Des bouleversements dans l’Océan Austral // Deep changes in the Southern Ocean

Une étude conduite par des chercheurs de l’Université de Southampton, de l’Agence spatiale européenne (ESA) et plusieurs institutions internationales, publiée dans les Proceedings de l’Académie Nationale des Sciences, a révélé un changement significatif à la surface de l’océan Austral. Les chercheurs ont en particulier décelé une augmentation rapide de la salinité et en parallèle un déclin de l’étendue de la banquise antarctique. Basées sur des données satellitaires et de balises océaniques, ces observations montrent que l’océan Austral pourrait bien être entré dans un nouvel état physique, jamais observé au cours des dernières décennies.

Pendant des décennies, l’eau de surface de l’océan Austral s’est progressivement adoucie. On pensait que cette tendance favorisait la persistance de la banquise en maintenant la forte stratification océanique qui sépare les eaux profondes plus chaudes de celles de surface plus froides. L’étude a révélé qu‘à partir de 2015, le niveau de salinité des eaux de surface a commencé à augmenter fortement dans l’océan Austral circumpolaire. Dans certaines régions, les anomalies dépassaient 0,2 unité sur l’échelle de salinité pratique (practical salinity scale, pss). Cette augmentation de la salinité a entraîné un affaiblissement de la stratification de la couche supérieure de l’océan, réduisant dans le même temps la stabilité du gradient vertical de densité qui sépare généralement les eaux profondes des eaux de surface. L’évolution de la composition de l’eau montre une modification de l’équilibre des composantes de la circulation océanique dans l’hémisphère sud. Les eaux de surface plus douces, proches de la limite de la banquise, sont remplacées par des eaux plus salées. Selon l’équipe de recherche, les conséquences de cette inversion (passage de l’eau douce à la salinisation) sont déjà visibles.

L’affaiblissement de la stratification a permis aux eaux profondes plus chaudes de remonter plus facilement à la surface, contribuant à la réduction de la formation de la banquise. Ce phénomène a coïncidé avec une étendue de glace de mer à un niveau historiquement bas observé fin 2016, et suivie de plusieurs années de minima de glace de mer.

On peut lire dans l’étude : « Alors que les discussions se concentrent sur le possible arrêt de fonctionnement de l’AMOC dans l’Atlantique Nord, nous observons des changements radicaux dans l’océan Austral, avec une diminution de la couverture de glace de mer et une couche supérieure de l’océan plus salée. Cela pourrait avoir des répercussions sur le climat de la planète. » L’étude fait également état de la réapparition en 2016 et 2017 de la polynie de Maud Rise, une vaste étendue d’eau dépourvue de glace dans la banquise, à l’est de la mer de Weddell. Ce phénomène ne s’était pas produit depuis les années 1970.

Jusqu’à récemment, la région de l’océan Austral était quasiment inaccessible à l’observation satellitaire en raison des basses températures et de la dynamique complexe et changeante de la banquise. C’est pourquoi le Barcelona Expert Center (BEC), laboratoire spécialisé dans l’observation océanique par satellite, a développé un nouveau processeur de données à l’attention du satellite européen SMOS, adapté à la variabilité géographique et climatique de l’environnement polaire.

References:

1 Rising surface salinity and declining sea ice: A new Southern Ocean state revealed by satellites – Alessandro Silvano et al. – PNAS – June 30, 2025 – https://doi.org/10.1073/pnas.2500440122 – OPEN ACCESS

2 A change in the Southern Ocean structure can have climate implications – ICM-CSIC – July 1, 2025

L’article est à lire dans son intégralité sur le site The Watchers.

——————————————————

A study by researchers from the University of Southampton, the European Space Agency, and several international institutions, published in the journal Proceedings of the National Academy of Sciences has revealed a significant shift in the Southern Ocean’s surface conditions. This shift is marked by a rapid increase in surface salinity and a corresponding decline in Antarctic sea ice extent. Based on satellite and ocean float data, the findings indicate that the Southern Ocean may have entered a new physical state not previously observed during the past decades

For decades, the surface of the Southern Ocean had been gradually freshening. This trend was thought to support the persistence of sea ice by maintaining strong ocean stratification that keeps warmer deep waters separated from the colder surface. The study found that beginning in 2015, surface salinity levels began rising sharply across the circumpolar Southern Ocean. In some regions, anomalies exceeded 0.2 practical salinity scale (pss) units. This increase in salinity led to a weakening of upper-ocean stratification, reducing the stability of the vertical density gradient that typically separates deep and surface waters.

The change in water composition suggests a change in the balance of the components the ocean circulation in the Southern Hemisphere. Fresher surface water close to the sea ice edge is being replaced by more saline waters. According to the research team, the consequences of this reversal (freshening to salinification) are already becoming visible.

The weakened stratification allowed warmer subsurface waters to rise more easily to the surface, contributing to reduced sea ice formation. This coincided with a record-low sea ice extent observed in late 2016, followed by several years of continued sea ice minima.

One can readd in the study : “While discussions focus on the potential collapse of the AMOC in the North Atlantic, we are seeing drastic changes in the Southern Ocean, with declining sea ice coverage and a saltier upper ocean. This could have global climate impacts.”

The study also reports the reappearance of the Maud Rise polynya, a large, open area of water in the sea ice, over the eastern Weddell Sea in 2016 and 2017. This phenomenon had not occurred since the 1970s.

Until recently, the Southern Ocean region was virtually inaccessible to satellites due to low temperatures and the complex, changing dynamics of sea ice. As a result, the Barcelona Expert Center (BEC), a laboratory specializing in satellite ocean observation, developed a new data processor for the European SMOS satellite, tailored to the geographic and climatic variability of the polar environment.

References:

1 Rising surface salinity and declining sea ice: A new Southern Ocean state revealed by satellites – Alessandro Silvano et al. – PNAS – June 30, 2025 – https://doi.org/10.1073/pnas.2500440122 – OPEN ACCESS

2 A change in the Southern Ocean structure can have climate implications – ICM-CSIC – July 1, 2025

The article can be read in its entirety on The Watchers website.

Neige sur le désert d’Atacama (Chili) ! // Snow on the Atacama Desert (Chile) !

Comme je l’explique souvent sur ce blog, il ne faut pas se contenter d’un seul événement météorologique, climatique ou volcanique pour généraliser. Il faut la répétition de ces événements sur une échelle de temps suffisamment longue pour pouvoir tirer des conclusions plus globales.

L’événement météorologique que l’on vient d’observer dans le désert d’Atacama au Chili est certes exceptionnel, mais il faudra attendre qu’il se répète sur un laps de temps suffisamment long pour l’attribuer au réchauffement climatique.

Une chute de neige extrêmement rare dans l’endroit le plus sec de la planète a interrompu le fonctionnement de l’un des plus importants réseaux de télescopes au monde. La neige a recouvert une partie du désert d’Atacama, qui reçoit habituellement moins de deux centimètres de précipitations par an. Les climatologues avertissent que le réchauffement climatique pourrait exposer l’observatoire à des phénomènes météorologiques extrêmes plus fréquents dans les prochaines années.
Le réseau de radiotélescopes ALMA est implanté sur le plateau de Chajnantor à 5 104 m d’altitude dans la région d’Antofagasta au Chili.

Vue aérienne du Plateau de Chajnantor avec les antennes de l’ALMA Crédit photo : European Southern Observatory (ESO)

Les chutes de neige du 26 juin ont été provoquées par une instabilité atmosphérique très inhabituelle qui a affecté le nord du Chili. Les services météorologiques chiliens avaient émis une alerte neige et vent en raison du passage d’une goutte froide dans la région. Ce phénomène s’est accompagné de fortes pluies plus au nord où elles ont provoqué la crue d’une rivière et causé des dégâts aux biens. Les écoles ont été fermées et des coupures de courant et des glissements de terrain ont été signalés. Un événement météorologique d’une telle ampleur n’avait pas été observé depuis près de dix ans.
En raison des mauvaises conditions météorologiques, les opérations scientifiques ont dû être suspendues sur l’ALMA afin de protéger les antennes. L’observatoire a activé son protocole de sécurité et a été mis en « mode survie ». Outre les chutes de neige, les températures ont chuté à -12 °C avec un ressenti de -28 °C, rendant le travail au camp de haute altitude extrêmement difficile. Dans le cadre de ce protocole, toutes les grandes antennes d’ALMA ont été réorientées sous le vent, afin de minimiser les dégâts potentiels causés par l’accumulation de neige ou les fortes rafales. Une fois la tempête passée, les équipes de déneigement ont immédiatement été mobilisées pour inspecter visuellement chaque antenne avant de reprendre les observations.
Le Grand Réseau Millimétrique/Submillimétrique de l’Atacama (ALMA), le plus grand projet astronomique au monde, est un partenariat international entre l’Observatoire Européen Austral (ESO), la Fondation Nationale pour la Science aux États-Unis (NSF) et les Instituts Nationaux des Sciences Naturelles (NINS) du Japon, ainsi que le CNRC (Canada), le NSTC et l’ASIAA (Taïwan) et le KASI (République de Corée), en coopération avec la République du Chili.
L’ALMA est composé de 66 antennes de haute précision. Elles constituent le radiotélescope le plus puissant de la planète. Il est conçu pour gérer des phénomènes météorologiques extrêmes comme celui-ci. L’interruption ds l’ALMA par la neige soulève des questions quant à son fonctionnement face au réchauffement climatique.

La Voie Lactée au-dessus des antennses de l’ALMA (Crédit photo : European Southern Observatory (ESO)

Le désert d’Atacama ne reçoit généralement que 1 à 15 millimètres de précipitations par an, et certains secteurs peuvent passer des années sans enregistrer de quantités de pluie ou de neige mesurables. Comme je l’ai indiqué plus haut, un seul événement ne suffit pas pour tirer des conclusions. Cependant, s’il est encore trop tôt pour établir un lien direct entre les chutes de neige à basse altitude dans le désert et le réchauffement climatique, un climatologue a déclaré : « Les modèles climatiques prédisent une augmentation potentielle des précipitations, même dans cette région hyper aride. Nous ne pouvons pas encore dire avec certitude si cette hausse est déjà en cours. »

Source : presse américaine.

Vue du désert d’Atacama (Photo : C. Grandpey)

 ——————————————–

As I often explain on this blog, we should not rely on a single weather, climate or volcano event to generalize. These events must be repeated over a sufficiently long timescale to draw more global conclusions.
The weather event we just observed in the Atacama Desert (Chile) on 26 June 2025 is certainly exceptional, but we will have to wait for it to repeat itself over a sufficiently long period of time to attribute it to global warming.

A rare snowfall in the driest place on Earth has halted operations of one of the world’s premier telescope arrays.The snow has blanketed part of the Atacama Desert, which gets less than two centimeters of rainfall per year. Climate scientists warn that global warming may mean the observatory will face more extreme weather events like this in the future.

ALMA’s radio telescope array is perched high on the Chajnantor Plateau, a desert plain at 5,104 m in Chile’s Antofagasta region. The 26 June snowfall was triggered by unusual atmospheric instability affecting northern Chile. The Chilean weather services issued a snow and wind alert due to the passage of a « cold core » through the region. The phenomenon was accompanied by heavy rainfall that occurred farther north, causing a stream to swell and damage several properties. Schools were ordered to close, and power outages and landslides were reported. A weather event of this magnitude had not been seen in nearly a decade.

Due to the poor weather conditions, scientific operations had to be suspended to protect the antennas. The observatory activated its « survival mode » safety protocol: In addition to the snowfall, temperatures had plummeted to -12°C with a wind chill of -28°C making work at the high-altitude camp extremely difficult. As part of this protocol, all of ALMA’s large antennae were reoriented downwind, helping to minimize potential damage from snow buildup or strong gusts. Once the storm was over, snow-clearing teams were immediately activated to visually inspect each antenna before resuming observations.

The Atacama Large Millimeter/submillimeter Array (ALMA) – the largest astronomical project in the world – is an international partnership of the European Southern Observatory (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan, together with NRC (Canada), NSTC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile.

ALMA consists of 66 high-precision antennae. They form the most powerful radio telescope on the planet, and one designed to handle extreme weather events like this. The fact that the snow halted operations raises questions about the array’s operations as the climate warms.

The Atacama Desert typically receives only 1 to 15 millimeters of precipitation per year, and many areas can go years without recording any measurable rain or snow.As I put it above, one event is not sufficient to draw conclusions. However, while it is still too early to link lower-altitude snowfalls in the desert directly to global warming, one climate scientists said : « Climate models predict a potential increase in precipitation even in this hyper-arid region. We still can’t say with certainty whether that increase is already underway. »

Source : American news media.

L’effet de piston sur le Kilauea (Hawaï) // « Gas pistoning »  at Kilauea volcano (Hawaii)

Lors des derniers épisodes de l’éruption du Kilauea dans le cratère de l’Halema’uma’u, j’ai souvent évoqué le flux et le reflux de la lave dans la bouche nord ; son niveau fluctuait en fonction de la pression exercée par les gaz. Ce phénomène est appelé « gas pistoning» – autrement dit ‘effet de piston provoqué par les gaz’ – par les scientifiques de l’Observatoire volcanologique d’Hawaï (HVO). Cette expression a également été utilisée à d’autres occasions. Par exemple, le phénomène a été observé dans le lac de lave de 2008-2018 ainsi que dans les bouches du Pu’uO’o entre 1983 et 2018.

Le « gas pistoning » peut être défini comme une montée et une descente de la surface de la lave, provoquées par le dégazage. Cet effet de piston se produit souvent dans des conduits étroits, bien qu’il puisse également être observé dans des lacs de lave plus grands, voire dans des chenaux de lave.

Lorsque se déclenche un effet de piston provoqué par les gaz, la lave à la surface devient plus visqueuse, généralement par refroidissement. Les gaz ont alors plus de difficulté à s’échapper de cette lave plus froide et plus visqueuse. Ils commencent à s’accumuler et à former une couche de bulles sous la surface de lave plus froide. Cette couche de bulles finit par trouver suffisamment d’énergie pour propulser toute la couche de lave visqueuse située au-dessus et la faire s’élever dans le conduit éruptif, à la manière d’un piston qui remonte dans un moteur.

Si la lave atteint le sommet du conduit éruptif et est prête à s’écouler, la couche de lave supérieure s’amincit si bien que la couche de gaz située en dessous peut être libérée, ce qui donne souvent naissance à une activité de spattering et d’éclatements de bulles. La lave qui ne s’est pas écoulée du conduit peut alors refluer et participer ou non à un autre cycle de « gas pistoning ».

Différents types de « gas pistoning » ont été observés lors de l’éruption sommitale actuelle du Kīlauea. Ils ont commencé à apparaître en mars, dans le cadre d’une activité précurseur qui a précédé les épisodes 14 et 15 de fontaines de lave. Depuis, certains épisodes ont présenté des phases de « gas pistoning » évidentes, d’autres non. Certains ont montré une montée de lave suffisamment importante pour que des débordements aient lieu au niveau des deux bouches du cratère de l’Halemaʻumaʻu. Une telle situation peut provoquer la libération de gaz et le reflux de lave. Dans d’autres phases, la lave n’atteint pas tout à fait le sommet du conduit éruptif et il ne se produit pas de débordements.

Les scientifiques du HVO ne comprennent pas encore parfaitement pourquoi les phases de « gas pistoning » précèdent souvent les épisodes spectaculaires de fontaines de lave, ni pourquoi ils peuvent se comporter différemment d’un épisode à l’autre. Cependant, le personnel de l’Observatoire continue de collecter des données géophysiques et de chimie des gaz. Il effectue également d’autres observations géologiques, afin de mieux comprendre le phénomène de « gas pistoning » et son rôle dans l’éruption sommitale en cours.

Source : USGS, HVO.

Dans l’image du haut, on voit la lave s’élever le 19 mars 2025 dans la bouche éruptive nord, avant l’Épisode 14 de l’éruption. On remarquera que seul un léger panache de gaz est visible près du bord droit de la surface de lave. Dans l’image centrale, la surface de lave s’est élevée au point de déborder de la bouche. Une activité de spattering a débuté, ce qui permet de libérer plus facilement les gaz emprisonnés, avec un panache plus visible que précédemment. Dans l’image du bas, la lave s’écoule plus facilement au niveau du centre de la bouche, tandis que sa surface s’abaisse et que le panache devient plus volumineux au fur et à mesure que les gaz s’échappent. (Photos : USGS)

———————————————-

During the last episodes of the Kilauea eruption in Halema’uma’u Crater, I have often mentioned the ebb and flow of lava in the north vent, with its level fluctuating according to the pressure exerted by the gases. This phenomenon is called ‘gas pistoning’ by the scientists at the Hawaiian Volcano Observatory (HVO). The expression may also be used on other occasions during volcanic activity. For instance, the phenomenon was observed in the 2008-18 lava lake as well as vents at Puʻuʻōʻō between 1983 and 2018.

Gas pistoning can be defined as a shallow, degassing-driven rise and fall of a lava surface. These pistons often occur in narrow conduits, although they can happen in larger lava lakes and even in lava channels.

To start a piston, or one cycle of pistoning, lava at the surface becomes more viscous, usually by cooling. Then, it is more difficult than usual for gases to escape from that cooler, more viscous lava.

Gases that would otherwise escape easily into the atmosphere instead begin to accumulate and build up a bubbly layer beneath that surface of cooler lava. Eventually, the bubbly layer becomes buoyant enough to push the whole layer of viscous lava above it up to higher levels in the volcanic conduit, just like a piston moving up inside an engine.

If the lava reaches the top of the conduit so that it can spill out, the top lava layer thins out to the point that the gas layer beneath can be released, which is often accompanied by lava spattering and bubble bursts. Any lava that did not spill out of the conduit can then drain back deeper, where it might or might not become part of another gas piston cycle.

Different gas piston types has been observed during this ongoing episodic summit eruption at Kīlauea. They began to become obvious in March as part of precursory activity ahead of sustained lava fountaining Episodes 14 and 15. Since then, some episodes have had obvious precursory gas pistons and others have not.

Some gas pistons during the current eruption involve lava rising high enough that overflows spilled out of both vents in Halemaʻumaʻu Crater, which can help initiate gas release and lava drainback.

Others don’t quite reach the top of the magma conduit in the vents and instead drain without having lava overflows.

HVO scientists do not yet have a full understanding of why the gas pistons are often a precursor to the high fountaining episodes or why they might behave differently from episode to episode.

However, they continue to collect geophysical and gas chemistry data, and make other geological observations, in order to better understand the gas pistoning phenomenon and the role it plays in the ongoing summit eruption.

Source : USGS, HVO.

In the top image above, lava rises on March 19, 2025, in the north vent prior to Episode 14 of the Kilauea eruption. Note that only a faint gas plume is visible near the right edge of the lava surface. In the middle image, the lava surface has risen to the point of lava spilling out of the vent and the molten rock has begun to spatter releasing more trapped gas, with a more obvious plume. In the bottom image, the lava is more clearly draining down in the center of the vent, with its surface dropping and even more of a plume visible as more gas escapes. (Photos : USGS)

Magma et plaques tectoniques dans l’Afar (Éthiopie) // Magma and tectonic plates in the Afar region (Ethiopia)

En Éthiopie, la région Afar se situe au-dessus de la jonction entre trois plaques tectoniques. Des scientifiques ont découvert que du magma en fusion vient frapper la croûte terrestre par en dessous. Dans cette partie du monde, le continent africain se déchire lentement, et finira par former un nouveau bassin océanique. En échantillonnant les signatures chimiques des volcans de cette région, une équipe scientifique de l’Université de Swansea et de l’Université de Southampton, au Royaume-Uni, a essayé d’obtenir davantage d’informations sur ce processus. Les chercheurs ont découvert que le manteau sous l’Afar n’est ni uniforme ni stationnaire ; il vibre, et ces vibrations portent des signatures chimiques distinctes. L’étude, intitulée « Mantle upwelling at Afar triple junction shaped by overriding plate dynamics », a été publiée dans Nature Geoscience.

Carte tectonique du système de rifts de l’Afar (Source : Wikipedia)

La surface de notre planète connaît un processus de renouvellement constant. Les plaques tectoniques qui divisent la croûte terrestre ne sont pas fixes ; elles se déplacent, entrent en collision et glissent même les unes sous les autres. Leurs points de rencontre sont généralement des points chauds de l’évolution géologique, marqués par une activité volcanique intense qui remodèle la surface par en dessous.
L’Afar est le point de rencontre des plaques arabique, nubienne et somalienne. Chacune s’écarte dans sa direction respective, ce qui laisse place à une brèche de plus en plus grande sous le Triangle de l’Afar. À terme, la croûte deviendra si fine à cet endroit que la surface s’abaissera sous le niveau de la mer, créant un nouveau bassin océanique au large de la mer Rouge.
Les scientifiques pensent que la remontée du magma joue un rôle dans ce processus de rupture continentale, mais ils ont du mal à comprendre son fonctionnement. Il est bien sûr impossible de forer pour l’observer de près ; c’est pourquoi ils ont étudié les matériaux déposés à la surface de la Terre depuis le manteau par l’activité volcanique.
Les auteurs de l’étude ont collecté 130 échantillons de roche volcanique provenant de la région de l’Afar et du rift éthiopien, et ont effectué des analyses chimiques. Ils ont utilisé ces analyses, combinées aux données existantes, pour réaliser une modélisation qui leur permettrait de comprendre l’activité sous le Triangle. Les résultats montrent des bandes ou stries chimiques distinctes qui se répètent à travers le système de rift. Elles sont produites par un panache unique et asymétrique de matière, façonné par son environnement au fur et à mesure qu’il s’élève du manteau. L’un des scientifiques a déclaré que « les stries chimiques montrent que le panache se comporte comme les pulsations d’un cœur ». De plus, « ces pulsations semblent se comporter différemment selon l’épaisseur de la plaque et la vitesse à laquelle elle s’éloigne. Dans les rifts à expansion rapide comme la mer Rouge, les pulsations se propagent plus nettement et plus régulièrement, comme le sang dans une artère étroite.»
Si le modèle réalisé par l’équipe scientifique est correct, il montre que les panaches et les remontées mantelliques peuvent être façonnés par la dynamique des plaques tectoniques situées au-dessus. Cette découverte pourrait favoriser les recherches futures sur l’activité qui remodèle continuellement notre planète.

 

Schéma issu de l’étude et montrant comment le panache mantellique est canalisé par les trois rifts

Les chercheurs ont découvert que l’évolution des remontées mantelliques profondes est intimement liée au mouvement des plaques situées au-dessus. Cela a de profondes implications pour l’interprétation du volcanisme de surface, de l’activité sismique et du processus de rupture continentale. Les recherches montrent que les remontées du manteau profond peuvent circuler sous la base des plaques tectoniques et contribuer à concentrer l’activité volcanique là où la plaque est la plus fine. Des recherches ultérieures tenteront de comprendre comment et à quelle vitesse se produit la circulation de la remontée mantellique sous les plaques.
Source : L’étude dans Nature Geoscience.

————————————————

In Ethiopia, the Afar region lies above the junction between three tectonic plates, and scientists have discovred that molten magma pounds the planet’s crust from below. In that part of the world,, the continent is slowly being torn asunder in the early formation stages of a new ocean basin. By sampling the chemical signatures of volcanoes around this region, a scientific team from Swansea University and the University of Southampton in the UK hoped to learn more about this wild process. They found that the mantle beneath Afar is not uniform or stationary ; it pulses, and these pulses carry distinct chemical signatures. The study, entitled « Mantle upwelling at Afar triple junction shaped by overriding plate dynamics », was published in Nature Geoscience.

Our planet’s surface is in a constant state of renovation. The tectonic plates into which the planetary crust is divided are not fixed in position, but shift and collide and even slip underneath one another. The places at which they meet are usually hotspots of geological evolution, rampant with volcanic activity that is reshaping the surface from below.

The Afar junction is the point at which the Arabian, Nubian, and Somalian plates meet, each departing in their own directions to leave a widening gap under the Afar Triangle. Eventually, the crust will become so thin here that the surface will drop below sea level, creating a new ocean basin off the Red Sea.

Scientists suspect that mantle upwelling is playing a role in this continental breakup process, but our understanding of how it works is limited. We can’t dig down to have a close look, so the researchers looked at material that has been disgorged onto Earth’s surface from the mantle by way of volcano.

They collected 130 samples of volcanic rock from around the Afar region and the Main Ethiopian Rift, and conducted chemical analyses. They used these analyses combined with existing data to conduct advanced modeling to understand the activity under the Triangle. The results show distinct chemical bands or stripes that repeat across the rift system, delivered by a single, asymmetrical plume of material shaped by its environment and pushing upwards from the mantle. One of the scientists said that « the chemical striping suggests the plume is pulsing, like a heartbeat. » Moreover,

« these pulses appear to behave differently depending on the thickness of the plate, and how fast it’s pulling apart. In faster-spreading rifts like the Red Sea, the pulses travel more efficiently and regularly like a pulse through a narrow artery. »

If the team’s model is correct, it suggests that mantle plumes and upwellings can be shaped by the dynamics of the tectonic plates above them. The finding could be used to inform future research into the activity that is continually remodeling our planet.

The researchers have found that the evolution of deep mantle upwellings is intimately tied to the motion of the plates above. This has profound implications for the interpretation of surface volcanism, earthquake activity, and the process of continental breakup. The research shows that deep mantle upwellings can flow beneath the base of tectonic plates and help to focus volcanic activity to where the tectonic plate is thinnest. Follow-on research includes understanding how and at what rate mantle flow occurs beneath plates.

Source : The study in Nature Geoscience.

https://www.nature.com/articles/s41561-025-01717-0