Eruption du Kilauea (Hawaii) : Chimie de la lave // Lava chemistry

L’USGS a publié un article très intéressant sur l’évolution et les changements subis par la lave lors de l’éruption actuelle du Kilauea dans la Lower East Rift Zone  (LERZ).
Lorsque le premier échantillon de lave a été prélevé dans la LERZ  le 3 mai 2018, le laboratoire de géochimie de l’Université d’Hawaii a travaillé avec le HVO pour conclure en quelques heures que la lave provenait du magma déjà stocké sous la zone de rift. La lave de la LERZ était beaucoup plus froide (environ 1090 ° C) et plus «évoluée» que la lave d’une température de 1140°C émise par le Pu’uO’o au cours des 35 dernières années. Même si cette découverte ne fut pas vraiment une surprise, c’était la première fois qu’elle était documentée lors d’une éruption.
Il y eu tout de même une surprise: La Fracture n° 17 – la seule à ne pas être dans l’alignement des autres – a émis la lave avec la plus basse température et la plus chimiquement évoluée jamais observée sur le Kilauea. Sa température atteignait seulement 1030°C.
Les éruptions précédentes dans la LERZ du Kilauea ont montré une évolution semblable: Le magma évolué a été émis en premier, suivi un peu plus tard par un magma à plus basse température. La lave émise dans la LERZ au début de l’éruption dans les Leilani Estates est semblable à la première lave émise lors de l’éruption de 1955 dans la même région.
La découverte de magma évolué stocké dans zones basses du Kilauea n’est guère surprenante. En effet, au cours des événements passés, tout le magma n’a pas atteint la surface. Ce magma stocké a évolué avec le temps. Comme le Kilauea est très volumineux, il peut s’écouler des décennies avant que le magma ne revienne dans une région donnée. Pendant ce laps de temps, le magma stocké refroidit, développe des cristaux et change lentement de composition. Quand une nouvelle intrusion se fraye un chemin sous l’édifice volcanique et atteint la surface, elle peut rencontrer un ou plusieurs de ces corps magmatiques du passé. Le magma d’intrusion peut repousser et / ou se mélanger avec le magma déjà stocké et qui est encore liquide.
Alors que l’éruption dans la LERZ se poursuivait, les échantillons prélevés le 11 mai 2018 ont montré que la composition de la lave avait évolué vers un magma légèrement plus chaud (1105°C) et moins évolué. Peu de temps après, les éruptions au niveau de la Fracture n° 20 ont produit des coulées de lave a’a qui se sont déversées dans l’océan.
Au cours des 12 jours suivants, les analyses chimiques ont révélé une lave progressivement plus chaude et moins évoluée, jusqu’à ce qu’elle se stabilise à des températures de 1130-1140°C. L’arrivée de cette lave plus chaude a précédé l’éruption spectaculaire de la Fracture n° 8.
Cette nouvelle lave comprend des cristaux d’olivine abondants et visibles, dont certains ressemblent aux cristaux d’olivine présents dans le magma au sommet du Kilauea avant le début de l’activité éruptive dans la LERZ. La composition de la lave qui s’écoule en ce moment ne correspond pas exactement à celle émise récemment par le Pu’uO’o ou le sommet, mais elle lui ressemble beaucoup. Ceci est à mettre en parallèle avec les observations géophysiques selon lesquelles le volume de l’effondrement sommital présente une ampleur identique au volume de lave émis par l’éruption dans la LERZ.
Source: USGS / HVO.

——————————————–

USGS has released a very interesting article about the evolution and the changes undergone by lava during the current Kilauea eruption in the Lower East Rift Zone (LERZ).

When the first LERZ lava sample was collected on May 3rd, 2018, the University of Hawaii geochemistry lab worked with the Hawaiian Volcano Observatory (HVO) to determine, within hours, that the erupted lava was from stored magma. The LERZ lava was much cooler (about 1090°C) and more “evolved” than any Pu’uO’o lava (typically 1140°C) erupted over the past 35 years. While this finding was not a surprise, it was the first time it had been documented during an eruption.

However, there was one surprise: Fissure 17 – the only vent not in line with the others – erupted the coolest and most chemically evolved lava ever found on Kilauea. Its temperatures were as low as 1030°C.

Previous lower rift zone eruptions on Kilauea have shown a similar pattern: evolved magma erupted first, followed later by hotter, “fresher” magma. The early LERZ lava erupted in Leilani Estates is similar in composition to the early 1955 lava, which erupted in the same area.

Finding evolved magma stored in the lower regions of Kilauea, the site of many past eruptions and intrusions, is to be expected. During past events, not all of the magma reached the surface. That stored magma then evolved over time. Because Kilauea is very massive, it can take decades before magma comes back to a given area. During that time, stored magma cools, grows crystals, and slowly changes in composition. When a new intrusion forces its way through the volcano and up to the surface, it may encounter one or more of these stored magma bodies. The intrusion magma can push out and/or mix with any stored magma that is still liquid.

As the LERZ eruption continued, samples collected on May 11th, 2018 showed that the lava composition had shifted to slightly hotter (1105°C) and less evolved magma. Soon afterward, eruptions from Fissure 20 produced a’a flows that rushed to the ocean.

Over the next 12 days, the lava chemistry became progressively hotter and less evolved until it stabilised at temperatures of 1130–1140°C. The arrival of this hotter lava preceded the high-volume, sustained eruption of Fissure 8.

This new lava includes abundant and visible olivine crystals, some of which resemble the type of olivine crystallizing in summit magma before the LERZ eruption sequence began. The lava composition we see now does not exactly match recent Pu’uO’o or summit lavas, but it is similar. This correlates well with geophysical observations that the volume of the summit collapse is similar in magnitude to the volume of LERZ erupted lava.

Source : USGS / HVO.

Crédit photo: USGS

La lave du Kilauea dans l’océan // The Kilauea lava in the ocean

La lave issue de la Fracture n° 8 continue d’entrer dans l’Océan Pacifique le long d’un front de 6 kilomètres. Les vues proposées par les nombreuses vidéos nous montrent la lave en train de s’écouler lentement dans la mer tout en produisant de volumineux panaches de vapeur et de gaz. En fait, ce que nous voyons n’est que la partie émergée de la lave. En effet, certaines données laissent supposer que le volume immergé est peut-être encore plus important que celui qui ressort à la surface de l’océan. La bathymétrie chute très rapidement à quelques encablures du rivage et personne ne sait jusqu’à quelle profondeur est descendue la lave. Les coulées a’a continuent peut-être d’avancer au large, à moins qu’elle se transforment rapidement en laves en coussins (« pillow lavas » en anglais), phénomène fréquent le long des côtes hawaiiennes.
Comme on peut le voir dans la petite vidéo ci-dessous, les basaltes en coussins se forment sur des coulées de lave relativement lentes. Cela permet à l’eau de mer de refroidir rapidement la lave en fusion, ce qui provoque la formation rapide d’une croûte de surface ; ce processus finit par donner à la roche sa forme de coussin si particulière. Il existe une vaste gamme de laves en coussins, depuis les écoulements visqueux jusqu’à ceux très fluides observés à d’Hawaï.
D’autres processus sont fréquemment observés lorsque la lave interagit avec l’océan. Il se produit alors de violentes explosions, des projections d’eau chaude, des bulles de gaz et de vapeur, des glissements de terrain et l’apparition de roches volcaniques flottantes. Ces dernières se forment lorsque des projections de lave en fusion touchent l’eau. Les roches poreuses sont alors si chaudes que l’eau de mer qui les pénètre est instantanément convertie en vapeur, ce qui maintient les roches à la surface de l’eau. Elles vont grésiller et se déplacer à la surface pendant plusieurs minutes avant de se refroidir et disparaître dans les profondeurs.
En plus de ce qui se passe sous la surface, des modifications apparaissent également le long de la côte. Ces changements de morphologie vont par exemple modifier les courants, ce qui va donner naissance à de nouvelles plages de sable noir. Là où de nombreux « tide pools » (bassins façonnés par les marées) ont disparu, de nouveaux vont rapidement prendre forme.
L’un des plus grands impacts sur l’environnement sous-marin concerne la température de l’eau qui atteint près de 50 degrés Celsius à environ 100 mètres au large de la côte, avec des températures de 37 degrés ou plus jusqu’à 3 kilomètres au large. Heureusement, cette couche d’eau plus chaude ne semble pas se propager le long du rivage et reste a une profondeur de moins de 6 mètres, ce qui empêche la destruction des écosystèmes le long de la côte et en profondeur. Cependant, la vie qui existait là a disparu. La nouvelle lave qui pénètre dans l’océan a un impact sur la vie des poissons. Les modifications intervenues dans la chimie de l’eau, sa température et son pH rendent toute nouvelle vie impossible pour le moment.

Source : USGS.

https://youtu.be/I9RnIP2OYU0

La vidéo montre la formation de laves en coussins à Hawaii. Il est bon de rappeler que l’on rencontre également ces formations géologiques sur la terre ferme. Un exemple remarquable se trouve sur le massif du Chenaillet dans les Hautes Alpes. Les coussins de basalte âgés de 150 millions d’années sont les vestiges d’un plancher océanique qui existait avant la surrection des Alpes.

———————————————–

Lava produced by Fissure 8 is still entering the Pacific Ocean along a 6-kilometre-long front. The views of the lava entry provided by the numerous videos show us lava oozing into the sea while generating voluminous plumes of steam and gas. Actually, what we are seeing is only the emerged part of the lava. Indeed, some data suggests that there may actually be more volume of the lava flows that has actually gone offshore than has stayed on shore. The bathimetry drops off very steeply a short distance off shore and nobody knows how far they have gone. The a’a flow possibly continues offshore, or transitions to a pillowed lava flow which is common in undersea lava flows.

As can be seen in the short video below, pillow basalts form in relatively slow lava flows. It allows the overlying sea water to rapidly cool the molten lava, which causes a surface crust to quickly form giving the resulting rock its distinctive pillow shape. There appear to be a large range of pillow lavas possible ranging from viscous rocky flows to highly fluid flows like the current one in Hawaii.

Other processes that are frequently observed as lava interacts with the ocean include violent explosions, underwater jets of hot water, gas bubbles, steam, landslides and floating lava rocks. They form from the spattering that occurs when the molten lava touches the water; resulting porous rocks are so hot that the seawater entering them is instantly converted to steam, which keeps the rocks buoyant. The floating rocks will sizzle and spin on the water for several minutes until they cool and eventually sink.

In addition to what’s happening beneath the surface, new features are also appearing along the coastline. For instance, it is going to also change the currents around that area because the shape of the land is changed and there will be new black sand beaches popping up. Where numerous tide pools and up to about 15% of anchialine ponds were lost, new tide pools are now taking shape.

One of the biggest impacts to the surrounding underwater environment is water temperature which reaches up to nearly 50 degrees Celsius about 100 metres offshore with temperatures of 37 degrees or more extending up to 3 kilometres from the ocean entry. Fortunately, this layer of warmer water does not seem to spread far along the shoreline and has a depth of less than 6 metres, sheltering the surrounding ecosystems both along the coast and at depth. However, the life that existed there is gone. The new lava entering the ocean is impacting fish life. The water chemistry that is changing in temperature and pH and all of that right now makes any new life impossible.

Source : USGS

https://youtu.be/I9RnIP2OYU0

The video shows the formation of pillow lavas in Hawaii. It is worth remembering that we can also observe these geological formations on the mainland. A remarkable example is at the Chenaillet in the French Hautes Alpes. The 150-million-year-old basalt lavas are the remnants of an ocean floor that existed before the Alpine uplift.

Ophiolites du Chenaillet (Photos: C. Grandpey)