Piton de la Fournaise (Ile de la Réunion): Retour à la normale

drapeau-francaisJe commencerai cette note par la conclusion du dernier bulletin de l’OVPF en date du 15 décembre 2015 : « Depuis le début du mois de décembre, l’Observatoire Volcanologique observe un retour au calme du Piton de la Fournaise. Au regard de l’histoire éruptive de ce volcan, nous savons néanmoins que la situation peut changer à tout moment ». Bien que le volcan soit truffé d’instruments, notre capacité à prévoir les éruptions reste très faible.
L’Observatoire rappelle que le 31 octobre 2015, après un peu plus de 67 jours d’activité, l’éruption qui a débuté le 24 août 2015 à 18h50 s’est arrêtée dans sa phase effusive.
Les scientifiques ont enregistré 322 séismes volcano-tectoniques depuis la fin de la phase effusive dont 77 depuis le retour à la Vigilance.
Concernant les mesures de déformation, l’OVPF a enregistré depuis la fin de la phase effusive une reprise de l’inflation relativement rapide suivie, depuis la fin du mois de novembre, d’un arrêt de l’inflation.

————————————–

drapeau-anglaisI will begin this post with the conclusion of the last report released by OVPF on December 15th, 2015: « Since the beginning of December, the Observatory has observed a return to normal levels on the Piton de la Fournaise. Given the eruptive history of the volcano, we do know that the situation can change at any time. » Although the volcano is fully equipped with instruments, our ability to predict eruptions remains very low.
The Observatory recalls that on October 31st, 2015, after a little more than 67 days of activity, the eruption that had begun on August 24th, 2015 at 18:50 stopped in its effusive phase.
322 volcano tectonic earthquakes have been recorded since the end of the effusive stage, including 77 events since the return to “Vigilance” (= Watch).
Regarding the deformation measurements, OVPF recorded by the end of the effusive stage a rapid episode of inflation which stopped at the end of November.

Piton copie

Sismicité depuis le 1er novembre 2015 (Source : OVPF)

Une nouvelle approche de l’intérieur de la Terre // A new approach to the Earth’s interior

drapeau-francaisOn sait depuis pas mal de temps que les cristaux de pérovskite silicatée sont l’un des composants majeurs des roches du manteau inférieur de la Terre. Mais ce minéral n’avait jamais été observé à l’état naturel. Il a fallu attendre 2014 pour qu’une telle observation soit effectuée. On lui a alors donné le nom de bridgmanite pour honorer la mémoire de Percy Williams Bridgman, un des pionniers de la pétrologie des roches sous hautes pressions.
Les observations sismiques de l’intérieur de notre planète ont révélé trois structures distinctes marquant la limite entre son noyau métallique et le manteau silicaté. Ces structures comprennent des restes de plaques subductées de la surface de la Terre, des zones de propagation ultra faible des ondes sismiques riches en fer, et de grandes zones denses de composition et minéralogie inconnues. Selon le California Institute of Technology (Caltech), on dispose aujourd’hui de nouvelles preuves montrant l’origine de ces structures.
La couche en question se trouve à une profondeur de 2 900 km et sa composition est très importante pour comprendre l’évolution et la dynamique de la Terre. Une équipe scientifique a effectué une étude qui indique que la bridgmanite, le minéral le plus répandu sur notre planète, pourrait occuper 20% de la zone limite entre le noyau et le manteau. Les résultats de ce travail de recherche pourraient expliquer les observations sismiques précédentes et les résultats de modélisation géodynamique.
Tout en occupant environ 20% de la surface de la limite entre le noyau et le manteau, la bridgemanite remonte jusqu’à une profondeur d’environ 1 500 km. Cette découverte représente un progrès scientifique car bien que la bridgmanite soit le minéral le plus abondant sur Terre, ce n’est que récemment que les chercheurs ont eu la possibilité de mesurer avec précision des échantillons dans un environnement similaire à celui que connaissent les matériaux à l’intérieur de la Terre.
L’étude a été réalisée par l’Advanced Photon Source du Laboratoire National d’Argonne dans l’Illinois avec des mesures précises aux rayons X et deux faisceaux laser différents (voir image ci-dessous) sur des échantillons de bridgmanite synthétique comprimés par des cellules à enclumes de diamant à plus de 1 million de fois la pression atmosphérique de la Terre et chauffés à des milliers de degrés. Les données recueillies ont permis aux scientifiques de comparer les résultats d’observations sismiques de la frontière noyau-manteau.
Les nouvelles mesures de la bridgmanite dans des conditions de manteau profond montrent que ces régions de l’intérieur de la Terre sont très probablement denses et riches en fer, ce qui leur a permis de rester stables au cours des temps géologiques.
Les chercheurs ont également mesuré le comportement du fer dans la structure cristalline de la bridgmanite en utilisant une technique de spectroscopie Mössbauer. Les résultats ont montré que la bridgmanite ferrifère est stable dans des conditions de températures extrêmes (plus de 2 000°C) et des pressions jusqu’à 130 gigapascals (GPa).
Cette étude est la première à combiner des mesures de densité et de rigidité haute précision avec la spectroscopie Mössbauer, ce qui a permis d’identifier le comportement du fer au sein de la bridgmanite. Les résultats montrent également qu’il est impossible que ces régions contiennent une grande quantité d’éléments radiogéniques.
Au vu des derniers résultats, il semble que le reste du manteau inférieur ne soit pas entièrement composé de bridgmanite, comme le pensait auparavant ; d’autres minéraux sont forcément présents
Il reste encore beaucoup de travail à faire, comme l’identification de la dynamique des plaques pendant la subduction, phénomène qui joue probablement un rôle en fournissant une force extérieure pour façonner les grandes régions riches en bridgmanite.
Source : Caltech : http://www.caltech.edu/

———————————–

drapeau-anglaisIt had been known for quite a long time that silicate perovskite crystals were a major component of the lower mantle rocks. But this mineral had never been observed in nature. It was not until 2014 that such an observation was made. It was then given the name bridgmanite to honor the memory of Percy Williams Bridgman, a pioneer of petrology rocks under high pressures.
Seismic observations of our planet’s interior have revealed three distinct structures, marking the boundary between its metallic core and silicate mantle. The structures include remnants of subducted plates from the Earth’s surface, ultralow velocity zones rich in iron and large dense provinces of unknown composition and mineralogy. New evidence has emerged showing the origin of these features, California Institute of Technology (Caltech) recently announced.
The layer in question is 2 900 km (1 802 miles) deep and its composition is highly important for understanding the evolution and dynamics of our Earth. A team of scientists has conducted a research which suggests that bridgmanite, the most common mineral on our planet, might occupy 20% of the boundary. Results of the research could explain previous seismic observations and geodynamical modeling results.
Beside occupying about 20 percent of the core-mantle boundary surface bridgmanite and rise up to a depth of about 1 500 km. This finding represents a breakthrough because although bridgmanite is the earth’s most abundant mineral, the researchers only recently have had the ability to precisely measure samples of it in an environment similar to what they think the materials are experiencing inside the earth.
The study has been conducted by taking precise X-ray measurements, with two different beamlines at the Advanced Photon Source of Argonne National Laboratory in Illinois, of synthetic bridgmanite samples compressed by diamond anvil cells (see image below) to over 1 million times the earth’s atmospheric pressure and heated to thousands of degrees. Gathered data has allowed the scientists to compare the results to seismic observations of the core-mantle boundary.
The new measurements of bridgmanite at deep mantle conditions allowed to show that these provinces are very likely to be dense and iron-rich, helping them to remain stable over geologic time.
Researchers have also measured the behavior of iron in the crystal structure of bridgmanite, by using a Mössbauer spectroscopy technique. Results showed the iron-bearing bridgmanite is stable in conditions of extreme temperatures over 2 000 °C (3 632 °F) and pressures up to 130 gigapascals (GPa).
This is the first study to combine high-accuracy density and stiffness measurements with Mössbauer spectroscopy, allowing to pinpoint iron’s behaviour within bridgmanite. The results also show that these provinces cannot possibly contain a large complement of radiogenic elements.
According to the newest results, it seems the rest of the lower mantle is not entirely composed of bridgmanite, as previously thought, and other phases, or minerals, need to be present as well.
There is still a lot of work to be done, such as identifying the dynamics of subducting slabs, which probably plays a role in providing an external force to shape these large bridgmanite provinces.
Source: Caltech: http://www.caltech.edu/

bridgmanite copie

Cette image montre un échantillon de bridgmanite porté à haute température par laser entre deux cellules à enclumes de diamant. Cette manipulation permet aux chercheurs de soumettre l’échantillon à des pressions supérieures à un million de fois l’atmosphère terrestre avec des températures de plusieurs milliers de degrés Celsius.