La glace de mer en Antarctique et dans l’Arctique // Sea ice in the Antarctic and the Arctic

drapeau-francaisUne nouvelle étude conduite par une équipe scientifique sous l’égide de la NASA et de la NOAA a identifié les causes des différences de comportement entre la glace de mer de l’Arctique et son homologue de l’Antarctique.

L’étendue de glace de mer au pôle nord a atteint sa surface la plus faible de tous les temps au cours des dernières années et elle s’est amincie de 65 pour cent entre 1975 et 2012. Dans le même temps, l’Antarctique a augmenté sa couverture de glace en dépit des inquiétudes qui sont apparues quant à la fonte de ses glaciers.
En utilisant des données thermiques, topographiques, et bathymétriques, l’équipe scientifique a identifié les raisons de la préservation de la glace de mer en Antarctique. Ils ont découvert que la profondeur de l’océan dans la région et certaines caractéristiques à la surface du continent avaient un impact sur la circulation des vents et des courants océaniques, de telle manière que la production et la protection de la glace de mer n’étaient pas affectées. Dans le même temps, des conditions très différentes dans l’Arctique entraînaient la fonte de la glace de mer.
En utilisant les données fournies par le satellite QuikScat de la NASA, lancé en 1999, les scientifiques ont analysé la formation et la trajectoire suivie par la glace de mer en Antarctique, ainsi que les différents types de couverture de glace dans l’Océan Austral. La conclusion de l’étude est que les vents poussent et installent la glace de mer autour du continent pendant sa période de formation entre Juin et Septembre, ce qui entraîne la formation d’une Grande Zone Bouclier (Great Shield Zone / GSZ) qui protège la jeune glace qui se trouve à l’intérieur.
La GSZ ainsi formée s’étend sur une largeur de 100 à 1000 kilomètres et empêche que la nouvelle glace soit brisée par les éléments. La situation géographique de la GSZ correspond également au front sud du courant circumpolaire antarctique qui marque la frontière qui entre les eaux froides et les eaux chaudes près du continent austral. Le contact avec des eaux plus froides favorise la stabilité de la GSZ et permet à la nouvelle glace de se développer rapidement.
La Grande Zone Bouclier (GSZ) offre des conditions pratiquement opposées à celles de la zone où se forme la glace de mer dans l’Arctique. Dans les hautes latitudes, on a affaire à une zone de formation glace peu épaisse, facilement perturbée par le vent et les vagues et soumise à des eaux plus chaudes que la GSZ. La distribution des vents de l’Arctique peut également faire se déplacer la glace en cours de formation vers des secteurs plus chauds de l’océan, où elle va forcément fondre.
En dépit de ces explications sur la formation de la glace de mer en Antarctique, les scientifiques sont inquiets quand ils observent les températures record enregistrées à travers le monde et la fonte continue des grands glaciers. Ils se posent des questions sur le comportement de la glace en Arctique et en Antarctique dans les années à venir et sur son impact sur l’élévation du niveau des océans. Selon un chercheur australien, «les glaciers de l’Antarctique sont susceptibles de perdre une importante masse de glace et, conjointement avec le changement climatique, ils pourraient contribuer à une élévation de plusieurs mètres du niveau de l’océan à proximité du continent. »
Source: Alaska Dispatch News and The Christian Science Monitor.

————————————–

drapeau-anglaisA new study by a NASA- and NOAA-backed team has identified the causes of the stark contrast between Arctic and Antarctic sea ice change.

The northern pole’s sea ice extent has been recorded at all-time lows in recent years and thinned by 65 percent between 1975 and 2012, while the southern continent has seen gains in its ice coverage despite concerns over glacier melting.

Using temperature, topographical, and bathymetric data, the research team identified the cause behind the preservation of Antarctica’s ice. They found local ocean depth and continental surface features impact the region’s wind and ocean currents in such a way that the production and protection of sea ice is sustained. Meantime, dissimilar conditions in the Arctic have led to the ongoing melt of the sea ice.

Using data from NASA’s QuikScat satellite, launched in 1999, the scientists analyzed the formation and routes of Antarctic sea ice, as well as the different types of ice coverage in the Southern Ocean. The conclusion of the study is that winds push building ice out and around the continent during the sea ice growth season from June to September, forming a Great Shield Zone (GSZ) that shelters young interior ice.

The established GSZ stretches from 100 to 1,000 kilometres wide and keeps the new ice from being broken up by the elements. The zone’s path also corresponds with the the southern Antarctic Circumpolar Current front, a boundary that marks a separation of cooler and warmer waters near the southern continent. The contact with colder waters maintains the GSZ and allows for new ice to grow quickly.

The southern GSZ provides conditions nearly opposite to those of the Arctic’s marginal ice zone, a boundary of thin, new ice easily disturbed by wind and waves and subjected to warmer waters than the GSZ. Arctic wind patterns can also move developing ice toward warmer sections of the ocean, where it melts.

Even with evidence and an explanation for sea ice growth in Antarctica, record high global temperatures and the ongoing melting of major glaciers have some scientists worried about the future of both Arctic and Antarctic ice features and their impact on sea level rise. According to an Australian researcher, “Antarctic glaciers may be at risk of substantial ice loss, and could contribute to a multi-metre response to climate change near the continent.”

Source: Alaska Dispatch News and The Christian Science Monitor.

Antarctic sea ice 2012

Etendue de la glace de mer en Antarctique en 2012 (Source: NASA)

Groenland-blog

Vue de la glace de mer dans l’Arctique (Photo: C. Grandpey)

 

Réchauffement climatique: CO2, températures, océans et glace // Global warming: CO2, temperatures, oceans and ice

drapeau-francaisIl y a quelques jours, j’ai écrit une note indiquant que la France est toujours en train de se réchauffer, à l’image de notre planète toute entière. J’ai utilisé la courbe de Keeling pour illustrer la situation. A mes yeux, c’est l’une des meilleures références pour démontrer à quel point les activités humaines sont responsables de la situation actuelle. La courbe montre de manière incontestable que nous ajoutons des gaz à effet de serre dans l’atmosphère, et plus particulièrement du dioxyde de carbone. Voici les concentrations de CO2 dans l’atmosphère mesurées à l’observatoire du Mauna Loa à Hawaii:

drapeau-anglaisA few days ago, I wrote another post to indicate that France is still warming, as well as the whole planet. I used the Keeling curve to illustrate the situation. To my eyes, it is one of the best references to demonstrate the responsibility of human activities for the current situation. The curve shows in an undisputable way that we are adding greenhouse gases to the atmosphere, more specifically carbon dioxide. Here is the concentration of CO2 in our atmosphere measured at the Mauna Loa observatory in Hawaii:

GW

Source: Scripps Institution.
++++++++++

drapeau-francaisDans notre vie quotidienne, les températures extérieures sont les principaux signes qui nous indiquent que les étés deviennent plus en plus chauds et que les hivers sont de moins en moins froids, avec disparition de la neige ou du gel dans de nombreuses régions du monde.
Voici la température moyenne à l’échelle de la planète pour chaque mois, de Janvier de 1880 à Janvier 2016, selon les données fournies par la NASA. Il s’agit des températures de surface, autrement dit celles qui nous entourent. Le point rouge marque la mesure la plus récente. Janvier 2016 est le nouveau record :

drapeau-anglaisIn our everyday life, outdoor temperatures are the main signs that indicate summers are getting hotter and hotter, while winters are less and less cold, with no more frost or snow in many areas of the world.
Here’s the global average temperature each month from January 1880 through January 2016, according to data from NASA. These are surface temperature, in other words the place where we are living. The red dot marks the most recent measurement. January 2016 is the new record:

GW_modifié-1

drapeau-francaisVoici les valeurs entre 1970 et aujourd’hui, période pendant laquelle le réchauffement de la Terre a été constant :

drapeau-anglaisHere are the same values from 1970 to now, a period during which Earth has warmed steadily:

GW_modifié-2
++++++++++

drapeau-francaisAprès les mesures de surface, voici celles effectuées par les satellites dans la troposphère (la couche basse de l’atmosphère), par Remote Sensing Systems. Bien sûr, il y a des fluctuations de temps à autre. Il peut y avoir un «accident» avec un hiver très froid ici et là, mais si l’on prend en compte la tendance générale (à savoir la ligne rouge) on voit parfaitement que les températures globales sont en hausse.
La plupart des climatologues s’accordent pour dire que nous sommes responsables de l’augmentation de la température mondiale. La température de notre planète a déjà dépassé de 1°C celle de l’ère «pré-industrielle». Il est généralement admis qu’un réchauffement de 1,5°C – 2°C au-dessus de la moyenne pré-industrielle représente une modification climatique dangereuse.
Au train où vont les choses, il est fort probable que nous atteindrons 2°C avant la fin du siècle. Nous sommes donc très loin des objectifs de la COP 21!

drapeau-anglaisHere is the data for the lower atmosphere – the troposphere – from satellite data according to Remote Sensing Systems. Of course, there are some fluctuations from time to time. There may be an “accident” with an occasional very cold winter, but we have to take the overall tendency (i.e. the red line) into account to realise that global temperatures are rising indeed.
Most climatologists agree to say that we are highly responsible for the global temperature increase. The world has already warmed 1°C above the “pre-industrial”era. The prevailing view is that warming by 1.5°C – 2°C above pre-industrial means dangerous climate change.
At the current rate, we are likely to reach 2°C before the end of the century, thus very far from the COP 21 promises!

drapeau-francaisLe point rouge fait référence à la dernière valeur (février 2016) qui est la plus chaude. Comme dans le graphique précédent, la ligne rouge montre la tendance mondiale qui, en dépit des fluctuations, continue à aller vers le haut.

drapeau-anglaisThe red dot refers to the latest value (February 2016), and it’s the hottest. Like in the previous graph, the red line shows the global tendency which, despite fluctuations, keeps going upward.

++++++++++

drapeau-francaisLa hausse des températures ne concerne pas uniquement la surface de la Terre ou la troposphère. Elle affecte également les océans. Voici la situation pour les 700 premiers mètres de profondeur des océans :

drapeau-anglaisThe temperature increase does not only concern the Earth’s surface or lower atmosphere. It affects the oceans as well. Here what happens for the top 700 metres of the oceans:

GW_modifié-4

Source: Remote Sensing Systems

drapeau-francaisLe graphique montre les moyennes pour chaque trimestre. Là encore, la courbe est orientée vers le haut.

drapeau-anglaisThe graph shows averages for each quarter-year. Again we see the same global upward trend.

++++++++++

drapeau-francaisUne crainte qui accompagne habituellement le réchauffement des océans est la montée de leur niveau, avec les conséquences que cela aurait pour les rivages et les gens qui habitent à proximité. Il y a aussi le risque de voir l’eau de mer venir se mêler aux nappes phréatiques, ce qui les rendrait impropres à la consommation et à l’agriculture
La fonte des glaciers – surtout ceux qui finissent leur course dans la mer – déverse de l’eau dans les océans, tandis que le réchauffement des océans provoque la dilatation thermique de l’eau de mer. Ces deux effets conjugués provoquent une hausse du niveau la mer. Cette hausse a été parfois rapide, parfois lente, mais elle est vraiment rapide en ce moment, et même plus rapide qu’elle ne l’a jamais été depuis au moins 2500 ans (voire beaucoup plus). Voici un graphique montrant le niveau de la mer depuis 1880, en se référant aux mesures effectuées par les marégraphes à travers le monde:

drapeau-anglaisA fear that usually accompanies ocean warming is the rise of sea level, with the consequences it would have for the sea shores and the people who live close to them. There is also the risk of seeing seawater intruding into groundwater supplies, making them unfit for drinking and agriculture
The melting of glaciers – especially tidewater ones – puts more water in the oceans, and heating the oceans causes thermal expansion of seawater. Both effects have caused the sea to rise. Sea level has risen sometimes faster, sometimes slower, but it’s faster now, and in fact is faster than it has been for at least 2500 years (perhaps a lot longer). Here is a graph showing sea level since 1880, based on measurements by tide gauges around the world:

GW_modifié-5

Source: NOAA

drapeau-francaisDepuis 1993, les scientifiques ont la possibilité de mesurer la variation du niveau des océans grâce aux satellites. Voici les résultats fournis par l’Université du Colorado :

drapeau-anglaisSince 1993 scientists have also been measuring the height of the sea surface with satellites. Here are the results released by the University of Colorado:

GW_modifié-6

Source: University of Colorado
++++++++++

drapeau-francaisAlors que les courbes précédentes montrent toutes une hausse, il y en a d’autres qui vont vers le bas, comme celle montrant la quantité de glace dans le monde. Les grandes calottes glaciaires de l’Antarctique et du Groenland perdent des milliards de tonnes de glace chaque année. Voici un graphique montrant la variation, mesurée par satellite, de la quantité de glace dans la calotte du Groenland:

drapeau-anglaisWhile the preceding curves have all been upward, there are others that go downward, like the one showing the amount of ice in the world. The great ice sheets of Antarctica and Greenland, have been losing many billions of tons of ice each year. Here is a graph showing the change in the amount of ice in the Greenland icecap, measured by satellite:

GW_modifié-7

Source: NASA
++++++++++

drapeau-francaisIl n’y a pas que les grandes calottes glaciaires qui fondent. Il en va de même pour la glace de mer dont la surface se réduit comme peau de chagrin et qui est beaucoup plus mince que dans le passé (voir mes notes précédentes sur la situation de la glace de mer dans l’Arctique). Les glaciers du monde suivent la même tendance. La plupart d’entre eux reculent. J’ai eu à plusieurs reprises l’occasion de montrer le phénomène en Alaska ou dans les Alpes. Il y a toutefois quelques exceptions locales et certains glaciers continuent à avancer, comme sur le Mont Shasta aux États-Unis, mais la grande majorité est en train de disparaître sous nos yeux. Une récente enquête menée par le service de surveillance des glaciers dans le monde a diffusé le bilan ci-dessous pour différentes régions:

drapeau-anglaisIt’s not just the great icecaps that are melting, so is the sea ice whose surface is getting smaller and which is much thinner than in the past (see my previous posts about the situation odf sea ice in the Arctic). The world’s glaciers are following the same trend. Most of them are receding. Many times, I have had the opportunity to show the phenomenon in Alaska or in the Alps. However, there are some local exceptions and you can find a few that are actually growing, like on Mount Shasta in the U.S., but the vast majority are disappearing right before our eyes. A recent survey by the world glacier monitoring service produced this summary for different regions:

GW_modifié-8

Source: WGMS
++++++++++

drapeau-francaisVoici maintenant la surface couverte par la glace de mer. Pendant de nombreuses années, le phénomène le plus spectaculaire était la faible surface couverte par la glace à la fin de l’été dans l’Arctique. Le phénomène se produit maintenant toute l’année, et 2016 présente la plus faible étendue de glace de mer jamais observée pendant les mois de janvier et février. La glace de mer atteint en général son maximum vers le mois de mars et son minimum en septembre, mais pas en 2016 ! Voici la situation depuis les années 1980 :

drapeau-anglaisHere is now the extent of sea ice in the Arctic. For many years the most dramatic phenomenon was the end-of-summer decline in September Arctic sea ice. But it is now declining year-round, and 2016 brought the lowest sea ice extent on record for the months of both January and February:
The sea ice peaks around March and bottoms out in September. Here is the situation from the 1980s:

GW_modifié-9

GW_modifié-10

Source: National Snow and Ice data Center

drapeau-francaisLa situation de la glace de mer en Antarctique est différente. Le graphique ci-dessous montre que sa surface s’est accrue vers 2010, même si on observe une réduction depuis quelque temps. Il faudra attendre un peu pour avoir confirmation des dernières observations :

drapeau-anglaisThe Antarctic sea ice goes differently. This graph shows that in the early 2010s it actually increased, although it has recently come back down. We need to wait some more time to check whether the latest trend is confirmed :

GW_modifié-11

Source: National Snow and Ice data Center

Source : Tamino weather and Climate – Open mind :
https://tamino.wordpress.com/2016/01/24/weather-and-climate/

.

L’acidification des océans Arctique et Antarctique // Acidification of Arctic and Antarctic oceans

drapeau-francaisUne étude récente de la National Oceanic and Atmospheric Administration (NOAA) montre que l’Océan Arctique et l’Océan Pacifique Nord, ainsi que les eaux antarctiques, s’acidifient plus vite qu’ailleurs dans le monde. L’étude, qui a analysé des mesures fournies par des milliers de stations à travers le monde, révèle que les eaux de ces océans s’acidifient plus rapidement car le dioxyde de carbone absorbé dans l’atmosphère se combine avec des sources naturelles de carbone transportées par les courants marins et maintenues par les basses températures dans ces régions du globe.
L’eau plus acide dissout plus facilement le carbonate de calcium grâce auquel de nombreuses espèces marines fabriquent leurs coquilles. Cet excès d’acidité de l’eau pourrait bouleverser les écosystèmes entiers et nuire indirectement à d’autres espèces importantes comme le saumon.
La nouvelle étude utilise les données de stations d’échantillonnage permettant d’évaluer les niveaux de saturation en aragonite dans les océans du monde entier. L’aragonite est une forme de carbonate de calcium présente dans l’eau de mer que de nombreuses créatures utilisent pour façonner leurs coquilles. Lorsque l’eau est saturée, elle contient une quantité maximale d’aragonite dissoute. Quand elle est sursaturée, elle contient d’un excès d’aragonite en suspension. Tous les océans du monde, à une profondeur de 50 mètres, sont normalement sursaturés en aragonite. Pourtant, les dernières mesures montrent que les niveaux de saturation en aragonite diminuent à l’échelle mondiale.
L’étude révèle qu’à des profondeurs inférieures à 100 mètres, les niveaux de saturation en aragonite ont diminué en moyenne de 0,4 pour cent par an entre la décennie 1989-1998 et la décennie 1998-2010. De faibles niveaux de saturation en aragonite ont été constatés dans l’Océan Pacifique Nord, à des latitudes supérieures à 50 degrés. À des profondeurs de 200 mètres et au-dessous, toutes les régions de cette partie du Pacifique où ont été effectuées les mesures ont montré une sous-saturation en aragonite.
En revanche, dans l’Océan Atlantique, on a constaté que les eaux étaient sursaturées en aragonite à des niveaux beaucoup plus profonds, grâce à une teneur inférieure en carbone résiduel en provenance d’organismes en décomposition.
L’Arctique, l’Antarctique et le Pacifique Nord sont vulnérables à l’acidification en grande partie à cause de leurs eaux froides qui retiennent le dioxyde de carbone. Ces régions, ainsi que quelques autres dans le monde, comme une zone au large de la côte africaine, sont plus vulnérables parce que les flux générés par les courants océaniques en perpétuel mouvement introduisent des eaux riches en dioxyde de carbone en provenance d’autres régions du monde, ce qui fait remonter des eaux plus anciennes vers la surface.
Source: NOAA.

——————————-

drapeau-anglaisA new National Oceanic and Atmospheric Administration (NOAA) study shows that the Arctic Ocean and the northern Pacific Ocean, along with Antarctic waters, are acidifying faster than the rest of the world’s marine waters. The study, which analyzed measurements from thousands of monitoring stations across the globe, found these bodies acidified faster as carbon dioxide absorbed from the atmosphere combines with natural sources of carbon swept into them by marine currents and held fast by low temperatures.
The increasingly acidic water more easily dissolves the calcium carbonate from which many marine species make their shells. That could upend entire ecosystems, harming other important species, including salmon.
The new study uses data from sampling stations to evaluate aragonite saturation levels in oceans worldwide. Aragonite is a form of calcium carbonate that sea creatures use to build shells, is held in the water. When water is saturated, it holds the maximum amount of dissolved aragonite. When it is supersaturated, it holds excess suspended aragonite. All the world’s oceans, measured down to a depth of 50 meters, are supersaturated with aragonite. Still, those measurements show that aragonite saturation levels have slipped globally.
The study found that at depths shallower than 100 meters, aragonite saturation levels declined by an average rate of 0.4 percent a year from the decade 1989-1998 to the decade 1998-2010. Low levels of aragonite saturation were pronounced in the North Pacific Ocean at latitudes above 50 degrees north, according to the study. At depths of 200 meters and below, all the sections measured in that part of the Pacific showed undersaturated states for aragonite.
In contrast, the Atlantic Ocean was found to have aragonite-supersaturated waters down to much deeper levels, thanks to a lower level of lingering carbon from decaying organisms.
The Arctic, Antarctic and North Pacific are vulnerable to acidification in part because of their cold waters, which hold in carbon dioxide. Those regions, along with some other marine areas in the world, such as a region off the coast of Africa, are more vulnerable because the pattern of ever-moving ocean currents brings in carbon-dioxide-rich waters from elsewhere in the world and causes that older water to rise up to shallower levels closer to the surface.
Source : NOAA.

Aragonite copie

Source: NOAA.

Fonte de la glace en Arctique et en Antarctique // Ice melting in Arctic and Antarctica

drapeau francaisUne étude récente publiée dans Geophysical Research Letters confirme que l’Arctique s’est réchauffé et a vu son taux d’humidité croître depuis le début du 21ème siècle, tendance qui devrait se poursuivre dans les années à venir.
Les données fournies par la NASA montrent que la température moyenne de surface dans l’ensemble de l’Océan Arctique a augmenté en moyenne de 0,16 ° C par an de 2003 à 2013, tandis que la température de l’air a augmenté de 0,09 ° C par an au cours de la même période. Cependant, les changements ne sont pas répartis uniformément. Par exemple on a observé une forte augmentation au cours de la période allant de novembre à avril, au cours de laquelle la température globale de surface de l’Arctique a augmenté de 2,5 ° C et la température de l’air a augmenté de 1,5 ° C de 2003 à 2013.
Les données de la NASA ont également montré que le flux d’humidité – le transit de la vapeur d’eau entre l’océan et l’air – a augmenté presque tous les mois, mais la croissance la plus spectaculaire a été observée au cours des mois pendant lesquels l’eau était le moins recouverte de glace.
Cette étude est la première à faire le point sur les changements dans l’Arctique en utilisant les données fournies par le nouveau système AIRS de météo surveillance la NASA à bord du satellite Aqua envoyé dans l’espace en 2002. La superficie de la banquise arctique diminue depuis les premiers relevés satellitaires effectués en 1979. Le taux de réduction de la surface occupée par la glace en septembre (le mois avec le moins de glace de mer) a été de 13,3% jusqu’en 2014. Depuis le lancement du satellite Aqua équipé du système AIRS en 2002, la réduction de la glace a été spectaculaire, avec un niveau record atteint en 2012.
L’étude révèle qu’à l’échelle de l’Arctique, le début de la fonte de la glace a avancé de 6,2 jours de 2003 à 2013 et tandis que la formation de la banquise a été retardée de 11,2 jours durant cette même période. Il faut toutefois remarquer que les changements dans la répartition de la chaleur et du flux d’humidité, de même que dans le gel et le dégel de la glace de mer, sont variables et ne sont pas répartis uniformément dans tout l’Arctique.
Se référant aux tendances des données fournies par le système AIRS, les scientifiques pensent que l’Arctique va se réchauffer et devenir plus humide à l’avenir. On devrait assister à l’apparition d’un « nouveau climat arctique » dominé par des processus gérés par de vastes zones libres de glace pendant la majeure partie de l’année, avec un allongement de la période de fonte de la glace.

De l’autre côté de la Terre, en Antarctique, région particulièrement stable jusqu’à maintenant, la glace a commencé à fondre de manière spectaculaire et à un rythme rapide
L’analyse des données satellitaires montre que la couche de glace qui recouvre le sud de la péninsule antarctique avec ses nombreux glaciers, et qui était stable de 2000 à 2009, a commencé à fondre rapidement depuis cette date. Les glaciers, qui s’étirent le long de 750 km de côtes, déversent 60 kilomètres cubes de glace dans l’océan chaque année.
Dans une étude publiée dans le numéro de mai de la revue Science, un scientifique de l’Université de Bristol écrit que, dans quelques années, « la dynamique de la région sera totalement modifiée.» Les instruments de télédétection du satellite CryoSat 2 révèlent que la surface de certains glaciers perd en épaisseur près de quatre mètres chaque année. Cette perte de la glace est si importante qu’elle est également à l’origine des changements dans le champ gravitationnel de la Terre détectés par les satellites GRACE (Gravity Recovery et Climat Experiment).
La disparition rapide des glaciers n’est pas provoquée par une réduction des chutes de neige annuelles ou par des températures de l’air plus élevées. Elle est causée par l’amincissement des plateformes littorales de glace. Lorsque ces plateformes sont épaisses, elles ralentissent ou arrêtent la progression des glaciers et les empêchent de glisser dans la mer. Mais si ces plateformes deviennent moins épaisses, elles ne peuvent plus retenir l’énorme masse de glace et les glaciers accélèrent leur avancée vers l’océan. Ce mécanisme a déjà permis à des glaciers d’autres régions de l’Antarctique d’accélérer leur progression vers la mer.
Dans l’ensemble, les plateformes de glace qui bordent la partie sud de la péninsule antarctique ont perdu près d’un cinquième de leur épaisseur depuis le début des années 1990. Les scientifiques pensent que la cause probable est un changement de direction des vents dans l’Océan Austral, suite au changement climatique. Avec ce changement, les vents poussent l’eau plus chaude vers les plateformes de glace, ce qui les fait fondre par dessous.
En raison de cette fonte de la glace, en quelques années le sud de la péninsule de l’Antarctique est devenu le deuxième contributeur à l’élévation du niveau de la mer dans l’Antarctique et pourrait jouer un rôle encore plus important dans un proche avenir. Comme l’a fait remarquer un chercheur : « Une fois que la perte de glace dynamique a été initiée, il est difficile de l’arrêter. »
Source: Scientific American.

————————————————————

drapeau anglaisA new study published in Geophysical Research Letters confirms that the Arctic has become warmer and wetter since the beginning of the 21st century, a self-reinforcing trend likely to continue.

Data from NASA shows that average surface temperatures across the Arctic Ocean increased an average of 0.16°C per year from 2003 to 2013, and air temperatures rose 0.09°C annually over the same period. However, the changes weren’t evenly distributed. They were dominated by large increases in the November-to-April period, during which Arctic-wide surface temperatures rose 2.5°C and air temperatures rose 1.5°C from 2003 to 2013.

The NASA data also showed that moisture flux – the transport of water vapour from the ocean to the air – increased in nearly all the months, but grew most dramatically during months of maximum open water.

The study is the first to summarize changes in the Arctic using data from NASA’s new AIRS weather-monitoring system attached to the agency’s Aqua satellite that was launched into space in 2002. Arctic sea-ice extent has diminished since satellite records began in 1979. In that period, the rate of ice-extent decline in September (the month of minimum sea ice) was 13.3% through 2014. Since the 2002 launch of the AIRS-equipped Aqua satellite, ice changes have been dramatic; the record low was hit in 2012.

The study found that Arctic-wide, the onset of melt advanced by 6.2 days from 2003 to 2013 and the annual refreeze was delayed by 11.2 days. However, the changes in the patterns of heat and levels of moisture flux, like the changes in sea-ice melt and freeze, are variable and not uniform throughout the Arctic.

Based on trends seen in the AIRS data, scientists expect the Arctic to become warmer and wetter in the future, changing to a ‘New Arctic’ climate, one that is dominated by processes affected by large ice-free areas for the majority of the year as the melt season lengthens.

On the other side of the Earth, in the once-stable region of Antarctica, ice is suddenly melting, and at a fast rate

Analysis of satellite data shows that although the massive ice sheet on the southern Antarctic Peninsula, made up of multiple glaciers, was stable from 2000 to 2009, since then it has begun to melt rapidly. The glaciers, stretching along 750 kilometres of coastline, are shedding 60 cubic kilometres of ice into the ocean each year.

In a study published in the May issue of Science, a scientist at the University of Bristol writes that in just a few years the dynamics of the region “completely shifted. » The surface of some of the glaciers is dropping by as much as four metres each year, as measured by remote-sensing instruments on the CryoSat 2 satellite. The ice loss is so great it is also causing changes in Earth’s gravitational field, which have been detected by GRACE (Gravity Recovery and Climate Experiment) satellites.

The glaciers’ quick disappearance is not caused by a reduction in annual snowfall or by warmer air temperatures. It is caused by thinning ice shelves. When the shelves are thick, they slow or even stop the glaciers they are connected to from sliding into the sea. But if the shelves thin too much they can no longer hold back the enormous ice mass on land, and the glaciers accelerate their march into the ocean. This mechanism already has allowed glaciers in other regions of Antarctica to speed up their progress toward the sea.

Overall, the ice shelves along the southern Antarctic Peninsula have lost almost one fifth of their thickness since the early 1990s. Scientists say the likely cause is a change in winds across the Southern Ocean, a result of climate change. The shifting winds are pushing warmer water toward the ice shelves, melting them from below.

Because of this melting, in a few years the southern Antarctic Peninsula has become the second largest contributor to sea level rise in Antarctica and could become an even bigger player in the near future. As one scientist put it, “once dynamic ice loss has been initiated, it is hard to stop.”

Source: Scientific American.

Photos:  C.  Grandpey

Des volcans sous la glace de l’Antarctique // Volcanoes beneath the Antarctic ice sheet

drapeau francaisSelon une nouvelle étude présentée le 15 décembre dernier lors de la réunion annuelle de l’American Geophysical Union, des éruptions volcaniques ont percé à deux reprises une région reculée de l’inlandsis de l’Antarctique de l’Ouest dans les 50 000 dernières années. En effet, des couches distinctes de cendre de couleur marron dans une carotte de glace profonde sont la preuve de violentes explosions qui se sont produites il y a environ 22 470 et 45 381 années près du West Antarctic Ice Sheet (WAIS) Divide*. Toutefois, leur origine reste un mystère.
Les volcans actifs les plus proches qui se dressent au-dessus de la glace se trouvent à plus de 300 kilomètres de cette région. Certes, les éruptions de ces volcans ont envoyé de la cendre sur la zone du WAIS Divide, avec des éclats vitreux que l’on retrouve dans les couches les plus jeunes de la carotte de glace. Toutefois, les particules de cendre décrites dans la nouvelle étude sont constituées de blocs trop grossiers pour avoir parcouru de longues distances, même poussés par les vents tempétueux de l’Antarctique. Cette cendre est également chimiquement différente de celle émise par les volcans lointains.
Les éclats d’aspect grossier et vitreux emprisonnés dans la glace qui fait l’objet de l’étude sont typiques des éruptions phréatomagmatiques. Les scientifiques supposent que la source volcanique se trouve dans les profondeurs, à proximité du Divide, là où la couche de glace atteint plus de 3000 mètres d’épaisseur. Il y a trois volcans prisonniers de la glace sur une zone d’environ 200 km, et on pense que d’autres pourraient leur tenir compagnie. Les anomalies gravimétriques et magnétiques ont révélé neuf volcans sous-glaciaires potentiels à proximité du WAIS Divide.
De plus, les séismes laissent supposer que du magma continue à monter des profondeurs de la Terre sous un volcan sous-glaciaire, jusque-là inconnu, dans la Chaîne du Comité Exécutif de l’Antarctique Occidental, qui est sorti de la glace quand a débuté la crise sismique de 2010.  Certains scientifiques pensent que si un volcan entre en éruption sous la banquise, la fonte de la glace peut produire des millions de mètres cubes d’eau, avec un risque de déstabilisation des grands glaciers. Ce n’est qu’une hypothèse car tous les scientifiques ne sont pas d’accord sur les effets potentiels d’une éruption sous-glaciaire.
Une chose est sure : L’inlandsis de l’Antarctique occidental s’est formé sur et autour d’un grand nombre de volcans actifs. Par exemple, les carottes de glace ont montré que des volcans côtiers comme le  Mont Berlin, le Mont Takahe et le Mont Siple sont entrés en éruption une vingtaine de fois dans les 571 000 dernières années. Des études récentes ont révélé que l’activité géothermique a chauffé la partie inférieure de la banquise dans le voisinage de certains volcans recouverts de glace. Ainsi, sur le site de forage du West Antarctic Divide, les chercheurs ont extrait des carottes de glace révélant une histoire d’environ 70 000 années, mais pas 100 000 années comme on l’espérait, car la roche encaissante était plus chaude que prévu !
Source: Live Science.

A compléter avec mes notes du 21 novembre 2013 et du 15 juin 2014 sur ce même sujet.

*West Antarctic Ice Sheet (WAIS) Divide : Projet de carottage profond financé par la National Science Foundation. Son objectif est de recueillir une carotte de glace profonde susceptible de créer l’enregistrement le plus grand et le plus détaillé possible de l’effet de serre pour les 100 000 dernières années

 ———————————————————

drapeau anglaisAccording to a new study presented on December 15th at the annual meeting of the American Geophysical Union, volcanoes pierced a remote part of the West Antarctic Ice Sheet twice in the last 50,000 years. Indeed, distinctive layers of brown ash in a deep ice core are evidence of violent volcanic explosions that occurred about 22,470 and 45,381 years ago, near the West Antarctic Ice Sheet (WAIS) Divide*. Their source, however, is a mystery.

The closest active volcanoes that rise above the ice are more than 300 kilometres away from this area. The eruptions from these volcanoes have sent ash over the West Antarctica Divide, leaving glassy shards embedded in younger layers of the ice core. However, the ash particles described in the new study are too blocky and coarse to travel long distances, even pushed by Antarctica’s blizzards. The ash is also chemically different from eruptions at the distant volcanoes.

The rough, glassy shards embedded in the ice of the study are typical of phreatomagmatic eruptions. Scientists suspect the volcanic source is buried close to the Divide, where the ice sheet is more than 3,000 metres thick. There are three volcanoes entombed in ice within about 200 km, and even more could be present.

Earthquakes suggest magma still rises beneath a previously unknown subglacial volcano in West Antarctica’s Executive Committee Range, which came out of the ice when shaking started in 2010. Gravity and magnetic anomalies revealed nine potential subglacial volcanoes near the WAIS Divide.

If a volcano erupts under the ice sheet, it could melt out millions of gallons of water, possibly destabilizing major glaciers. However, scientists don’t yet agree on the potential effects of a subglacial eruption.

The West Antarctic Ice Sheet grew up and around an abundance of active volcanoes. For instance, the coastal volcanoes Mount Berlin, Mount Takahe and Mount Siple have erupted some 20 times in the past 571,000 years, according to ash layers in ice cores. Geothermal activity has heated the bottom of the ice sheet in the vicinity of some ice-covered volcanoes, according to recent studies. For instance, at the West Antarctic Divide drilling site, researchers recovered about 70,000 years of ice, not 100,000 years as was expected, because the bedrock was hotter than they had assumed!

Source : Live Science.

See more information in my notes of November 21st 2013 and June 15th 2014.

*West Antarctic Ice Sheet (WAIS) Divide: A drilling project funded by the National Science whose aim is to extract a deep ice core likely to develop the most detailed record of greenhouse gases possible for the last 100,000 years.

carottes-blog

Les carottes de glace renferment les secrets de  l’histoire de notre planète. (Crédit photo: Wikipedia)