Hawaii: La lave bientôt de nouveau dans l’océan? // Will lava soon reach again the ocean?

drapeau-francaisPlus de deux semaines après le 24 mai, jour où deux nouvelles coulées de lave sont apparues sur les flancs du Pu’uO’o, il semble que la situation soit en train d’évoluer. En effet, seule la coulée sur le versant est du cône est actuellement active, ce qui laisse supposer que la lave a pris la direction de la côte. Dans le même temps, la coulée du 27juin, apparue il y a presque deux ans, ne montre plus d’activité et il se pourrait bien qu’elle ait cessé de vivre. Cela voudarit dire que seule la coulée sur le flanc E du Pu’uO’o évacue la lave. Le 8 juin, les dernières observations effectuées sur le terrain par le HVO ont révélé que cette coulée avait parcouru 3,3 km et qu’elle se trouvait, à vol d’oiseau, à environ 6,5 km de l’océan. Elle avait fait la moitié du chemin pour atteindre le sommet du Pulama Pali, la longue pente qui la conduirait vers la mer. Si elle continue de progresser comme elle le fait actuellement, elle traversera à nouveau les Royal Gardens avant d’atteindre le rivage.Ce n’est toutefois qu’une hypothèse et la partie est loin d’être gagnée. Il faudra peut-être plusieurs semaines, voire plusieurs mois, pour que le spectacle soit visible depuis Kalapana ou d’autres points d’observation mis en place par le Parc des Volcans.

————————————–

drapeau-anglaisMore than two weeks after May 24th, when new breakouts appeared on the flanks of Pu’uO’o, it seems the situation is developing in a different way. Indeed, only the breakout on the cone’s east flank is visibly active, suggesting that lava will be funneled toward the coastline. Meantime, the nearly 2-year-old June 27 flow is currently inactive and may have ceased to live. On June 8th, HVO’s latest on-the-field observations revealed that the 3.3-km-long flow on the east flank of Pu’uO’owas about 6.5 km from the coastline as the crow flies and about halfway to the top of Pulama pali. Assuming lava keeps flowing as it does at the moment, its path likely will take it back down roughly through Royal Gardens and it will eventually reach the ocean.However, the process might takes weeks or months.
If the flow continues to head to the coast, it could once again be visible at night from a safe distance at Kalapana or Hawaii Volcanoes National Park viewpoints.

BI 004

Photo: C. Grandpey.

Réchauffement climatique: CO2, températures, océans et glace // Global warming: CO2, temperatures, oceans and ice

drapeau-francaisIl y a quelques jours, j’ai écrit une note indiquant que la France est toujours en train de se réchauffer, à l’image de notre planète toute entière. J’ai utilisé la courbe de Keeling pour illustrer la situation. A mes yeux, c’est l’une des meilleures références pour démontrer à quel point les activités humaines sont responsables de la situation actuelle. La courbe montre de manière incontestable que nous ajoutons des gaz à effet de serre dans l’atmosphère, et plus particulièrement du dioxyde de carbone. Voici les concentrations de CO2 dans l’atmosphère mesurées à l’observatoire du Mauna Loa à Hawaii:

drapeau-anglaisA few days ago, I wrote another post to indicate that France is still warming, as well as the whole planet. I used the Keeling curve to illustrate the situation. To my eyes, it is one of the best references to demonstrate the responsibility of human activities for the current situation. The curve shows in an undisputable way that we are adding greenhouse gases to the atmosphere, more specifically carbon dioxide. Here is the concentration of CO2 in our atmosphere measured at the Mauna Loa observatory in Hawaii:

GW

Source: Scripps Institution.
++++++++++

drapeau-francaisDans notre vie quotidienne, les températures extérieures sont les principaux signes qui nous indiquent que les étés deviennent plus en plus chauds et que les hivers sont de moins en moins froids, avec disparition de la neige ou du gel dans de nombreuses régions du monde.
Voici la température moyenne à l’échelle de la planète pour chaque mois, de Janvier de 1880 à Janvier 2016, selon les données fournies par la NASA. Il s’agit des températures de surface, autrement dit celles qui nous entourent. Le point rouge marque la mesure la plus récente. Janvier 2016 est le nouveau record :

drapeau-anglaisIn our everyday life, outdoor temperatures are the main signs that indicate summers are getting hotter and hotter, while winters are less and less cold, with no more frost or snow in many areas of the world.
Here’s the global average temperature each month from January 1880 through January 2016, according to data from NASA. These are surface temperature, in other words the place where we are living. The red dot marks the most recent measurement. January 2016 is the new record:

GW_modifié-1

drapeau-francaisVoici les valeurs entre 1970 et aujourd’hui, période pendant laquelle le réchauffement de la Terre a été constant :

drapeau-anglaisHere are the same values from 1970 to now, a period during which Earth has warmed steadily:

GW_modifié-2
++++++++++

drapeau-francaisAprès les mesures de surface, voici celles effectuées par les satellites dans la troposphère (la couche basse de l’atmosphère), par Remote Sensing Systems. Bien sûr, il y a des fluctuations de temps à autre. Il peut y avoir un «accident» avec un hiver très froid ici et là, mais si l’on prend en compte la tendance générale (à savoir la ligne rouge) on voit parfaitement que les températures globales sont en hausse.
La plupart des climatologues s’accordent pour dire que nous sommes responsables de l’augmentation de la température mondiale. La température de notre planète a déjà dépassé de 1°C celle de l’ère «pré-industrielle». Il est généralement admis qu’un réchauffement de 1,5°C – 2°C au-dessus de la moyenne pré-industrielle représente une modification climatique dangereuse.
Au train où vont les choses, il est fort probable que nous atteindrons 2°C avant la fin du siècle. Nous sommes donc très loin des objectifs de la COP 21!

drapeau-anglaisHere is the data for the lower atmosphere – the troposphere – from satellite data according to Remote Sensing Systems. Of course, there are some fluctuations from time to time. There may be an “accident” with an occasional very cold winter, but we have to take the overall tendency (i.e. the red line) into account to realise that global temperatures are rising indeed.
Most climatologists agree to say that we are highly responsible for the global temperature increase. The world has already warmed 1°C above the “pre-industrial”era. The prevailing view is that warming by 1.5°C – 2°C above pre-industrial means dangerous climate change.
At the current rate, we are likely to reach 2°C before the end of the century, thus very far from the COP 21 promises!

drapeau-francaisLe point rouge fait référence à la dernière valeur (février 2016) qui est la plus chaude. Comme dans le graphique précédent, la ligne rouge montre la tendance mondiale qui, en dépit des fluctuations, continue à aller vers le haut.

drapeau-anglaisThe red dot refers to the latest value (February 2016), and it’s the hottest. Like in the previous graph, the red line shows the global tendency which, despite fluctuations, keeps going upward.

++++++++++

drapeau-francaisLa hausse des températures ne concerne pas uniquement la surface de la Terre ou la troposphère. Elle affecte également les océans. Voici la situation pour les 700 premiers mètres de profondeur des océans :

drapeau-anglaisThe temperature increase does not only concern the Earth’s surface or lower atmosphere. It affects the oceans as well. Here what happens for the top 700 metres of the oceans:

GW_modifié-4

Source: Remote Sensing Systems

drapeau-francaisLe graphique montre les moyennes pour chaque trimestre. Là encore, la courbe est orientée vers le haut.

drapeau-anglaisThe graph shows averages for each quarter-year. Again we see the same global upward trend.

++++++++++

drapeau-francaisUne crainte qui accompagne habituellement le réchauffement des océans est la montée de leur niveau, avec les conséquences que cela aurait pour les rivages et les gens qui habitent à proximité. Il y a aussi le risque de voir l’eau de mer venir se mêler aux nappes phréatiques, ce qui les rendrait impropres à la consommation et à l’agriculture
La fonte des glaciers – surtout ceux qui finissent leur course dans la mer – déverse de l’eau dans les océans, tandis que le réchauffement des océans provoque la dilatation thermique de l’eau de mer. Ces deux effets conjugués provoquent une hausse du niveau la mer. Cette hausse a été parfois rapide, parfois lente, mais elle est vraiment rapide en ce moment, et même plus rapide qu’elle ne l’a jamais été depuis au moins 2500 ans (voire beaucoup plus). Voici un graphique montrant le niveau de la mer depuis 1880, en se référant aux mesures effectuées par les marégraphes à travers le monde:

drapeau-anglaisA fear that usually accompanies ocean warming is the rise of sea level, with the consequences it would have for the sea shores and the people who live close to them. There is also the risk of seeing seawater intruding into groundwater supplies, making them unfit for drinking and agriculture
The melting of glaciers – especially tidewater ones – puts more water in the oceans, and heating the oceans causes thermal expansion of seawater. Both effects have caused the sea to rise. Sea level has risen sometimes faster, sometimes slower, but it’s faster now, and in fact is faster than it has been for at least 2500 years (perhaps a lot longer). Here is a graph showing sea level since 1880, based on measurements by tide gauges around the world:

GW_modifié-5

Source: NOAA

drapeau-francaisDepuis 1993, les scientifiques ont la possibilité de mesurer la variation du niveau des océans grâce aux satellites. Voici les résultats fournis par l’Université du Colorado :

drapeau-anglaisSince 1993 scientists have also been measuring the height of the sea surface with satellites. Here are the results released by the University of Colorado:

GW_modifié-6

Source: University of Colorado
++++++++++

drapeau-francaisAlors que les courbes précédentes montrent toutes une hausse, il y en a d’autres qui vont vers le bas, comme celle montrant la quantité de glace dans le monde. Les grandes calottes glaciaires de l’Antarctique et du Groenland perdent des milliards de tonnes de glace chaque année. Voici un graphique montrant la variation, mesurée par satellite, de la quantité de glace dans la calotte du Groenland:

drapeau-anglaisWhile the preceding curves have all been upward, there are others that go downward, like the one showing the amount of ice in the world. The great ice sheets of Antarctica and Greenland, have been losing many billions of tons of ice each year. Here is a graph showing the change in the amount of ice in the Greenland icecap, measured by satellite:

GW_modifié-7

Source: NASA
++++++++++

drapeau-francaisIl n’y a pas que les grandes calottes glaciaires qui fondent. Il en va de même pour la glace de mer dont la surface se réduit comme peau de chagrin et qui est beaucoup plus mince que dans le passé (voir mes notes précédentes sur la situation de la glace de mer dans l’Arctique). Les glaciers du monde suivent la même tendance. La plupart d’entre eux reculent. J’ai eu à plusieurs reprises l’occasion de montrer le phénomène en Alaska ou dans les Alpes. Il y a toutefois quelques exceptions locales et certains glaciers continuent à avancer, comme sur le Mont Shasta aux États-Unis, mais la grande majorité est en train de disparaître sous nos yeux. Une récente enquête menée par le service de surveillance des glaciers dans le monde a diffusé le bilan ci-dessous pour différentes régions:

drapeau-anglaisIt’s not just the great icecaps that are melting, so is the sea ice whose surface is getting smaller and which is much thinner than in the past (see my previous posts about the situation odf sea ice in the Arctic). The world’s glaciers are following the same trend. Most of them are receding. Many times, I have had the opportunity to show the phenomenon in Alaska or in the Alps. However, there are some local exceptions and you can find a few that are actually growing, like on Mount Shasta in the U.S., but the vast majority are disappearing right before our eyes. A recent survey by the world glacier monitoring service produced this summary for different regions:

GW_modifié-8

Source: WGMS
++++++++++

drapeau-francaisVoici maintenant la surface couverte par la glace de mer. Pendant de nombreuses années, le phénomène le plus spectaculaire était la faible surface couverte par la glace à la fin de l’été dans l’Arctique. Le phénomène se produit maintenant toute l’année, et 2016 présente la plus faible étendue de glace de mer jamais observée pendant les mois de janvier et février. La glace de mer atteint en général son maximum vers le mois de mars et son minimum en septembre, mais pas en 2016 ! Voici la situation depuis les années 1980 :

drapeau-anglaisHere is now the extent of sea ice in the Arctic. For many years the most dramatic phenomenon was the end-of-summer decline in September Arctic sea ice. But it is now declining year-round, and 2016 brought the lowest sea ice extent on record for the months of both January and February:
The sea ice peaks around March and bottoms out in September. Here is the situation from the 1980s:

GW_modifié-9

GW_modifié-10

Source: National Snow and Ice data Center

drapeau-francaisLa situation de la glace de mer en Antarctique est différente. Le graphique ci-dessous montre que sa surface s’est accrue vers 2010, même si on observe une réduction depuis quelque temps. Il faudra attendre un peu pour avoir confirmation des dernières observations :

drapeau-anglaisThe Antarctic sea ice goes differently. This graph shows that in the early 2010s it actually increased, although it has recently come back down. We need to wait some more time to check whether the latest trend is confirmed :

GW_modifié-11

Source: National Snow and Ice data Center

Source : Tamino weather and Climate – Open mind :
https://tamino.wordpress.com/2016/01/24/weather-and-climate/

.

El Niño amorce son déclin // El Niño is starting to decline

drapeau-francaisSelon le Bureau australien de météorologie (BOM), un certain nombre d’indicateurs de l’oscillation australe El Niño (ENSO) laissent supposer que le phénomène El Niño 2015-16 a atteint son apogée au cours des dernières semaines, confirmant ainsi les prévisions antérieures.
Les températures tropicales de l’océan Pacifique montrent qu’il s’agit de l’un des trois phénomènes El Niño les plus puissants de ces 50 dernières années. En outre, les modèles climatiques laissent penser qu’El Niño 2015-2016 va diminuer au cours des prochains mois, avec un retour probable à une oscillation australe (ENSO) neutre pendant le deuxième trimestre 2016.
Dans la partie centrale et orientale de l’océan Pacifique au niveau des tropiques, la température de surface et de faible profondeur de la mer a baissé au cours des dernières semaines, bien qu’elle reste à des niveaux élevés à cause d’El Niño.
Dans l’atmosphère, l’indice d’oscillation australe a décliné pour retrouver une valeur El Niño faible. Cependant, ces dernières rafales de vents d’ouest sur la partie occidentale du Pacifique équatorial peuvent temporairement ralentir le déclin du phénomène El Niño.
Si l’on se réfère aux 26 événements El Niño observés depuis 1900, on remarque qu’environ la moitié ont été suivis d’une année neutre, tandis que 40% ont été suivis de La Niña (phénomène inverse d’El Niño, avec un refroidissement des eaux équatoriales).
Les huit modèles climatiques internationaux analysés par le BOM indiquent que le phénomène El Niño actuel devrait connaître un déclin régulier à partir du début de l’année 2016. Ces modèles laissent aussi supposer qu’El Niño sera neutre et La Niña fera son apparition au cours de la seconde moitié de 2016, sans rechute d’El Niño.
A noter que les températures de surface de l’Océan Indien restent beaucoup plus élevées que la moyenne dans la plus grande partie du bassin.
Le rapport est important. Maintenant qu’El Niño a amorcé son déclin, nous verrons si les températures mondiales réagissent de la même façon et si l’impact du réchauffement climatique est affecté. Cependant, on peut raisonnablement penser que, malgré la baisse du phénomène El Niño, les températures mondiales resteront supérieures à la normale en raison de la quantité de gaz à effet de serre d’origine anthropique dans l’atmosphère.

———————————

drapeau-anglaisAccording to the Australian Bureau of Meteorology (BOM), a number of El Niño-Southern Oscillation (ENSO) indicators suggest the 2015-16 El Niño has peaked in recent weeks, confirming earlier predictions.
Tropical Pacific Ocean temperatures suggest this event is one of the top three strongest El Niño events of the past 50 year. Additionally, climate models suggest the 2015-16 El Niño will decline during the coming months, with a return to ENSO neutral likely during the second quarter of 2016.
In the central to eastern tropical Pacific Ocean, the sea surface and sub-surface have cooled in recent weeks, though temperatures remain at strong El Niño levels.
In the atmosphere, the Southern Oscillation Index has eased to weak El Niño values. However, recent bursts of westerly winds over the equatorial western Pacific may temporarily slow the decline of El Niño.
Based on the 26 El Niño events since 1900, around 50% have been followed by a neutral year, while 40% have been followed by La Niña which involves a cooling of equatorial waters.
All of the eight international climate models surveyed by the BOM indicate that the current El Niño will show a steady decline from early 2016. Models also suggest neutral and La Niña are equally likely for the second half of 2016, with a repeat El Niño the least likely outcome.
Indian Ocean sea surface temperatures remain very much warmer than average across the majority of the basin.
The report is important. As El Niño is declining, we’ll see if global temperatures are doing the same and if the impact of global warming is affected. However, the odds are that, despite the decline of El Niño, global temperatures will remain above normal due to the amount of anthropogenic greenhouse gases in the atmosphere.

El Nino

Températures de surface pour le mois de décembre 2015 dans le Pacifique tropical

(Source: Bureau of Meteorology)

La lave dans la mer // Lava in the sea

drapeau-francaisCela fait pas mal de temps que la lave n’est pas entrée dans l’océan à Hawaï. La dernière fois, c’était à l’automne 2013. Toutefois, il est intéressant de savoir comment se comporte la lave une fois qu’elle a pénétré dans la mer. C’est le thème d’un article récent publié par l’Observatoire Volcanologique d’Hawaii, le HVO.
L’auteur de l’article indique que la bathymétrie haute résolution au large des côtes hawaïennes permet d’observer les coulées qui ont continué à progresser sous l’eau.

L’eau peut refroidir la surface d’une coulée de lave de manière plus efficace que l’air, de sorte que les coulées dans l’eau développent une carapace qui se solidifie très rapidement. Cependant, lorsque cette croûte atteint une certaine épaisseur, elle isole l’intérieur de la coulée de lave aussi efficacement que l’air. Cela se solde par un arrêt des coulées qui cessent d’avancer après avoir parcouru de courtes distances en dessous de la zone parcourue par les vagues. Elles sont alors soumises à des pressions qui les font gonfler et avancer encore un peu en formant plusieurs lobes encore actifs.

Sous l’eau, les coulées de lave ont tendance à vouloir flotter. Elles ne le font pourtant pas car leur densité reste supérieure à la densité de l’eau de mer, mais elles coulent plus lentement. C’est parce que les forces de flottabilité qui les tirent vers le haut sont contrebalancées par les forces gravitationnelles qui les attirent vers le bas. La combinaison de la flottabilité et du refroidissement accéléré ralentit l’avancée des coulées de lave sur le plancher océanique, avec une hausse de la pression interne qui provoque leur épaississement.

La bathymétrie haute résolution a permis d’observer des coulées de lave en provenance du Hualailai dans l’océan au nord de Kailua-Kona, sur la côte ouest de Big Island. Malgré le fait que ces coulées présentent des longueurs de plusieurs dizaines de kilomètres de longueur sur terre, leur longueur sous la mer est de moins de 6 km. Tout comme sur terre, la pente du terrain sur lequel se déplace la lave affecte sa vitesse, avec des coulées plus rapides sur des pentes raides.
En 1919 et 1950, les coulées de lave du Mauna Loa au sud de Kona ont dévalé les pentes du volcan sur une vingtaine de kilomètres avant d’atteindre l’océan dans lequel elles ont continué à avancer pendant plusieurs semaines. Alors que les entrées océaniques étaient actives, on a observé la vapeur à la surface de l’océan entre 800 mètres et 5 km du rivage, avec l’apparition de nombreux poissons morts. Les ichtyologistes pensent qu’ils venaient d’un millier de mètres de profondeur, ce qui laisse supposer que la lave a progressé  dans l’océan sur une distance de 2 à 4 km et a atteint une telle profondeur.
Le ralentissement des coulées quand elles entrent dans l’océan peut aider à expliquer certains aspects de la mise en place des deltas de lave et la croissance d’une île volcanique. Lorsque la lave entrera la prochaine fois dans l’océan à Hawaii, le HVO sera peut être en mesure d’utiliser ces informations pour évaluer les dangers que les deltas de lave et les coulées de lave sous-marines peuvent présenter pour les visiteurs et pour les bateaux qui naviguent à proximité de la côte.

—————————————————

drapeau anglaisLava has not entered the ocean for quite a long time at Hawaii. The last time was in autumn 2013. However, it is interesting to know how lava behaves once it has got into the sea. This was the topic of a recent article released by the Hawaiian Volcano Observatory.

The author of the article indicates that high-resolution bathymetry off the Hawaiian shores allows us to have a look at flows that have continued to advance under water. Water can cool the surface of a lava flow more efficiently than the air, so lava flowing into the water develops a solidified skin very rapidly. However, when the crust reaches moderate thickness, it insulates the lava flow interior just as well as it does in air. This results in flows stalling after advancing short distances below the surf zone, pressurizing and advancing farther through multiple breakouts.

Lava flows also become buoyant underwater. The flows don’t float because their density is still greater than the density of seawater, but they flow more slowly. This is because upward buoyancy forces partly counteract the downslope pull by gravitational forces.

The combination of buoyancy and enhanced cooling slows lava flows moving offshore along the sea bed, thereby causing them to pressurize and thicken.

High-resolution bathymetry allowed to observe lava flows from Hualailai volcano  that entered the ocean north of Kailua-Kona on the west side of Hawai‘i. Despite the fact that these flows are tens of kilometres long on land, their submarine lengths are less than 6 km.

Just like on land, the slope of the ground over which lava moves affects its speed, with lava flowing faster over steeper slopes.

In 1919 and 1950, Mauna Loa lava flows in South Kona rushed downslope about 20 km to the ocean and continued to flow into the ocean for weeks. While the ocean entries were active, steam was observed rising from the ocean surface 0.8 to 5 km offshore, with many fish killed in the vicinity. They were creatures probably coming from depths of about 1,000 metres, suggesting that the flow may have advanced 2–4 km offshore to reach those depths.

The slowing of lava flows as they enter the ocean may help explain some aspects of lava delta development and volcanic island development. When lava next enters the ocean in Hawaii, HVO may be able to use this information to better assess the extent of any hazards the lava delta and underwater lava flow pose to visitors and near-shore boat traffic.

Haw 17_modifié-1

Haw 19_modifié-1

(Photos:  C.  Grandpey)