earth. As they have a very low mass, muons pass through all objects, but some substances block them more than others, in the same way as bone particles interfere with X rays. For volcanologists, radiography by means of muons, or muon tomography, is a relatively new tool that could help unravel the mysteries surrounding volcanic activity.
Muon tomographywas used by the Japanese to visualize the internal structure of volcanoes like Asama, Iwate or Satsuma-Iojima in Kagoshima Prefecture. Scientists knew that this last volcano concealed a magma chamber, but the new technology revealed that the amount of magma was much larger than expected.

French scientists have also used muon tomography  in the DIAPHANE project on the Soufriere volcano in Guadeloupe. CNRS teams have installed a cosmic muon sensor on the flanks of the volcano. The technology has « revealed the presence of large cavities » within the volcanic edifice.

Another application of muon tomography was performed on the venerable Puy de Dome in Auvergne. The goal of the TOMUVOL project was the « knowledge of the history of the volcano through its structure to predict future behaviour – Proof of the feasibility of muography on a large volcano (~ 2 km at the base). »
The tomography of the two volcanoes is well described at:
http://www.cnrs.fr/mi/IMG/pdf/gibert_instrumlimites_07jan2014.pdf

The image for the Soufriere of Guadeloupe can be seen above.

The conclusion of the scientific teams who conducted the observations in Guadeloupe and in Auvergne is very interesting. There is no doubt that muon tomography has a bright future in volcanology. This technology is still in its infancy and improvements are needed in order to « radiograph erupting volcanoes. »
Its application must also overcome obstacles such as the cost, at a time when laboratories are requested to tighten their belts. On the other hand, in a field such as volcanology, it assumes the presence of two teams, one specialized in particle physics and another one expert in volcanology.

Muons et volcans // Muons and volcanoes

drapeau francaisEn mai 2007 et décembre 2010, j’ai écrit deux articles expliquant que les scientifiques japonais essayaient d’observer l’intérieur des volcans en utilisant une nouvelle technologie basée sur l’utilisation des muons, particules chargés positivement ou négativement, en provenance des couches supérieures de l’atmosphère. Lorsque le rayonnement cosmique produit par les explosions de supernovae et autres évènements dans l’espace lointain atteint la Terre et entre en collision avec l’atmosphère, cela génère un grand nombre de muons. Ils représentent 70% des rayons cosmiques qui atteignent la surface de la Terre. Comme ils ont une masse très faible, les muons passent à travers tous les objets, mais certaines substances les bloquent plus que d’autres, de la même façon que les os interfèrent avec des particules des rayons X. Pour les volcanologues, la radiographie par les muons, ou muographie, est un outil relativement nouveau qui pourrait permettre de percer les mystères qui entourent l’activité volcanique.
Tout comme une plaque radiographique capte le rayonnement traversant le corps, une plaque spéciale d’émulsion nucléaire est utilisée pour capter les muons qui traversent un volcan. Les scientifiques comptent ensuite le nombre de particules qui ont atteint la plaque pour mesurer les densités relatives de l’intérieur du volcan. Ces données sont converties en éléments visuels indiquant l’emplacement et la forme des conduits et réservoirs magmatiques. Pour capter les muons qui traversent latéralement le volcan, la plaque d’émulsion nucléaire est positionnée sur le flanc de la montagne. Le magma qui contient de la vapeur d’eau et les conduits magmatiques sont moins denses que la roche encaissante et le sol sous pression, donc un plus grand nombre de muons passent à travers ces zones et atteignent la plaque.
La muographie n’est pas le seul moyen d’étudier l’intérieur d’un volcan. On a vu de quelle façon les scientifiques américains ont disposé un réseau de sismographes autour du Mont St Helens pour enregistrer les ondes sismiques générées par la détonation d’explosifs. Cependant, la muographie est d’un ordre de grandeur plus précis que la technique sismique conventionnelle.
En 2013, la muographie a été utilisée pour visualiser la structure interne du volcan Satsuma-Iojima dans la préfecture de Kagoshima. Les scientifiques savaient que le volcan dissimulait un réservoir magmatique, mais la muographie a révélé que la quantité de magma était beaucoup plus grande que prévu.
L’avènement de la muographie présente de nouvelles perspectives en volcanologie, mais il y a encore un bon nombre d’obstacles. Le principal est le coût. Les détecteurs de muons sont des dispositifs haut de gamme qui coûtent des centaines de milliers de dollars chacun, ce qui va à l’encontre des coupes budgétaires qui affectent actuellement les laboratoires scientifiques. Cela signifie que seul un nombre limité de détecteurs de muons peut être acheté et déployé sur le terrain.
Un autre obstacle est la complexité de la science, ce qui nécessite à la fois une bonne connaissance de la physique des particules et de la volcanologie. La collaboration entre les scientifiques dans ces différents domaines pourrait aider à résoudre ce problème.
Depuis le début des années 1950, les scientifiques utilisent la muographie pour étudier l’intérieur de structures massives telles que les pyramides d’Egypte. La technologie a également été utilisée pour tenter de déterminer l’emplacement du combustible nucléaire à la centrale de Fukushima après le séisme qui a frappé le Japon en mars 2011.
Source: Nikkei Asian Review: http://asia.nikkei.com/

————————————-

drapeau-anglaisIn May 2007 and December 2010, I wrote two articles explaining that Japanese scientists were trying to see the inside of the volcanoes by using a new technology based on the use of muons, particles which are charged positively or negatively, coming from the upper layers of the atmosphere.
When cosmic radiation from supernova explosions and other events in deep space reaches Earth and collides with the atmosphere, large numbers of muons are generated. They account for 70% of the cosmic rays that reach the surface of the Earth. Because they have such an extremely small mass, muon particles pass through about everything, but some substances block them more than others, similar to how bones interfere with X-ray particles.
For volcanologists, cosmic-ray muon radiography, or muography, is a relatively new tool that could eventually help unravel the mysteries surrounding volcanic activity.
Just like an X-ray plate captures radiation passing through the body, a special nuclear emulsion plate is used to capture muons passing through a volcano. Scientists then count the number of particles that reached the plate to measure the relative densities of the interior. This data is converted into a visualization showing the locations and shapes of conduits and magma reservoirs. To capture muons that traverse the volcano laterally, the nuclear emulsion plate is positioned on one side of the mountain. Magma containing water vapor and magma conduits are less dense than rock and pressurized soil, so more muons pass through these areas and reach the plate.
Muography is not the only way to study the inside of a volcano. We have seen how American scientists arranged a network of seismographs around Mt St Helens to record the seismic waves generated by the detonation of explosives. However, muography is an order of magnitude more precise than the conventional seismic technique.
In 2013, muography was used to visualize the internal structure of the Satsuma-Iojima volcano in Kagoshima Prefecture. Scientists had imagined that the volcano contained a magma reservoir, but muography revealed that the quantity of magma was far greater than predicted.
The advent of muography presents a whole new opportunity for volcanologists, but there are still quite a good number of obstacles. One big hurdle is the cost. Muon detectors are specialized devices that cost hundreds of thousands of dollars apiece, which goes against the budget cuts that currently affect scientific laboratories. This means that only a limited number of muon detectors can be purchased and deployed.
Another hurdle is the complexity of the science, which requires familiarity with both particle physics and volcanology. Collaboration among scientists in different fields could help solve the second problem.
Since the early 1950s, scientists have used muography to study the interior of such massive structures as the pyramids of Egypt. The technology was also used to try to ascertain the location of nuclear fuel at the Fukushima nuclear power plant after the earthquake that struck Japan in March 2011.
Source : Nikkei Asian Review : http://asia.nikkei.com/

Iodake

Vue du volcan Satsuma-Iojima (Préfecture de Kagoshima) en juin 2015.

(Crédit photo: Wilipedia)