Rebond isostatique et baisse du niveau de la mer // Isostatic rebound and sea level drop

Un article paru dans le quotidien Ouest France en avril 2002 se demande pourquoi le niveau de la mer baisse en Islande, alors qu’il est en hausse partout dans le monde. En fait, la réalité est un peu différente. Comme je l’explique au cours de ma conférence « Glaciers en péril », ce n’est pas vraiment le niveau de la mer qui baisse en Islande, mais la terre qui se soulève. Les scientifiques prennent souvent l’exemple du petit port d’Höfn sur la côte sud de l’île pour illustrer ce phénomène.

Dans l’article diffusé par le quotidien, une climatologue à l’Institut de Recherche pour le Développement (IRD) explique que le niveau moyen de la mer a augmenté d’une vingtaine de centimètres depuis le début du 20ème siècle, mais il s’agit d’un niveau moyen. Autrement dit, il y a des endroits où la hausse est plus importante qu’à d’autres, avec des variations de quelques centimètres. Par exemple, le niveau de l’eau augmente deux à trois fois plus vite qu’ailleurs dans l’océan Pacifique parce que les courants océaniques ne distribuent pas la chaleur de manière homogène. A contrario, il existe d’autres zones où aucune élévation du niveau de la mer n’est enregistrée et parfois même une légère baisse est constatée, comme en Islande. Le Groenland et d’autres pays, essentiellement dans l’Arctique, sont concernés. C’est aussi le cas de quelques zones proches du pôle Sud.

En fait, plus que d’une baisse du niveau de la mer, il s’agit d’une élévation de la terre. Il s’agit d’un phénomène appelé rebond post-glaciaire ou rebond isostatique qui a déjà été observé au cours de la dernière glaciation, il y a environ 20 000 ans. D’énormes calottes de glaces se sont alors formées au nord des États-Unis, du Canada ou encore de l’Europe. Sous leur poids, le sol s’est enfoncé dans les zones concernées. Au terme de cette période glaciaire – il y a entre 20 000 et 10 000 ans – le climat s’est réchauffé et a entraîné la fonte des calottes glaciaires qui ont pesé moins lourd sur le plancher océanique et terrestre. Sous cet effet, le sol s’est soulevé, et c’est ce qui se passe aujourd’hui en Islande où les glaciers fondent sous les coups de butoir du réchauffement climatique.

La climatologue de l’IRD ajoute que la baisse apparente du niveau de la mer en Islande s’explique aussi par la gravité. En effet, une grosse calotte glaciaire a tendance à attirer la mer, un peu comme l’attraction exercée par la Lune sur nos mers. En conséquence, si la calotte fond et disparaît petit à petit, elle attire moins la mer. Plus la calotte glaciaire disparaîtra, plus la surface de la mer sera basse. Cet effet est, lui aussi, assez local.

Les scientifiques ne pensent pas que la baisse du niveau de la mer en Islande va se poursuivre. Elle sera compensée, puis dépassée, par l’élévation globale du niveau des océans dans le monde. Les projections d’ici la fin du siècle prévoient une hausse du niveau de la mer importante, si bien qu’en 2100, les conséquences du rebond isostatique existeront toujours mais seront globalement compensés par la dilatation thermique de l’océan et l’apport d’eau douce à la mer par la fonte des glaciers continentaux et des calottes polaires.

Source: Ouest France.

——————————————–

An article published in the French daily Ouest France in April 2002 asks why the sea level is dropping in Iceland, while it is rising all over the world. In fact, the reality is a little different. As I explain during my conference « Glaciers at Risk », the sea level is not really decreasing in Iceland, but the land is rising. Scientists often take the example of the small port of Höfn on the south coast of the island to illustrate the phenomenon.
In the article published by the daily, a climatologist at the Research Institute for Development (IRD) explains that the average sea level has risen by about twenty centimeters since the beginning of the 20th century, but it is an average number. In other words, there are places where the rise is greater than at others, with variations of a few centimeters. For example, the water level is rising two to three times faster than elsewhere in the Pacific Ocean because ocean currents do not distribute heat evenly. Conversely, there are other areas where no rise in sea level is recorded and sometimes even a slight drop is observed, such as in Iceland. Greenland and other countries, mainly in the Arctic, are concerned. This is also the case for some areas near the South Pole.
In fact, more than a drop in sea level, it is a rise in land. This is a phenomenon called post-glacial rebound or isostatic rebound that has already been observed during the last glaciation, around 20,000 years ago. Huge ice caps then formed in the north of the United States, Canada and even Europe. Under their weight, the ground sank in the affected areas. At the end of this ice age – between 20,000 and 10,000 years ago – the climate warmed up and led to the melting of the ice caps which weighed less heavily on the ocean floor and land. Under this effect, the ground rose, and this is what is happening today in Iceland where the glaciers are melting under the impact of global warming.
The IRD climatologist adds that the apparent drop in sea level in Iceland is also explained by gravity. Indeed, a large ice cap tends to attract the sea, much like the attraction exerted by the Moon on our seas. As a result, if the ice cap melts and gradually disappears, the ice cap attracts the sea less. The more the ice cap disappears, the lower the sea surface will be. This effect is also quite local.
Scientists do not believe that sea level decline in Iceland will continue. It will be compensated, then exceeded, by the global rise in the level of the oceans in the world. Projections by the end of the century foresee a significant rise in sea level, so that in 2100 the consequences of the isostatic rebound will still exist but will be globally compensated by the thermal expansion of the ocean and the contribution of water to the sea through the melting of continental glaciers and polar ice caps.
Source: Ouest France.

Schéma illustrant le rebond isostatique (Source: https://profsvt.site)

Vue du port de Höfn (Crédit photo: Wikipedia)

En fondant, le glacier islandais Vatnajökull contribue à la fois au rebond isostatique et à la hausse du niveau de la mer (Photo: C. Grandpey)

 

 

 

 

 

Eruptions sous-marines et rebond isostatique // Submarine eruptions and isostatic rebound

Lorsqu’une crue glaciaire s’est produite sur le Grimsvötn, volcan islandais sous la calotte glaciaire du Vatnajökull, les volcanologues locaux se sont demandé si l’événement serait suivi d’une éruption volcanique. Elle pourrait être provoquée par le relâchement de pression dû à l’énorme évacuation de l’eau de fonte contenue dans le lac sous-glaciaire. De telles éruptions se sont produites plusieurs fois dans le passé, en 2004 pour la dernière fois.
Lors de ma conférence « Glaciers en péril », j’explique que la fonte des calottes glaciaires au-dessus des volcans pourrait provoquer un rebond isostatique avec un relâchement de pression qui pourrait provoquer une éruption. Cependant, aucune éruption de ce type n’a été, jusqu’à présent, clairement liée à la fonte directe d’une calotte glaciaire. S’agissant du Grimsvötn, c’est plutôt la vidange d’un lac d’eau de fonte sous-glaciaire qui est susceptible de déclencher une éruption.
Une récente étude menée par des scientifiques du Royaume-Uni et de Suède et publiée dans la revue Nature Geoscience, a examiné les 360 000 ans d’histoire de l’activité volcanique à Santorin en Grèce. L’île se trouve au sud de la Mer Égée, à environ 200 km au sud-est de la Grèce continentale.
Il y a environ 3 600 ans, Santorin a connu l’une des plus grandes éruptions historiques. Le cataclysme est responsable de la disparition de la civilisation minoenne en Crète, à seulement 100 km au sud, où elle a été ensevelie par d’épaisses couches de matériaux volcaniques.
Les chercheurs ont analysé les enregistrements des éruptions préservés dans les carottes de sédiments marins à proximité. Les couches de cendres ont été datées avec précision à l’aide de méthodes radiométriques, et les chercheurs sont arrivés à la conclusion que l’activité volcanique océanique peut varier selon que le niveau de la mer monte et descend. En d’autres termes, le poids de l’eau peut supprimer ou donner naissance à l’activité volcanique.
Des modélisations numériques ont déjà indiqué que le poids de l’eau peut supprimer ou déclencher l’activité volcanique. Lorsque le niveau de la mer baisse de plus de 40 mètres, la lave commence à remonter dans les roches au-dessus de la chambre magmatique. Lorsque le niveau de la mer descend à moins 70 ou 80 mètres, des éruptions sont probables. Au fur et à mesure que le niveau de la mer remonte, l’activité volcanique diminue : 208 des 211 éruptions se sont produites lorsque le niveau de la mer a baissé.
Il faut toutefois beaucoup de temps pour que les variations de pression se propagent à travers la roche solide, de sorte que les changements d’activité volcanique ne sont pas instantanés. Il y a un décalage d’environ 30 000 ans entre le moment où niveau de la mer descend en dessous de 40 mètres et le début des éruptions. De plus, comme le niveau de la mer remonte beaucoup plus vite qu’il ne baisse, il n’y a qu’un décalage plus court, d’environ 11 000 ans, entre le moment où le niveau de la mer s’élève à plus de 40 mètres et la cessation des éruptions.
Selon l’étude, Santorin est probablement entrée dans une phase calme. La chambre magmatique qui alimente le volcan est peu profonde, à seulement quatre kilomètres environ sous le plancher marin. D’autres volcans ont des chambres magmatiques plus profondes, donc l’effet de la pression devrait changer plus lentement, tout en continuant, malgré tout, à réagir aux variations du niveau de la mer. Cette hypothèse est importante car 57% des volcans dans le monde sont des îles ou se trouvent le long des côtes où ils sont, soumis à la pression générée par la montée et la descente du niveau des mers.
Source : Yahoo News.

———————————————-

When a glacial outburst flood occurred at Grimsvötn, an Icelandic volcano beneath the Vatnajökull icecap, local volcanologists wondered whether the event would be followed by a volcanic eruption. It would be caused by the release of pressure due to the huge evacuation of the meltwater in the subglacial lake. Such eruptions occured several times in the past, in 2004 for the last time.

During my conference « Glaciers at risk », I explain that the melting of icecaps above volcanoes might cause an isostatic rebound with a release of pressure which, in turn, might cause an eruption. However, no such eruption has benn clearly linked so far to the direct melting of an icecap. As far as Grimsvötn is concerned, it is rather the drainage of a subglacial meltwater lake that may trigger an eruption.

A recent bit of research by scientists from the United Kingdom and Sweden, published in the journal Nature Geoscience, examined the 360,000 year history of volcanic activity at Santorini in Grece. The island lies in the south Aegean Sea, about 200 km southeast of the Greek mainland.

Around 3,600 years ago, Santorini exploded in one of the largest eruptions in recorded history.The cataclysm is blamed for the demise of the Minoan civilization, based on the island of Crete, just 100 km to the south, which was buried by huge l ayers of volcanic debris.

Looking at the record of eruptions in cores obtained by drilling in nearby marine sediments, whose ash layers can be precisely dated using radiometric methods, the researchers came to the conclusion that ocean volcanic activity may vary when sea levels rise and fall; the weight of the water can suppress or release volcanic activity.

Numerical modeling had already indicated the weight of water could suppress or release volcanic activity. When sea level fell by more than 40 meters, lava started working its way up into the rocks above the chamber. When sea level fell to minus 70 or 80 meters, eruptions occurred. As sea level rose again, volcanic activity decreased: 208 of 211 eruptions occurred when sea level dropped.

It takes time for the changes in stress to propagate through solid rock, so the changes are not instantaneous. There is a time lag of about 30,000 years between sea level dropping below minus-40 meters and the start of eruptions. Also, because sea level rises much faster than it falls, there is a time lag of only about 11,000 years between sea level rising above the minus-40 meter mark and the cessation of eruptions.

The study suggests that Santorini might be entering a quiet phase. The magma chamber feeding Santorini is shallow, only about four kilometers below the sea bottom. Other volcanoes have deeper magma chambers, so the stress should change more slowly, but still react to changes in sea level. That is significant because 57% of the world’s volcanoes are islands or along the coast, subject to pressure produced by rising and falling seas.

Source: Yahoo News.

Processus du rebond isostatique (Source: Wikipedia)

COP 26 : les archipels du Pacifique et le réchauffement climatique // COP 26 : Pacific Ocean archipelagoes and global warming

Avant la COP 26, il est apparu qu’un tiers des petits États et territoires insulaires du Pacifique ne seraient pas en mesure d’envoyer des représentants de leurs gouvernements au sommet de Glasgow en raison des restrictions de voyage dues à la pandémie de COVID-19.
Le manque de représentation à la COP a fait craindre que les préoccupations de ces pays, qui sont parmi les plus menacés par la crise climatique, soient laissées de côté par les participants à la Conférence.
En octobre, un rapport de la Banque mondiale a révélé que l’élévation prévue du niveau de la mer pourrait coûter son statut de nation aux îles Marshall, un archipel situé dans le Pacifique nord à mi-chemin entre Hawaï et l’Australie. L’archipel a une population de 59 000 habitants et une superficie de seulement 180 kilomètres carrés, avec 1 156 îles individuelles. C’est l’un des pays les plus menacés de disparition en raison de l’élévation du niveau de la mer.

Toujours dans le Pacifique, très peu de gens ont entendu parler des Tuvalu, un archipel de la sous-région polynésienne de l’Océanie. Les îles sont situées à mi-chemin entre Hawaï et l’Australie. Les Tuvalu se composent de trois îles récifales et de six atolls. L’archipel comptait 10 507 habitants en 2017. La superficie totale des Tuvalu est de 26 kilomètres carrés.
Le territoire est devenu totalement indépendant au sein du Commonwealth le 1er octobre 1978. Le 5 septembre 2000, il est devenu le 189ème membre des Nations Unies.
Les Tuvalu n’ont pas de représentant physique à la COP 26 de Glasgow, mais le gouvernement a envoyé une vidéo montrant le ministre des Affaires étrangères en train de prononcer un discours. Les participants à la Conférence le verront debout, avec de l’eau jusqu’aux genoux, pour montrer à quel point sa nation insulaire du Pacifique est en première ligne du réchauffement climatique. Le ministre porte un costume et une cravate; ses jambes de pantalon sont retroussées. Il se tient derrière un pupitre installé dans la mer. La vidéo a déjà été largement partagée sur les réseaux sociaux,
Source : Presse internationale.

———————————————-

Before Cop26, it emerged that one-third of Pacific small island states and territories would be unable to send any government figures to the summit in Glasgow due to Covid-19 travel restrictions.

The lack of high-level representation of Pacific nations at the meeting led to fears that the concerns of these countries, which are among those most at risk due to the climate crisis, would not be appropriately represented at the summit.

In October, a World Bank report said that projected sea level rise could cost the Marshall Islands, a country in the north Pacific halfway between Hawaii and Australia, its status as a nation.

It has a population of 59,000 and a land mass of just 180 square kilometres, consisting of 1,156 individual islands. It is one of the countries considered most at risk of disappearing due to sea level rise.

Still in the Pacific Ocean, very few people have heard about Tuvalu, an archipelago in the Polynesian subregion of Oceania in the Pacific Ocean. The islands are situated about midway between Hawaii and Australia. Tuvalu is composed of three reef islands and six atolls It had a population of 10,507 in 2017. The total land area of the islands of Tuvalu is 26 square kilometres.

Tuvalu became fully independent within the Commonwealth on October 1st,1978. On September 5th, 2000, it became the 189th member of the United Nations.

Tuvalu has no physical representaive at the Glasgow COP 26 but it has sent a video showing its foreign minister delivering a speech. The Conference participants will see him standing knee-deep in seawater to show how his low-lying Pacific island nation is on the front line of climate change. He is wearing a suit and tie at a lectern set up in the sea, with his trouser legs rolled up. The video has already been shared widely on social media, drawing attention to Tuvalu’s struggle against rising sea levels.

Source: International press.

Source: Tuvalu government

Fonte des plateformes glaciaires en Antarctique // Melting of ice shelves in Antarctica

Comme je l’ai écrit plusieurs fois sur ce blog, si les plates-formes glaciaires de l’Antarctique occidental fondent et disparaissent, elles ne retiendront plus les glaciers qui se trouvent en amont. Si ces glaciers atteignent l’océan, ils contribueront à l’augmentation du niveau de la mer dans le monde entier. Au cours des dernières années, les scientifiques ont attiré l’attention du public sur les glaciers Thwaites et Pine Island, deux immenses rivières de glace de l’Antarctique occidental.

Selon une étude publiée le 11 juin 2021 dans la revue Science Advances, la plateforme qui retient le glacier de Pine Island se désintègre beaucoup plus vite qu’auparavant et laisse échapper d’énormes icebergs. Sa fonte s’est accélérée en 2017 et fait craindre aux scientifiques qu’avec le réchauffement  climatique, la fonte du glacier se produise plus rapidement que les siècles mentionnés dans les prévisions.

La plateforme glaciaire devant le Pine Island a reculé d’environ 20 kilomètres entre 2017 et 2020. Cette situation a été confirmée en visionnant en accéléré les images collectées par un satellite européen qui prend des photos tous les six jours.

Entre 2017 et 2020, il y a eu trois grands événements de dislocation de la plateforme glaciaire, avec vêlage de monstres de glace de plus de 8 kilomètres de long et 36 kilomètres de large qui se sont ensuite morcelée en icebergs plus petits. On a également observé beaucoup de petits vêlages.

Les scientifiques craignent que la plateforme glaciaire dans son ensemble lâche prise et disparaisse en quelques années. Ils ont observé le comportement de deux repères sur le glacier principal et ont découvert qu’ils avaient accéléré leur progression de 12% à partir de 2017. Comme je l’ai écrit plus haut, le glacier de Pine Island est l’un des deux glaciers de l’Antarctique occidental que les glaciologues craignent de voir disparaître à brève échéance. L’autre glacier est le Thwaites. Si le Pine Island fondait dans sa totalité, cette eau entraînerait une élévation du niveau de la mer de 50 centimètres. Le glacier est responsable d’environ un quart de la perte de glace sur ce continent. Tous les modèles montrent que si le Pine Island et le Thwaites disparaissent, le reste de l’Antarctique occidental suivra, car tous les glaciers de cette partie du continent sont interconnectés.

Source : Yahoo News.

—————————————-

As I put it several times before, if the ice shelves in West Antarctica melt and collapse, they will no longer hold back the glaciers that are pushing behind them. Should these glaciers reach the ocean, they will contribute to increasing sea level rise around the globe. In the past years, scientists have drawn public attention to the Thwaites and Pine Island glaciers, two massive rivers of ice in West Antarctica.

According to a study published on June 11th, 2021 in the journal Science Advances, the ice shelf that holds back the Pine Island glacier is breaking up much faster than before and spawning huge icebergs. Its melting accelerated in 2017, causing scientists to worry that with climate change the glacier’s collapse could happen quicker than the many centuries predicted.

That ice shelf has retreated by about 20 kilometres between 2017 and 2020. The confirmation of this event was given by a time-lapse video from a European satellite that takes pictures every six days.

Between 2017 and 2020, there were three large breakup events, creating icebergs more than 8 kilometres long and 36 kilometres wide, which then split into lots of smaller pieces. There also were many smaller calvings.

Scientists fear that the whole shelf could give way and go within a few years. They have tracked two points on the main glacier and found they were moving 12% faster toward the sea starting in 2017.

As I put it above, the Pine Island Glacier is one of two side-by-side glaciers in western Antarctica that ice scientists worry most about losing on that continent. The other is the Thwaites Glacier. Should Pine Island melt, this water would lead to a 50-centimetre sea level rise. The glacier is responsible for about a quarter of the continent’s ice loss.

All model show that if Pine Island and Thwaites fall apart, the rest of West Antarctica will follow as all glaciers in that part of the Antarctic continent are interconnected.

Source : Yahoo News.

 

Source : National Snow and Ice Data Center (NSIDC)