La fonte des glaces perturbe l’axe de la Terre // Ice melting disturbs Earth’s axis

Depuis 1980, les pôles nord et sud de la Terre ont dérivé d’environ 3,90 mètres. Les pôles sont l’endroit où la surface de notre planète croise son axe de rotation, une ligne invisible qui passe par le centre de la masse de la Terre, et autour de laquelle elle tourne. Cependant, les emplacements géographiques des pôles ne sont pas fixes : lorsque l’axe de la Terre se déplace, les pôles font de même.
Une étude publiée en mars 2021 a révélé que l’axe de la Terre a commencé à se déplacer de manière significative en 1995, ce qui a accéléré le mouvement des pôles et changé sa direction. La cause de ce changement était la fonte des glaciers. En effet, la fonte des glaces, en particulier la calotte glaciaire du Groenland et de nombreux glaciers dans le monde, modifie la répartition de la masse de la Terre
Si l’on prend en compte des milliers d’années d’observation, on se rend compte que l’axe de la Terre pointe dans une seule direction : vers l’étoile polaire, également connue sous le nom de Polaris. Toutefois, les astronomes ont vite compris que ce n’était pas toujours le cas. Parfois, l’axe pointe vers une autre étoile, hésite, puis revient à l’étoile polaire.
La Terre n’est pas une boule statique. Le noyau en fusion peut se déplacer, avec un mouvement de flux et de reflux. La croûte peut se contracter ou se dilater, selon ce qui se trouve au-dessus. On peut comparer la Terre à une toupie : si le poids de la toupie est uniformément réparti, elle tourne parfaitement, sans aucune oscillation d’un côté ou de l’autre. Mais si une partie du poids de la toupie se déplace d’un côté ou de l’autre, cela modifie le centre de sa masse et son axe de rotation. Elle se met à pencher vers le côté le plus lourd lorsqu’elle tourne. La même chose se produit avec la Terre lorsque le poids se déplace d’une zone à une autre.
Parfois, des changements dans la répartition de la roche en fusion dans le noyau externe de la Terre peuvent modifier la répartition de la masse de la planète. De plus, la façon dont l’eau est répartie à la surface de la Terre joue également un rôle important.
Ainsi, lorsque le réchauffement climatique a provoqué une énorme fonte des glaciers dans les régions polaires de la planète et que cette eau a rejoint l’océan, le poids de cette eau s’est réparti sur une zone différente. Cette redistribution est le principal moteur de la dérive polaire observée par les scientifiques au cours des dernières décennies.
La tendance a commencé vers 1995. Avant le milieu des années 1990, les données satellitaires montraient que les pôles se déplaçaient lentement vers le sud. Ensuite, ils ont tourné à gauche et ont commencé à se déplacer vers l’est à un rythme accéléré, à raison d’environ 0,25 centimètre par an. La vitesse moyenne de dérive des pôles entre 1995 et 2020 était 17 fois plus rapide que celle de 1981 à 1995.
Cette accélération va de pair avec l’accélération de la fonte autour des pôles nord et sud. Elle a été provoquée par la hausse des températures de surface et des océans de la planète. Le Groenland a perdu plus de 4,2 billions de tonnes de glace depuis 1992, ce qui a fait monter le niveau de la mer d’un centimètre. Le rythme de cette fonte a été multiplié par sept, passant de 36 milliards de tonnes par an dans les années 1990 à 280 milliards de tonnes par an au cours de la dernière décennie.
La fonte des glaciers de l’Antarctique s’accélère également. Dans les années 1980, l’Antarctique perdait 40 milliards de tonnes de glace par an. Au cours de la dernière décennie, ce nombre est passé à une moyenne de 252 milliards de tonnes par an.
L’étude de 2021 montre que les changements dans la quantité d’eau douce stockée sous terre affectent également la dérive polaire. Une fois que les humains ont pompé cette eau souterraine à la surface pour l’utiliser comme eau potable ou pour l’agriculture, elle finit par se déverser dans les rivières et les océans, redistribuant le poids de l’eau à la surface de la Terre. Près de 20 000 milliards de tonnes d’eau souterraine ont été extraites de la Terre depuis les années 1950.
L’axe de rotation de la Terre ne se déplace pas régulièrement dans une direction. En un an, il peut également se déplacer d’avant en arrière. Ces variations sont influencées par « tout ce qui se passe à la surface de la planète » au fil des décennies. Il est donc difficile de dire exactement ce qui a causé les variations dans la position de l’axe.
Dans une étude publiée en 2016, les chercheurs ont pu retracer un déplacement «interannuel» de l’axe dû aux pluies et sécheresses extrêmes. Un sol extrêmement gorgé d’eau est très lourd, alors qu’une sécheresse extrême peut soudainement rendre le sol très léger. C’est suffisant pour modifier la position de l’axe de la Terre,même si ce n’est que très légèrement.
L’axe de rotation de la Terre n’est pas vertical de haut en bas comme les axes de Mercure ou de Jupiter ; il présente une inclinaison de 23,5 degrés. C’est pourquoi les hémisphères nord et sud reçoivent des quantités variables de lumière solaire à différents moments de l’année. C’est aussi pourquoi nous avons des saisons.
Le changement récent de l’axe de la Terre n’affectera pas notre vie quotidienne, mais il pourrait légèrement modifier la durée de nos journées. La Terre met un peu moins de 24 heures pour effectuer une rotation. Le mouvement de son axe, et donc de ses pôles, pourrait ajouter des millisecondes à ce temps de rotation, allongeant un peu nos journées. Cependant, il n’y a aucune raison de s’inquiéter car l’amplitude du changement d’axe de rotation est vraiment faible. Le changement d’heure deux fois dans l’année est certainement plus perturbateur !
Source : Business Insider via Yahoo Actualités.

———————————————-

Since 1980, Earth’s north and south poles have drifted about 3.90 meters. The poles are where the planet’s surface intersects with its axis of rotation, the invisible line running through the center of Earth’s mass, which it spins around. However, the poles’ geographic locations are not fixed: As the Earth’s axis moves, so do the poles.

A study published in March 2021 found that Earth’s axis started shifting drastically in 1995, speeding the movement of the poles and changing its direction. The culprit behind that shift was melting glaciers. Indeed, melting ice, especially in the Greenland ice sheet and many glaciers around the globe, changes how Earth’s weight is distributed

If one averages out thousands of years of observation the Earth’s axis points in a single direction — toward the North Star, also known as Polaris. But astronomers quickly realized that was not always the case. Sometimes, the axis would point at another star, wobble around, then come back to the North Star.

The Earth is not a static ball. Its molten core can shift, ebb and flow. Its crust can squish and expand, depending on what’s laying on top of it. One can compare the Earth with a spinning top: If the top’s weight is evenly distributed, it will whirl perfectly, without any wobbling to one side or another. But if some of the weight happens to shift to one side or the other, it changes the top’s center of mass and axis of rotation, leading it to lean toward the heavier side as it spins. The same thing happens to the Earth when weight moves from one area to another.

Sometimes, changes in the distribution of molten rock in Earth’s outer core can alter how the planet’s mass is distributed. The way water is distributed on Earth’s surface also plays a big role.

So when climate change caused a huge melt of glaciers in the planet’s polar regions and that water joined the ocean, the weight of that water got spread across a different area. That redistribution is the main driver of the polar drift scientists have observed in the past few decades.

The trend started around 1995. Before the mid-1990s, satellite data showed that the poles were moving slowly south. Then, they turned left and started shifting to the east at an accelerated rate, moving by about 0.25 centimeters per year. The poles’ average drift speed between 1995 and 2020 was 17 times faster than that from 1981 to 1995.

That acceleration aligns with accelerated melting around the north and south poles, which has been driven by the planet’s rising surface and ocean temperatures. Greenland has lost more than 4.2 trillion tons of ice since 1992, which has raised global sea levels by one centimeter. The rate of that melt increased sevenfold, from 36 billion tons per year in the 1990s to 280 billion tons per year in the past decade.

Antarctica’s glacial melting is also speeding up. In the 1980s, Antarctica lost 40 billion tons of ice annually. In the past decade, that number jumped to an average of 252 billion tons per year.

The 2021 study suggested that changes in how much fresh water is stored underground affect polar drift, too. Once humans pump that groundwater to the surface for use as drinking water or for agriculture, it eventually flows into rivers and oceans, redistributing that water weight to Earth’s surface. Nearly 20 trillion tons of groundwater have been pumped out of the Earth since the 1950s.

The spin axis of the Earth does not move steadily in one direction. Within a year it may also wiggle back and forth. These wiggles are influenced by a combination of « everything that’s happening on the planet » over decades. That makes it difficult to tell exactly what has caused a big shift in the axis.

In a 2016 study, researchers were able to trace back an « interannual » wiggle to extreme rain and droughts. Extremely waterlogged soil is very heavy, whereas an extreme drought can suddenly make the soil very light. This is enough to knock the Earth off its axis, although slightly.

Earth’s axis of rotation is not straight up and down like the axes of Mercury or Jupiter, but tilted at an angle of 23.5 degrees. That’s why the northern and southern hemispheres get varying amounts of sunlight at different times of the year. This why we have seasons.

The recent change to Earth’s axis won’t affect our everyday lives, but it could slightly tweak the length of our days. Earth takes just under 24 hours to complete one rotation. But the movement of its axis, and therefore its poles, could add milliseconds to that spin time, making our days a tiny bit longer. However, there is no reason to panic as the magnitude of the spin axis change is really small. The time change twice a year is certainly more disruptive!

Source : Business Insider via Yahoo News.

 

La Terre, une belle mais fragile planète (Source : NASA)

Une forêt tropicale en Antarctique! // A rainforest in Antarctica!

Une étude initialement publiée dans la revue Nature et relayée par la presse scientifique nous informe que des traces fossiles d’une ancienne forêt tropicale, avec des racines, du pollen et des spores, ont été découvertes en Antarctique Occidental. Elles prouvent qu’il y a environ 90 millions d’années, la région n’était pas recouverte par la glace.
Au milieu du Crétacé (il y a 145 millions à 65 millions d’années), les dinosaures parcouraient la Terre et le niveau des océans était de 170 mètres plus élevé qu’aujourd’hui. La température à la surface de la mer sous les tropiques atteignait 35°C.
Ce climat très chaud a permis à une forêt tropicale de prendre racine en Antarctique. Des restes de cette forêt ont été découverts sous la glace dans une carotte de sédiments prélevée en 2017 par une équipe internationale de chercheurs sur le plancher océanique à proximité du glacier de Pine Island, dans l’ouest de l’Antarctique.
En découvrant la carotte, l’équipe scientifique a tout de suite réalisé qu’elle se trouvait devant quelque chose d’exceptionnel. La couche de sédiments datant d’il y a environ 90 millions d’années présentait une couleur bien différente de celles qui la surmontaient. De retour au laboratoire, les chercheurs ont introduit la carotte dans un scanner CT (Computed Tomography – Tomodensitométrie). L’image numérique obtenue montre un épais réseau de racines parcourant toute la couche de sol prélevée. Elle révèle également des pollens, des spores et les restes de plantes à fleurs très anciens, datant du Crétacé.
En analysant le pollen et les spores, un spécialiste de paléoécologie de l’Université de Northumbria en Angleterre a pu reconstruire la végétation et le climat il y a 90 millions d’années en Antarctique Occidental. Les nombreux restes de plantes indiquent que la côte de l’Antarctique Occidental était recouverte d’une forêt dense tempérée et marécageuse, semblable aux forêts que l’on rencontre en Nouvelle-Zélande aujourd’hui.
La carotte de sédiments a aussi révélé qu’au milieu du Crétacé l’Antarctique Occidental avait un climat doux, avec une température moyenne de l’air d’environ 12°C, semblable à celle de Seattle dans l’État de Washington. Les températures estivales étaient plus chaudes, avec une moyenne de 19°C. Dans les rivières et les marécages, l’eau atteignait probablement jusqu’à 20°C.
S’agissant de la météo, les précipitations à cette époque étaient comparables à celles du Pays de Galles ou de l’Angleterre aujourd’hui. Les températures qui viennent d’être mentionnées sont incroyablement chaudes si l’on prend en compte le fait que l’Antarctique a une nuit polaire de quatre mois, ce qui signifie qu’un tiers l’année n’est pas éclairé par la lumière du soleil avec tous ses bienfaits. Cependant, l’atmosphère était plus chaude surtout parce que la concentration de dioxyde de carbone était élevée, et même plus élevée qu’on ne le pensait, avant la découverte de la carotte de sédiments.
Avant le début de l’étude, la plupart des scientifiques pensaient que la concentration de dioxyde de carbone à l’échelle de la planète pendant le Crétacé était d’environ 1 000 ppm. Cependant, dans leurs modélisations, les chercheurs dû avoir recours à des niveaux de concentration de 1 120 à 1 680 ppm pour pouvoir atteindre les températures moyennes en Antarctique pendant cette période.
Les résultats des manipulations montrent à quel point des concentrations élevées de gaz à effet de serre comme le dioxyde de carbone peuvent faire monter en flèche les températures, au point que l’Antarctique Occidental, aujourd’hui recouvert par la glace, a autrefois abrité une forêt tropicale. De plus, on se rend compte de l’importance de l’effet de refroidissement exercé par les calottes glaciaires d’aujourd’hui.
Grâce à l’étude, les scientifiques savent maintenant qu’il y avait quatre mois consécutifs sans soleil en Antarctique pendant le Crétacé. Toutefois, comme la concentration de dioxyde de carbone était très forte, le climat autour du pôle Sud était tempéré, et le continent dépourvu de glace.
Reste à savoir maintenant quelle a été la cause du refroidissement spectaculaire du climat en Antarctique, avec la formation d’une calotte glaciaire après la période chaude. La réponse à cette question constitue désormais un défi majeur pour les climatologues.

Source: Presse scientifique internationale, comme Live Science.

———————————————-

 A study originally published in the journal Nature and relayed by the scientific press informs us that fossil traces – roots, pollen and spores – of an ancient rainforest have been unearthed in West Antarctica. They prove that about 90 million years ago, the region was not covered with ice.

During the middle of the Cretaceous period (145 million to 65 million years ago), dinosaurs roamed Earth and sea levels were 170 metres higher than they are today. Sea-surface temperatures in the tropics were as hot as 35 degrees Celsius.

This very warm climate allowed a rainforest  to take root in Antarctica. The rainforest’s remains were discovered under the ice in a sediment core that a team of international researchers collected from a seabed near Pine Island Glacier in West Antarctica in 2017.

As soon as the team saw the core, they knew they had something unusual. The layer that had formed about 90 million years ago was a different colour. More particularly, it clearly differed from the layers above it. Back at the lab, the team put the core into a CT (computed tomography) scanner. The resulting digital image showed a dense network of roots throughout the entire soil layer. The dirt also revealed ancient pollen, spores and the remnants of flowering plants from the Cretaceous period.

By analyzing the pollen and spores, a paleoecologist at Northumbria University in England, was able to reconstruct West Antarctica’s 90 million-year-old vegetation and climate. The numerous plant remains indicated that the coast of West Antarctica was a dense temperate, swampy forest, similar to the forests found in New Zealand today.

The sediment core revealed that during the mid-Cretaceous, West Antarctica had a mild climate, with an annual mean air temperature of about 12°C, similar to that of Seattle in Washington State. Summer temperatures were warmer, with an average of 19°C. In rivers and swamps, the water probably reached up to 20°C.

As far as the weather is concerned, the rainfall by that time was comparable to the rainfall of Wales or England, today. These temperatures are impressively warm, given that Antarctica had a four-month polar night, meaning that a third of every year had no life-giving sunlight. However, the world was warmer, in part, because the carbon dioxide concentration in the atmosphere was high, even higher than previously thought, according to the analysis of the sediment core.

Before the start of the study study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1,000 ppm. However, in the researchers’ model-based experiments, it took concentration levels of 1,120 to 1,680 ppm to reach the average temperatures during that period in Antarctica.

These findings show how potent greenhouse gases like carbon dioxide can cause temperatures to skyrocket, so much so that today’s freezing West Antarctica once hosted a rainforest. Moreover, it shows how important the cooling effects of today’s ice sheets are.

Thanks to the study, scientists now know that there could easily be four straight months without sunlight in the Cretaceous. But because the carbon dioxide concentration was so high, the climate around the South Pole was nevertheless temperate, without ice masses.

The question to be answered now is to know what caused the climate to dramatically cool with ice sheets forming again after Antarctic’s warmer period. The answers are now a major challenge for the international climate research community.

Source : International scientific press, like Live Science.

Vues de la forêt primaire sur l’Ile de Vancouver au Canada

Photos: C. Grandpey

La source de la lave des volcans islandais // Where Icelandic volcanoes get their lava from

Depuis plus de deux décennies, les scientifiques travaillent sur la nature des Ultra-Low Velocity Zones (ULVZ), zones à vitesse ultra faible à la frontière entre le noyau et le manteau terrestre et dont le nom s’explique par le déplacement très lent des ondes sismiques qui les traversent. Selon certains chercheurs, une cause de cette vitesse très lente pourrait être leur état de fusion partielle. D’autres pensent que la chute de vitesse peut s’expliquer par le fait que les ULVZ sont constituées d’un type de roche différent et plus dense, peut-être enrichi en fer et chimiquement distinct du reste du manteau.
Des chercheurs de l’Université de Californie qui ont examiné l’une de ces zones à près de 3000 kilomètres sous l’Islande, ont enfin apporté une réponse à cette question. Les ULVZ seraient les racines, à l’état de fusion partielle, des panaches de roches très chaudes qui s’élèvent lentement à travers le manteau pour alimenter les volcans. Cela signifierait que ces zones seraient les marqueurs en profondeur de la base des panaches volcaniques dans le monde.
Pour libérer la chaleur du noyau externe liquide, la roche solide à l’intérieur du manteau terrestre se déplace en lents mouvements convectifs. Les scientifiques ont longtemps pensé que des remontées au niveau de ces courants de convection mantelliques se manifestent sous formes de panaches responsables des points chauds sur Terre. Plus récemment, ils ont commencé à examiner leurs parties supérieures au travers de modèles informatiques très élaborés qui utilisent les ondes des grands séismes pour créer des images tomographiques de l’intérieur de la Terre.
Des études antérieures avaient tenté d’établir des liens entre les ULVZ et les panaches mantelliques sous les îles Hawaii et Samoa. Toutefois, les chercheurs californiens pensent que ce qui se passe sous l’Islande offre une meilleure image. En effet, les ondes sismiques qui passent sous cette région du monde proviennent de différentes directions et peuvent être reçues par des capteurs dans des parties opposés de la planète, contrairement aux îles du Pacifique.
À l’aide d’ondes sismiques captées par tout un ensemble de capteurs aux États-Unis et en Chine, l’équipe scientifique a pu mieux identifier la position et la forme des ULVZ. Il en ressort que la forme est celle d’un cylindre de 800 kilomètres de base et 15 kilomètres de hauteur, plus ou moins directement sous le panache qui alimente les volcans islandais. Ces résultats vont dans le sens du scénario de la fusion partielle, car l’autre option, celle d’une roche chimiquement différente, donnerait probablement une forme plus irrégulière et n’aurait pas nécessairement terminé sa course directement sous un panache.
Cependant, selon certains scientifiques, la nouvelle étude ne doit pas exclure le scénario concernant la roche chimiquement différente. En effet, un spécialiste en géodynamique à l’Université d’État du Michigan a modélisé les lents courants mantelliques et a constaté que, le long de la limite entre le noyau et le manteau, les courants sont latéraux et attirés vers la base des panaches. Ces courants pousseraient, tel un bulldozer, la roche dense et chimiquement distincte vers les panaches et, au fil du temps, ils pourraient finir par lui donner une forme à peu près circulaire.
Les chercheurs affirment que le mystère sera résolu avec l’amélioration des images du manteau inférieur grâce aux nouvelles technologies. Des ordinateurs plus puissants permettront d’utiliser davantage le contenu haute fréquence des ondes sismiques, partie qui est la plus favorable pour mettre en lumière les structures peu profondes comme les ULVZ. Un autre progrès pourrait être réalisé grâce aux capteurs sismiques installés au fond de l’océan. Comme la plupart des capteurs sismiques se trouvent actuellement sur la terre ferme, les deux tiers de la Terre (autrement dit les océans) sont une zone blanche.

Source: Science Mag.

————————————–

For more than 2 decades, scientists have pondered the nature of ultralow-velocity zones (ULVZs). The regions get their name from the way that earthquake waves travel so much more slowly through them. One way to explain that speed drop would be if they were partially molten. Another camp has held that the speed drops can be explained if ULVZs are made of a dense, different type of rock, perhaps enriched with iron, and chemically distinct from the rest of the mantle.

Researchers from the University of California who examined one of these zones nearly 3000 kilometres below Iceland finally have an answer: They may be the partially molten roots of plumes of hot rock that slowly rise through the mantle to feed volcanoes. That would make ULVZs deep signposts that mark the base of the world’s plumes.

To release heat from the liquid outer core, the solid rock in Earth’s mantle moves in slow, convective swirls. Earth scientists have long suspected that upwellings in these mantle convection currents would manifest themselves as the plumes responsible for Earth’s volcanic hot spots. Now they have started to see their upper parts with sophisticated computer models that use the waves from large earthquakes to create CT scan–like tomographic pictures of Earth’s interior.

Previous studies had made tentative connections between ULVZs and the plumes underneath Hawaii and Samoa. But the Californian researchers think the scene underneath Iceland provides a better picture. Indeed, earthquake waves pass underneath the region from different directions and can be picked up by sensors on opposite sides of the world, unlike the Pacific islands.

Using earthquake waves picked up by arrays of sensors in the United States and China, the team better identified the position and shape of the ULVZ. They found its shape was a stubby cylinder 800 kilometres across and 15 kilometres tall, more or less directly under the plume that feeds Iceland’s volcanoes. The team’s results favour the partially molten scenario, since the other option, a chemically distinct rock, would likely have a more irregular shape and would not necessarily wind up sitting directly underneath a plume.

However, the new study might not rule out the chemically distinct rock scenario. A geodynamicist at Michigan State University has modelled the mantle’s slow-motion currents and found that, along the core-mantle boundary, the currents are lateral, drawn toward the bases of plumes. These currents would bulldoze the dense, chemically distinct rock toward the plumes, and, over time, they could pack it into a roughly circular shape.

The researchers say that the debate will get resolved as pictures of the lower mantle improve. More powerful computers will allow to use more of the high-frequency content of earthquake waves, the part that is best at illuminating shallow structures like ULVZs. Another boost could come from ocean-bottom earthquake sensors. With most earthquake sensors sitting on land, two-thirds of Earth (namely the oceans) is a blank spot.

Source : Science Mag.

Schéma montrant la limite entre le noyau externe et le manteau inférieur, ainsi que les ULVZ (Source : Science Direct)

Et si le champ magnétique terrestre s’inversait ? // What if the Earth’s magnetic field flipped?

drapeau-francaisTandis que j’observais les aurores boréales en Alaska en septembre dernier, je me disais que les vents solaires jouaient avec le champ magnétique, ce bouclier qui protège notre planète du rayonnement solaire en déviant les particules chargées. Loin d’être constant, ce champ est en constante évolution et l’histoire de la Terre comprend plusieurs centaines d’inversions magnétiques, lorsque les pôles nord et sud ont échangé leurs places. On peut donc se demander ce qui se passerait si une inversion magnétique se produisait de nos jours sur Terre.
Lors d’une inversion, le champ magnétique ne serait pas nul, mais il présenterait une forme plus faible et plus complexe. Il pourrait chuter à 10% de sa force actuelle, avec les pôles magnétiques à l’équateur ou même l’existence simultanée de multiples pôles magnétiques « nord » et « sud ».
Les inversions géomagnétiques se produisent en moyenne quelques fois tous les millions d’années. Cependant, l’intervalle entre les inversions est très variable. La dernière inversion complète, la Brunhes-Matuyama, s’est produite il y a environ 780 000 ans. Une inversion temporaire, baptisée Excursion de Laschamp (par référence au Puy de Laschamp en Auvergne où elle a été découverte), s’est produite il y a environ 41 000 ans. Elle a duré moins de 1000 ans avec un changement réel de polarité d’une durée d’environ 250 ans.
L’altération du champ magnétique pendant une inversion va affaiblir son effet bouclier, ce qui va permettre à un rayonnement plus important d’atteindre la Terre. Si cela se produisait aujourd’hui, l’augmentation des particules chargées atteignant la Terre entraînerait des risques élevés pour les satellites, l’aviation et les infrastructures électriques. Les tempêtes géomagnétiques, provoquées par l’interaction d’éruptions anormalement fortes d’énergie solaire avec notre champ magnétique, nous donnent un avant-goût de ce qui se produirait si le bouclier magnétique venait à s’affaiblir.
En 2003, la tempête magnétique Halloween a causé des pannes ponctuelles dans le réseau électrique suédois ; elle a obligé à modifier la trajectoire de certains vols et elle a perturbé les satellites et les systèmes de communication. Mais cette tempête était mineure à côté d’autres comme l’Evénement de Carrington en 1859 qui a fait apparaître des aurores boréales jusque dans les Caraïbes.
L’impact d’une tempête majeure sur nos systèmes électroniques n’est pas vraiment connu et l’impact direct d’une inversion magnétique sur l’espèce humaine ne peut guère être évalué dans la mesure où l’Homme n’existait pas encore au moment de la dernière inversion complète.
Nous savons que de nombreuses espèces animales comme les oiseaux migrateurs possèdent une certaine forme de réception magnétique qui leur permet de détecter le champ magnétique terrestre. Ils peuvent l’utiliser pour faciliter leur navigation sur de longues distances pendant la migration. On ne sait pas quel impact une inversion pourrait avoir sur ces espèces. Ce qui est sûr, c’est que les premiers êtres humains ont réussi à survivre à l’Excursion de Laschamp et la vie elle-même a survécu aux centaines d’inversions magnétiques complètes mises en évidence par les archives géologiques.
Le champ magnétique terrestre diminue actuellement à raison de 5% par siècle. On pourrait donc en conclure qu’il pourrait s’inverser au cours des 2 000 prochaines années, mais déterminer la date exacte est extrêmement difficile.
Le champ magnétique terrestre a sa source à l’intérieur du noyau externe liquide de notre planète et dans les mouvements du fer en fusion. Comme l’atmosphère et les océans, ses déplacements sont régis par les lois de la physique. Nous devrions donc logiquement être en mesure de prévoir la «météo du noyau» par le suivi de ce mouvement, tout comme nous pouvons prévoir le temps qu’il va faire en observant l’atmosphère et les océans. Une inversion du champ magnétique peut être assimilée à un type particulier de tempête dans le noyau, où la dynamique – et donc le champ magnétique – se déchaînent (au moins pendant une courte période) avant de se stabiliser à nouveau.
Prévoir le comportement du noyau terrestre est difficile car il se cache sous 3000 kilomètres de roches. Nous connaissons la composition du noyau externe et nous savons qu’il est liquide. Un réseau d’observatoires et de satellites en orbite mesure les variations du champ magnétique, ce qui nous donne un aperçu du comportement du noyau liquide.
La découverte récente d’un jet-stream dans le noyau met en évidence les progrès de notre capacité à mesurer et comprendre la dynamique du noyau. Avec des simulations numériques et des expériences en laboratoire pour étudier la dynamique des fluides à l’intérieur de la planète, notre compréhension du champ magnétique terrestre  progresse rapidement. Peut-être pourrons-nous un jour prévoir le comportement du noyau terrestre…
Source: Business Insider.

 ——————————————

drapeau-anglaisWhile I was watching the northern lights – or aurora borealis – in Alaska in last September, I said to myself that the solar winds were playing with the magnetic field that protects our planet from harmful solar radiation by deflecting charged particles away. Far from being constant, this field is continuously changing and the Earth’s history includes several hundred global magnetic reversals, when north and south magnetic poles swap places. So we may wonder how a magnetic reversal would affect life on Earth.

During a reversal, the magnetic field won’t be zero, but will assume a weaker and more complex form. It may fall to 10% of the present-day strength and have magnetic poles at the equator or even the simultaneous existence of multiple « north » and « south » magnetic poles.

Geomagnetic reversals occur a few times every million years on average. However, the interval between reversals is very irregular. The last full reversal, the Brunhes-Matuyama, occurred around 780,000 years ago. A temporary reversal, the Laschamp event, occurred around 41,000 years ago. It lasted less than 1,000 years with the actual change of polarity lasting around 250 years.

The alteration in the magnetic field during a reversal will weaken its shielding effect, allowing heightened levels of radiation on and above the Earth’s surface. If this happened today, the increase in charged particles reaching the Earth would result in high risks for satellites, aviation, and ground-based electrical infrastructure. Geomagnetic storms, driven by the interaction of anomalously large eruptions of solar energy with our magnetic field, give us a foretaste of what we can expect with a weakened magnetic shield.

In 2003, the Halloween storm caused local electricity-grid blackouts in Sweden, required the rerouting of flights, and disrupted satellites and communication systems. But this storm was minor in comparison with other storms of the recent past, such as the 1859 Carrington event, which caused aurorae as far south as the Caribbean.

The impact of a major storm on today’s electronic infrastructure is not fully known and the direct impact of a reversal on our species cannot definitively be predicted as humans did not exist at the time of the last full reversal.

We know that many animal species like migratory birds have some form of magnetoreception that enables them to sense the Earth’s magnetic field. They may use this to assist in long-distance navigation during migration. But it is unclear what impact a reversal might have on such species. What is clear is that early humans did manage to live through the Laschamp event and life itself has survived the hundreds of full reversals evidenced in the geologic record.

The Earth’s magnetic field is currently decreasing at a rate of 5% per century. This has led to suggestions that the field might reverse within the next 2,000 years. But pinning down an exact date would be difficult.

The Earth’s magnetic field is generated within the liquid core of our planet and the movements of molten iron. Like the atmosphere and oceans, the way in which it moves is governed by the laws of physics. We should therefore be able to predict the « weather of the core » by tracking this movement, just like we can predict real weather by looking at the atmosphere and ocean. A reversal can then be likened to a particular type of storm in the core, where the dynamics — and magnetic field — go haywire (at least for a short while), before settling down again.

However, predicting the Earth’s core is difficult, principally because it is buried beneath 3,000 km of rock. We know the major composition of the material inside the core and that it is liquid. A global network of ground-based observatories and orbiting satellites also measure how the magnetic field is changing, which gives us insight into how the liquid core is moving.

The recent discovery of a jet-stream within the core highlights our increasing ability to measure and infer the dynamics of the core. Coupled with numerical simulations and laboratory experiments to study the fluid dynamics of the planet’s interior, our understanding is developing at a rapid rate. The prospect of being able to forecast the Earth’s core is perhaps not too far out of reach.

Source : Business Insider.

champ-magnetique

Aurore boréale près de Juneau (Alaska) en septembre 2016.

(Photo: C. Grandpey)