L’extermination des Amérindiens et ses conséquences sur le climat // The extermination of the Amerindians and its consequences on the climate

Une étude menée par des scientifiques de l’University College of London et intitulée Earth system impacts of the European arrival and Great Dying in the Americas after 1492 arrive à une conclusion étonnante: Les colons auraient tué tellement d’Amérindiens que la terre se serait refroidie !

Entre l’arrivée de Christophe Colomb dans les Caraïbes en 1492 et l’année 1600,  autrement dit les cent premières années de la colonisation de l’Amérique, on estime que les colons européens ont causé la mort d’environ 56 millions d’autochtones. Cette hécatombe, provoquée par des massacres d’Amérindiens et les maladies apportées par les colons, a provoqué une modification radicale de la surface du continent. En effet, de vastes portions de territoires cultivées et habitées se sont retrouvées sans occupants. En l’absence d’humains, la nature a repris ses droits et la végétation a recouvert de nouveau ces territoires. Selon l’étude des scientifiques de l’University College of London, ce phénomène a eu pour conséquence un déclin massif du dioxyde de carbone (CO2) dans l’atmosphère.

Pour connaître le taux de carbone dans l’atmosphère à cette époque, les scientifiques ont étudié des carottes issues de la calotte polaire en Antarctique. Ces échantillons peuvent servir d’archive des gaz à effet de serre grâce au gaz piégé dans la glace.

Le refroidissement de la planète à cette période, appelé «petit âge glaciaire» est connu depuis longtemps, mais on pensait que les changements, marqués par des hivers particulièrement rigoureux, avaient été uniquement causés par des forces naturelles. Toutefois, selon l’un des co-auteurs de l’étude, la compilation des preuves archéologiques, ainsi que des données historiques et des analyses de carbone en Antarctique, ne laissent pas le moindre doute sur l’influence de la mort des Amérindiens. Selon lui, «une fois que l’on a pesé tous les éléments, on comprend que si le petit âge glaciaire était si intense, c’est à cause du génocide de millions de personnes».

Source : CNN.

NDLR : Cette conclusion de l’étude est à la fois intéressante et surprenante. Je pense qu’il faudra d’autres recherches pour la confirmer. Il semble étonnant que la mort d’un très grand nombre d’individus et les conséquences exercées sur la nature par leur disparition ait pu avoir de telles répercussions sur le climat de notre planète.

———————————————————-

A study led by scientists at the University College of London and entitled Earth System Impacts of the European Arrival and Great Dying in the Americas after 1492 comes to an astonishing conclusion: Settlers killed so many Indians that the Earth cooled!
Between the arrival of Christopher Columbus in the Caribbean in 1492 and the year 1600, in other words during the first hundred years of the colonization of America, it is estimated that European settlers caused the death of about 56 million indigenous people. This slaughter, caused by massacres of Amerindians and the diseases brought by the settlers, caused a radical change at the surface of the continent. In fact, vast areas of cultivated and inhabited land were left without occupants. In the absence of humans, nature regained its rights and vegetation once again covered these territories. According to the study by the scientists at the University College of London, this phenomenon resulted in a massive decline of carbon dioxide (CO2) in the atmosphere.
To find out the carbon content in the atmosphere at that time, scientists studied ice cores collected from the polar ice sheet in Antarctica. These samples are used as an archive of greenhouse gases thanks to the gas trapped inside the ice.
The cooling of the planet at that time, called the Little Ice Age, has been known for a long time, but it was thought that the changes, marked by particularly harsh winters, were solely caused by natural forces. However, according to one of the co-authors of the study, the compilation of archaeological evidence, as well as historical data and carbon analyses in Antarctica, leaves no doubt about the influence of the death of Amerindians. In his opinion, « once we have weighed all the elements, we understand that the Little Ice Age was so intense because of the genocide of millions of people ».
Source: CNN.
This conclusion of the study is both interesting and surprising. I think it will require further research to confirm its results. It seems astonishing that the death of a very large number of individuals and the consequences of their disappearance on nature may have had such repercussions on the climate of our planet.

Arrivée de Christophe Colomb en Amérique  (Source : United States Library of Congress’s Prints and Photographs division)

Processus de refroidissement de la lave sur le Kilauea (Hawaii) // Lava cooling process on Kilauea Volcano (Hawaii)

Le dernier article « Volcano Watch » du HVO aborde le thème du refroidissement des coulées de lave, son déroulement et sa durée. C’est un aspect du volcanisme que j’ai étudié il y a quelques années sur la Grande Ile d’Hawaii pour le compte de l’Observatoire et du Parc des Volcans d’Hawaii. Vous trouverez un résumé de mon travail sous l’entête de ce blog: « Processus de refroidissement de la lave sur le Kilauea« .
https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/

L’article du HVO présente de nombreuses similitudes avec ma propre étude qui fournit des détails supplémentaires sur la composition de la lave.

Maintenant que l’éruption de 2018 du Kilauea est terminée, on peut se demander combien de temps il faudra aux dernières coulées de lave pour se refroidir et se solidifier complètement. La réponse n’est pas aisée car différents facteurs sont à prendre en compte pour évaluer le processus de refroidissement de la lave. La température de lave émise pendant l’éruption de 2018 a atteint environ 1140°C. Lorsque la température de surface d’une coulée est inférieure à environ 1000°C, elle se solidifie, mais l’intérieur reste très chaud.
Le facteur le plus important pour déterminer la vitesse à laquelle la lave refroidit est l’épaisseur de la coulée. D’autres facteurs incluent la perte de chaleur en surface (contact avec l’atmosphère) et en profondeur (contact avec le sol). La température de l’air, les précipitations et le vent contribuent également à la perte de chaleur de surface d’une coulée. Le contact entre une coulée de lave, l’air ambiant et la surface du sol favorise le durcissement rapide de la partie supérieure et inférieure de la coulée. C’est ce qui explique la présence d’une croûte argentée à la surface des coulées de lave pahoehoe et le cliquetis que l’on peut entendre sur les coulées de lave a’a. Lorsque la croûte se refroidit et s’épaissit, elle retient la chaleur à l’intérieur de la coulée car la lave est un bon isolant.
Une fois que la croûte s’est formée, la coulée continue à perdre de la chaleur par radiation et par conduction, phénomène facilité par le vent et la pluie. Lorsque l’eau de pluie pénètre dans les fissures à la surface de la coulée et rencontre la chaleur de l’intérieur, elle produit de la vapeur qui forme les panaches blancs souvent observés au-dessus des coulées actives ou qui l’ont été récemment. Cette vapeur peut persister pendant des décennies, longtemps après la solidification de la lave, en fonction de l’épaisseur de la coulée et de la température à l’intérieur.
Une étude du refroidissement de la surface des coulées de lave pahoehoe émises lors de l’éruption du Kupaianaha en 1990 a servi de référence pour estimer le temps de solidification des coulées dans la Lower East Rift Zone (LERZ) en 2018. Dans la mesure où l’équation ne porte que sur le refroidissement de la croûte supérieure de la coulée de lave, on suppose que l’épaisseur de la croûte à la base de la coulée correspond à 70% de la croûte supérieure. Les mesures effectuées sur le  Kupaianaha l’ont été sur des coulées pahoehoe de faible épaisseur, alors que la plus grande partie de la lave émise en 2018 dans la LERZ était de type a’a. Malgré tout, comme l’intérieur de chaque type coulée (pahoehoe ou a’a) est censé refroidir à la même vitesse, le HVO estime sue l’on peut s’appuyer sur la vitesse de refroidissement de 1990 pour estimer celle de 2018.
Des analyses préliminaires effectuées suite à l’éruption de 2018 montrent que l’épaisseur moyenne des coulées dans la LERZ est d’environ 10 à 15 mètres. Sur la base du calcul de la vitesse de refroidissement, on peut déduire qu’il pourrait s’écouler entre 8 mois et un an et demi pour que des coulées présentant une telle épaisseur se solidifient. Le refroidissement et la solidification de coulées d’une épaisseur de 20 à 30 mètres pourraient prendre entre deux ans et demi et six ans. D’autres coulées de la LERZ, d’une épaisseur pouvant atteindre 55 mètres, mettront probablement une vingtaine d’années pour refroidir et se solidifier complètement.
Étant donné que l’épaisseur de la coulée, la vitesse du vent, les précipitations, la température de l’air ambiant et du sol et d’autres facteurs influent sur la vitesse de refroidissement de la lave, il existe une marge d’incertitude sur la durée pendant laquelle l’intérieur d’une coulée reste liquide. Ainsi, après l’éruption du Kilauea Iki en 1959, il a fallu environ 35 ans au lac de lave d’une profondeur d’environ 135 mètres pour se solidifier complètement. Il n’est pas impossible que la lave soit encore incandescence en profondeur. C’est la raison pour laquelle, les jours de pluie, on peut voir la vapeur monter du plancher du cratère du Kilauea Iki, ainsi que du plancher de la caldeira du Kilauea.
Source: USGS / HVO.

————————————————-

HVO’s latest « Volcano Watch » article is about the cooling of lava flows, how it happens and how long it takes. This is an aspect of volcanism I studied a few years ago on Hawaii Big Island on behalf of the Observatory and the National park. You will find an abstract of my work beneath the title of this blog: “Processus de refroidissement de la lave sur le Kilauea”.

https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/

The HVO article holds many similarities with my own study which provided more details about lava composition.

Since the end of the 2018 eruption on Kilauea, questions have surfaced concerning how long it will take for the new lava flows to solidify. This is a difficult question to answer, because the initial eruptive temperatures along with many different factors can influence the rate of cooling. Eruptive lava temperatures of the 2018 eruption reached a maximum of approximately 1140°C. When the surface of the flow cools below about 1000°C, it solidifies, but the interior is still very hot.

The most influential factor determining how fast lava cools is the thickness of the flow. Other factors include heat loss from both the top (to the atmosphere) and bottom of a flow (into the ground). Contributing to heat loss at the flow’s surface are air temperature, rainfall, and wind. The initial contact between a lava flow, the air above it, and ground surface below it, quickly hardens the outer crust (top and bottom) of the flow. This can be seen in the silvery crust that forms on active pahoehoe flows and the rubbly clinker that surrounds active a’a flows. As the crust cools and thickens, it retains heat within the flow’s interior. This is because the crust is a good insulator, meaning it poorly conducts heat.

After the initial formation of crust, the flow continues to lose heat through radiation and conduction, facilitated by wind and rain. As rain water percolates into cracks in the flow’s surface and encounters the hot interior, it produces steam, forming the white plumes often seen over active or recently active flows. This steaming can persist for decades, long after the lava has solidified, depending on the thickness of the flow and the temperature of its interior.

Based on a study of crustal cooling of pahoehoe lava flows erupted from the Kupaianaha vent in 1990, one can estimate the solidification time for the 2018 LERZ flows. Because the equation only looks at cooling of the lava flow’s upper crust, the basal crust thickness is assumed to equal 70 percent of the upper crust. The Kalapana measurements were made on thin pahoehoe flows, but most of the 2018 Lower east Rift Zone (LERZ) lava is a’a. But, because the core of each flow type should cool at similar rates, one can base the 2018 cooling rates on the 1990 study.

Preliminary analyses of the 2018 LERZ eruption flow thicknesses, suggest that the average flow thickness is around 10–15 metres. Based on the cooling rate calculation, it could take between 8 months and one and a half years for flows of these thicknesses to solidify. Solidification of flows ranging 20–30 metres thick could take about 2.5 – 6 years. The thickest LERZ flows on land, which are approximately 55 metres thick, may take 20 years to reach a completely solid state.

Because flow thickness, wind speeds, rainfall amounts, air and ground temperatures, and other factors all affect lava cooling rates, there is a range of uncertainty on how long the interior of a flow remains liquid. For example, after the 1959 Kilauea Iki eruption, the approximately 135-metre-deep lava lake took about 35 years to completely solidify. Lava may still be incandescent in depth. This is why, on rainy days, you can see steam rising from the Kilauea Iki crater floor, as well as the Kilauea caldera floor.

Source : USGS / HVO.

Coulée de lave a’a pendant l’éruption 2018 du Kilauea (Photo: USGS / HVO)

Coulée de lave pahoehoe sur le Kilauea (Photo: C. Grandpey)

Prélèvemet d’échantillons de lave pour analyse en laboratoire

(Photo: Ch. Grandpey)

Et si un nouveau Tambora entrait en éruption ? // What if another Tambora erupted ?

Le Mt Agung n’est toujours pas entré en éruption et ne se manifestera peut-être jamais, mais des chercheurs ont imaginé les conséquences d’une éruption majeure de ce type de volcan.
Dans une étude publiée dans Nature Communications, des scientifiques du Centre National de Recherche Atmosphérique aux Etats-Unis nous expliquent que des éruptions volcaniques majeures pourraient avoir un impact plus important sur le climat de la planète que par le passé. En examinant les conditions climatiques qui ont suivi l’éruption du Tambora (Indonésie) en 1815, les chercheurs de Boulder (Colorado) envisagent ce qui se passerait si ce type d’éruption majeure se produisait en 2085.
Les scientifiques font remarquer que le refroidissement qui suivra une éruption de cette ampleur sera encore plus sensible, mais il ne compensera pas les effets du réchauffement climatique. En outre, ils prédisent que l’éruption perturbera le cycle de l’eau, car les précipitations seront en déclin sur la planète.
Lorsque le Tambora est entré en éruption en 1815, des milliers de personnes ont perdu la vie et l’éruption est considérée comme la plus destructrice des 10 000 dernières années. La cendre et les gaz envoyés dans l’atmosphère ont modifié le climat global pendant un an et 1816 a été baptisée «l’année sans été».
En utilisant des modèles climatiques informatisés, les auteurs de la nouvelle étude ont conclu que si une éruption comme celle du Mont Tambora survient en 2085, la Terre connaîtra un refroidissement de 40% supérieur à celui qui a suivi l’éruption de 1815, en supposant que le réchauffement climatique actuel se poursuive. Ils prévoient également que ce refroidissement s’étalera sur plusieurs années.
Selon les chercheurs, la raison pour laquelle le refroidissement sera si important est que la température de l’océan deviendra de plus en plus stratifiée, c’est-à-dire séparée en plusieurs couches en fonction de la température. Lorsque un tel phénomène se produit, les eaux de surface de l’océan sont de moins en moins capables de compenser l’effet de refroidissement produit par une éruption, ce qui entraîne un refroidissement plus long et plus intense. Comme le refroidissement de 1815-1816 s’est produit à une époque où la température de l’océan n’était pas aussi stratifiée, il a pu être absorbé en partie par l’eau de l’océan.
A cause de la plus grande stratification actuelle des eaux océaniques, les anomalies thermiques dans les couches supérieures de l’océan ne pénètrent pas aussi profondément qu’en 1815. L’eau plus froide est piégée à la surface de l’océan au lieu de circuler vers les profondeurs. Cela revient à dire que les masses continentales subissent davantage les effets du refroidissement. Malheureusement, les scientifiques pensent que ce refroidissement ne sera pas suffisant pour compenser sur le long terme le réchauffement provoqué par les activités humaines.

En outre, les scientifiques prédisent que le régime de précipitations sera sérieusement affecté par un événement volcanique majeur. Les températures plus froides de la surface de l’océan provoquées pat un hiver volcanique empêcheront l’évaporation nécessaire au déclenchement des précipitations. Cela signifie qu’en plus de la baisse spectaculaire de la température, les populations devront probablement faire face à une grave sécheresse dans les années qui suivront une éruption volcanique majeure.

Source: Presse scientifique américaine.

————————————-

Mt Agung has not erupted yet, and may never erupt, but researchers have imagined the consequences of a major eruption of this type of volcano.

In a study published in Nature Communications, scientists at the National Center for Atmospheric Research report that major volcanic eruptions could cause more disruption to the global climate than they have in the past. By examining the conditions that followed the eruption of Mount Tambora (Indonesia) in 1815, the Colorado researchers predict what would happen if this type of major eruption occurred in 2085.

While the scientists predict that the cooling that will follow a future eruption of that scale would be even more extreme, it will not offset the effects of a warming climate. Furthermore, they predict that the eruption will disrupt the water cycle, decreasing global precipitation.

When Mount Tambora erupted in 1815, thousands of people died instantly, and it is considered the most destructive eruption on Earth in 10,000 years. The dust and gas it emitted into the atmosphere altered global climate for a year afterward, which is why 1816 is known as “The Year Without a Summer.”

Using computer climate models, the researchers of the new study concluded that, if an eruption like Mount Tambora’s happens in 2085, the Earth will cool up to 40 percent more than the 1815 eruption, assuming current rates of climate change continue. However, they also predict that the cooling will be spread out over several years.

According to the researchers, the reason why the temperature change will so drawn out is because ocean temperature is becoming increasingly stratified, in other words separated into layers based on temperature. As this happens, the surface water in the ocean will be increasingly less able to moderate the cooling effects of the eruption, causing a longer and more severe cooling event. Because the cooling in 1815-1816 occurred at a time when ocean temperature was not as stratified, it was absorbed to some degree by the water.

As a consequence of increased ocean stratification, temperature anomalies in the upper ocean do not penetrate to depth as efficiently as in 1815.  The cooler water would be trapped at the ocean’s surface instead of circulating to deeper levels. This, in turn, would mean that land masses would bear more of the brunt of the cooling event. Unfortunately, the scientists predict that this cooling event won’t be enough to offset the long-term human-induced warming caused by climate change.

Furthermore, the scientists predict that rainfall patterns will be severely affected by a major volcanic event. Cooler ocean surface temperatures resulting from a volcanic winter prevent evaporation, which is necessary for precipitation. This means that in addition to drastic temperature decreases, people could also face severe drought in the years following a major volcanic eruption.

Source: U.S. scientific magazines.

Le Tambora vu depuis l’espace (Crédit photo: NASA)

L’éruption du Tambora à travers les timbres

La glace et le feu de la Terre // Ice and fire on Earth

Dans une nouvelle étude publiée dans la revue Geophysical Research Letters, des chercheurs de l’Université d’Harvard ont émis une nouvelle hypothèse sur ce qui a causé la plus grande glaciation de l’histoire de la Terre, connue sous le nom de «Terre boule de neige», en sachant que notre planète ressemblait davantage à une boule de glace. Les géologues et les climatologues essayent depuis longtemps de trouver une explication à ce phénomène, sans apporter de réponse vraiment convaincante.

Les chercheurs d’Harvard ont focalisé leur étude sur le début du Sturtien, période où la Terre était recouverte de glace, il y a environ 717 millions d’années. À cette époque, un énorme événement volcanique a secoué la région qui se trouve aujourd’hui entre l’Alaska et le Groenland. Ce n’est peut-être pas une coïncidence. En effet, on sait que l’activité volcanique peut avoir un effet majeur sur l’environnement. La question est donc de savoir comment ces deux événements peuvent être liés.
Au début, l’équipe de chercheurs a pensé c’était l’interaction du basalte avec le CO2 dans l’atmosphère qui avait provoqué le refroidissement. Cependant, si tel était le cas, le refroidissement se serait produit sur une période couvrant des millions d’années alors que la datation radio isotopique des roches volcaniques de l’Arctique canadien révèle une coïncidence beaucoup plus ciblée avec le refroidissement.
Les chercheurs se sont demandés si les aérosols émis par ces volcans auraient pu refroidir rapidement la Terre. Les études géologiques et chimiques de cette région, connue sous le nom de Grande Province Ignée (LIP) de Franklin, ont montré que les roches volcaniques ont émergé à travers des sédiments riches en soufre qui auraient été envoyées dans l’atmosphère pendant l’éruption sous forme de dioxyde de soufre (SO2). Lorsque le SO2 pénètre dans les couches supérieures de l’atmosphère, il est capable de bloquer le rayonnement solaire. En outre, le SO2 bloque encore davantage le rayonnement solaire s’il dépasse la tropopause, la limite entre la troposphère et la stratosphère. S’il atteint cette hauteur, il est moins susceptible d’être renvoyé vers la Terre lors des précipitations ou en étant mélangé à d’autres particules. Cette situation prolonge sa présence dans l’atmosphère ; elle passe d’environ une semaine à environ un an. La hauteur de la tropopause dépend du climat global de la planète; plus la planète est froide, plus la tropopause est basse. Au cours de l’histoire de la Terre, pendant les périodes très chaudes, le refroidissement lié à l’activité volcanique n’a pas pu être très important parce que la Terre était protégée par une tropopause chaude et élevée. Dans des conditions plus fraîches, le climat de la Terre devient particulièrement vulnérable à ces types de perturbations volcaniques.
Un autre aspect important est l’endroit où les panaches SO2 ont atteint la stratosphère. En raison de la dérive continentale, il y a 717 millions d’années, la Grande Province Ignée de Franklin où ces éruptions ont eu lieu se trouvait à proximité de l’équateur, point d’entrée de la majeure partie du rayonnement solaire qui assure la chaleur de la Terre. Ainsi, un gaz capable de réfléchir efficacement la lumière est entré dans l’atmosphère au bon endroit et à la bonne hauteur pour provoquer le refroidissement. Mais un autre élément était nécessaire pour donner naissance à un tel scénario.
Les éruptions qui rejetaient du soufre il y a 717 millions d’années ont été produites par des volcans qui s’étiraient sur une distance de 3000 kilomètres à travers le Canada et le Groenland. Au lieu de présenter des éruptions explosives ponctuelles, ces volcans ont probablement eu des éruptions de longue durée comme ceux d’Hawaï et d’Islande de nos jours. Les chercheurs ont démontré qu’une dizaine d’années d’éruptions continues de ce type de volcans avaient pu envoyer suffisamment d’aérosols dans l’atmosphère pour déstabiliser rapidement le climat. Plus il y a de glace, plus la lumière du soleil est réfléchie et plus la planète se refroidit. Une fois que la glace a atteint une latitude correspondant à la Californie actuelle, la boucle de rétroaction positive prend le dessus et l’effet de ‘boule de neige’ devient quasiment inarrêtable.

On a tendance à penser que le climat consiste en un immense système qui se modifie très difficilement. Toutefois, on a assisté à des changements spectaculaires dans le passé et il y a de fortes chances qu’un nouveau changement soudain se produise à l’avenir. Comprendre comment de tels changements peuvent se produire permettra aux chercheurs de mieux comprendre comment les grandes extinctions ont eu lieu, quel impact les approches proposées de géo-ingénierie pourraient avoir sur le climat et comment les climats changent sur d’autres planètes. Cette étude par les chercheurs d’Harvard montre que la Terre est une planète dynamique qui a connu de brusques transitions. Il y a tout lieu de croire que les transitions climatiques rapides de ce type sont la norme, et sont loin d’être exceptionnelles

 —————————————

In a new study published in Geophysical Research Letters, Harvard University researchers have emitted a new hypothesis about what caused the largest glaciation event in Earth’s history, known as ‘snowball Earth’. Geologists and climate scientists have been searching for the answer for years but the root cause of the phenomenon has remained elusive.

Researchers have pinpointed the start of what’s known as the Sturtian ‘snowball Earth’ event to about 717 million years ago. At around that time, a huge volcanic event devastated an area from present-day Alaska to Greenland. This might not be a coincidence. Indeed, we know that volcanic activity can have a major effect on the environment, so the big question was to know how these two events could be related.

At first, the research team thought basaltic rock interacted with CO2 in the atmosphere and caused cooling. However, if that were the case, cooling would have happened over millions of years and radio-isotopic dating from volcanic rocks in Arctic Canada suggest a far more precise coincidence with cooling.

Researchers in the team wondered whether aerosols emitted from these volcanoes could have rapidly cooled Earth. Geological and chemical studies of this region, known as the Franklin large igneous province, showed that volcanic rocks erupted through sulphur-rich sediments, which would have been pushed into the atmosphere during eruption as sulphur dioxide (SO2). When SO2 gets into the upper layers of the atmosphere, it is very good at blocking solar radiation. Besides, SO2 is most effective at blocking solar radiation if it gets past the tropopause, the boundary separating the troposphere and stratosphere. If it reaches this height, it is less likely to be brought back down to earth in precipitation or mixed with other particles, extending its presence in the atmosphere from about a week to about a year. The height of the tropopause barrier all depends on the background climate of the planet; the cooler the planet, the lower the tropopause. In periods of Earth’s history when it was very warm, volcanic cooling would not have been very important because the Earth would have been shielded by this warm, high tropopause. In cooler conditions, Earth becomes uniquely vulnerable to having these kinds of volcanic perturbations to climate.

Another important aspect is where the SO2 plumes reach the stratosphere. Due to continental drift, 717 million years ago, the Franklin large igneous province where these eruptions took place was situated near the equator, the entry point for most of the solar radiation that keeps the Earth warm. So, an effective light-reflecting gas entered the atmosphere at just the right location and height to cause cooling. But another element was needed to form the perfect storm scenario.

The eruptions throwing sulphur into the air 717 million years ago were produced by volcanoes that spanned 3,000 kilometres across Canada and Greenland. Instead of singularly explosive eruptions, these volcanoes can erupt more continuously like those in Hawaii and Iceland today. The researchers demonstrated that a decade or so of continual eruptions from this type of volcanoes could have poured enough aerosols into the atmosphere to rapidly destabilize the climate. The more ice, the more sunlight is reflected and the cooler the planet becomes. Once the ice reaches latitudes around present-day California, the positive feedback loop takes over and the runaway snowball effect is pretty much unstoppable.

It is easy to think of climate as this immense system that is very difficult to change, but there have been very dramatic changes in the past and there is every possibility that as sudden of a change could happen in the future as well. Understanding how these dramatic changes occur could help researchers better understand how extinctions occurred, how proposed geoengineering approaches may impact climate and how climates change on other planets. This research shows that Earth is a dynamic and active place that has had sharp transitions. There is every reason to believe that rapid climate transitions of this type are the norm on planets, rather than the exception.

Il fut une époque où la Terre était recouverte de glace.

(Photo: C. Grandpey)

 

Nouvelle étude du noyau terrestre // New study of the Earth’s core

drapeau-francaisOn peut lire sur le site web Tokyo Tech News que des scientifiques de l’Institut des Sciences de la Terre et de la Vie (ELSI) de l’Institut de Technologie de Tokyo ont fait part, dans la revue Nature du 22 février 2017, de leurs surprenantes découvertes sur le noyau terrestre. L’étude s’attarde sur la source d’énergie qui alimente le champ magnétique terrestre, les facteurs qui régissent le refroidissement du noyau et sa composition chimique, ainsi que les conditions qui existaient pendant la formation de la Terre.

Le noyau terrestre consiste principalement en une énorme boule de métal liquide à 3000 km sous sa surface de la Terre, en dessous du manteau. À une telle profondeur, le noyau et le manteau sont soumis à des pressions et à des températures extrêmement élevées. De plus, les recherches ont montré que le lent déplacement de matière en fusion à très haute température – à raison de plusieurs centimètres par an – provoque un transfert de la chaleur du noyau vers la surface, ce qui a entraîné un refroidissement très progressif du noyau au cours des temps géologiques. Le degré de refroidissement du noyau terrestre depuis sa formation est l’objet de débats intenses parmi les scientifiques.
En 2013, un chercheur japonais a indiqué que le noyau terrestre a peut-être refroidi de 1000°C depuis sa formation il y a 4,5 milliards d’années. Cet important refroidissement serait nécessaire pour maintenir le champ géomagnétique, à moins qu’il existe une autre source d’énergie encore inconnue. Ces résultats ont constitué une grande surprise pour la communauté scientifique qui étudie les profondeurs de notre planète. .
Le refroidissement du noyau et les sources d’énergie nécessaires au champ géomagnétique ne furent pas les seuls obstacles rencontrés par l’équipe de l’Institut de Technologie de Tokyo. Une autre question encore non résolue était l’incertitude quant à la composition chimique du noyau. Selon l’auteur principal de l’étude, le noyau est, certes, principalement composé de fer et de nickel, mais il contient également environ 10% d’alliages légers comme le silicium, l’oxygène, le soufre, le carbone, l’hydrogène et d’autres composés. On pense que de nombreux alliages sont simultanément présents, mais nous ne connaissons pas la proportion de chaque élément.
Dans le cadre des dernières expériences effectuées dans un laboratoire de l’ELSI, les scientifiques ont utilisé des diamants taillés avec précision et en ont soumis de minuscules échantillons aux pressions qui existent au niveau du noyau terrestre. Les très hautes températures qui règnent à l’intérieur de la Terre ont été créées en chauffant les échantillons avec un rayon laser. En effectuant des expériences avec une gamme de compositions d’alliages dans diverses conditions, les chercheurs ont tenté d’identifier le comportement propre à différentes combinaisons d’alliages correspondant à l’environnement qui existe au niveau du noyau terrestre.
Le travail avec les alliages a commencé à donner des résultats intéressants lorsque les scientifiques ont commencé à utiliser plus d’un alliage. Dans les nouvelles expériences, ils ont décidé de combiner deux alliages différents contenant du silicium et de l’oxygène qui, selon eux, ont de très fortes chances d’exister dans le noyau.
Les chercheurs ont été surpris de constater, en examinant les échantillons dans un microscope électronique, que les petites quantités de silicium et d’oxygène présentes dans l’échantillon de départ s’étaient combinées pour former des cristaux de dioxyde de silicium avec la même composition que le quartz minéral que l’on rencontre à la surface de la Terre.
Ce résultat est important pour la compréhension de l’énergie et de l’évolution du noyau. Les calculs des chercheurs ont montré que la cristallisation des cristaux de dioxyde de silicium au niveau du noyau était susceptible de fournir une immense nouvelle source d’énergie pour alimenter le champ magnétique terrestre.
L’équipe scientifique a également exploré les implications de ces résultats pour la formation de la Terre et les conditions du début du système solaire. La cristallisation modifie la composition du noyau en éliminant progressivement le silicium et l’oxygène qui y sont dissous. Finalement, le processus de cristallisation s’arrêtera lorsque le noyau aura épuisé son ancien stock de silicium ou d’oxygène. Même si le silicium est présent, les cristaux de dioxyde de silicium ne peuvent pas se former sans la présence d’un peu d’oxygène. Cela donne des indices sur la concentration initiale d’oxygène et de silicium dans le noyau, parce que seuls quelques rapports silicium / oxygène sont compatibles avec ce modèle.
Sources: Tokyo Tech News & The Watchers.

————————————-

drapeau-anglaisThe Tokyo Tech News website informs us that scientists at the Earth-Life Science Institute (ELSI) at the Tokyo Institute of Technology reported in Nature (22 February 2017) their unexpected discoveries about the Earth’s core. The findings include insights into the source of energy driving the Earth’s magnetic field, factors governing the cooling of the core and its chemical composition, and conditions that existed during the formation of the Earth.

The Earth’s core consists mostly of a huge ball of liquid metal lying at 3 000 km beneath its surface, surrounded by the mantle. At such great depths, both the core and mantle are subject to extremely high pressures and temperatures. Furthermore, research indicates that the slow flow of hot buoyant rocks -moving several centimetres per year – carries heat away from the core to the surface, resulting in a very gradual cooling of the core over geological time. However, the degree to which the Earth’s core has cooled since its formation is an area of intense debate amongst Earth scientists.

In 2013, a Japanese researcher reported that the Earth’s core may have cooled by as much as 1000°C since its formation 4.5 billion years ago. This large amount of cooling would be necessary to sustain the geomagnetic field, unless there was another as yet undiscovered source of energy. These results were a major surprise to the deep Earth community.

Core cooling and energy sources for the geomagnetic field were not the only difficult issues faced by the team at the Tokyo Institute of Technology. Another unresolved matter was uncertainty about the chemical composition of the core. According to the lead author of the study, the core is mostly iron and some nickel, but also contains about 10% of light alloys such as silicon, oxygen, sulphur, carbon, hydrogen, and other compounds. We think that many alloys are simultaneously present, but we don’t know the proportion of each element.

Now, in this latest research carried out in a lab at ELSI, the scientists used precision cut diamonds to squeeze tiny dust-sized samples to the same pressures that exist at the Earth’s core. The high temperatures at the interior of the Earth were created by heating the samples with a laser beam. By performing experiments with a range of probable alloy compositions under a variety of conditions, the researchers are trying to identify the unique behaviour of different alloy combinations that match the distinct environment that exists at the Earth’s core.

The search of alloys began to yield useful results when the scientists began mixing more than one alloy. In the new experiments, they decided to combine two different alloys containing silicon and oxygen, which they strongly believed exist in the core.

The researchers were surprised to find that when they examined the samples in an electron microscope, the small amounts of silicon and oxygen in the starting sample had combined together to form silicon dioxide crystals, the same composition as the mineral quartz found at the surface of the Earth.

This result proved important for understanding the energetics and evolution of the core. The researchers’calculations showed that crystallization of silicon dioxide crystals from the core could provide an immense new energy source for powering the Earth’s magnetic field.

The team has also explored the implications of these results for the formation of the Earth and conditions in the early Solar System. Crystallization changes the composition of the core by removing dissolved silicon and oxygen gradually over time. Eventually, the process of crystallization will stop when then core runs out of its ancient inventory of either silicon or oxygen. Even if silicon is present, silicon dioxide crystals can’t be made without also having some oxygen available. This gives clues about the original concentration of oxygen and silicon in the core, because only some silicon/oxygen ratios are compatible with this model.

Source: Tokyo Tech News & The Watchers.

coupe-terre

 Rappel de la structure interne de la Terre (Source: Wikipedia)

Atlantique Nord : Risque d’un refroidissement rapide au 21ème siècle ? // Will the North Atlantic get rapidly colder in the 21st century ?

drapeau-francaisVoici dans son intégralité un communiqué de presse du CNRS diffusé le 15 février 2017:

« La possibilité d’un changement important du climat autour de l’Atlantique est connue depuis longtemps, et a même été portée à l’écran avec le film « Le jour d’après ». Pour en évaluer le risque, des  chercheurs du CNRS/Université de Bordeaux et de l’Université de Southampton ont développé un nouvel algorithme pour analyser les 40 projections climatiques prises en compte dans le dernier rapport du Groupe d’Experts Intergouvernemental sur l’Evolution du Climat (GIEC). Cette nouvelle étude fait grimper la probabilité d’un refroidissement rapide de l’Atlantique Nord au cours du 21ème  siècle à près de 50 %. La revue Nature Communications a publié ces résultats, le 15 février 2017.

Détecté dans toutes les projections des modèles climatiques actuels, le ralentissement de la circulation océanique de retournement [NDLR : aussi appelée circulation thermohaline]  – dont fait partie le Gulf Stream – pourrait entraîner un bouleversement climatique sans précédent. En 2013, le GIEC, se basant sur les résultats d’une quarantaine de projections climatiques, a estimé que ce ralentissement s’installerait progressivement et sur une échelle de temps longue. Un refroidissement rapide de l’Atlantique Nord au cours du 21ème siècle semblait donc peu probable.
Dans le cadre du projet européen EMBRACE, une équipe d’océanographes a réexaminé ces 40 projections climatiques en se focalisant sur un point essentiel au nord-ouest de l’Atlantique Nord : la mer du Labrador. Cette mer est le siège d’un phénomène de convection, qui nourrit à plus grande échelle la circulation océanique de retournement. Ses eaux de surface se refroidissent fortement en hiver, deviennent plus denses que les eaux de profondeur et plongent vers le fond. La chaleur des eaux profondes est transférée vers la surface et empêche la formation de banquise. Choisissant d’étudier ce phénomène de convection en détail, les chercheurs ont développé un algorithme capable de repérer les variations rapides des températures à la surface de l’océan. L’algorithme a révélé que 7 des 40 modèles climatiques étudiés projetaient un arrêt complet de la convection engendrant des refroidissements abrupts – 2 ou 3 degrés en moins de dix ans – de la mer du Labrador, induisant de fortes baisses des températures dans les régions côtières de l’Atlantique Nord.
Mais un tel refroidissement rapide, simulé seulement par quelques modèles, est-il vraisemblable ? Pour répondre à cette question, les chercheurs se sont penchés sur la variable la plus importante du déclenchement de la convection hivernale : la stratification océanique. Ces variations verticales de la densité des masses d’eau sont bien reproduites dans 11 des 40 modèles. Parmi ces 11 modèles, qui peuvent être considérés comme les plus fiables, 5 simulent une baisse rapide des températures de l’Atlantique Nord, soit 45 % !
Ces résultats issus de modèles climatiques pourront être confrontés aux futures données du projet international OSNAP qui prévoit l’installation de bouées fixes dans le gyre subpolaire. De quoi anticiper de possibles refroidissements rapides dans les années à venir. Ce risque devra par ailleurs être pris en compte dans les politiques d’adaptation au changement climatique des régions bordant l’Atlantique Nord. »

++++++++++

L’article est intéressant, mais il semble hasardeux aujourd’hui de faire des prévisions à long terme pour le 21ème siècle. Il est vrai que les scientifiques mentionnés dans le rapport ne pourront pas être mis en examen car ils ne seront plus de ce monde! Il y a quelque temps, nombre de chercheurs prévoyaient à court terme un refroidissement de l’Arctique suite à l’épuisement d’El Niño et l’apparition de La Niña. La Nature semble leur avoir donné tort puisque de nouveaux records de chaleur viennent d’être enregistrés dans les hautes latitudes. Le changement climatique aura-t-il un effet sur les courants marins? C’est possible, mais ce n’est pas certain. Si un tel bouleversement se produisait, il ne fait guère de doute que nos descendants seraient confrontés à de graves problèmes de vie, voire de survie.

———————————————–

drapeau-anglaisHere is the full text of a CNRS press release published on February 15th 2017:

« The possibility of a significant change in the climate around the Atlantic has been known for a long time, and has even been brought to the screen with the film » The Day After « . To evaluate the risk, researchers at the CNRS / University of Bordeaux and the University of Southampton have developed a new algorithm to analyze the 40 climate projections taken into account in the last report of the Intergovernmental Panel on the Evolution of Climate (IPCC). This new study raises the probability of a rapid cooling of the North Atlantic during the 21st century to nearly 50%. Nature Communications published the results on February 15th, 2017.
Detected in all projections of current climate models, the slowdown in oceanic reversal circulation (known as the thermohaline circulation) – of which the Gulf Stream is part – could lead to unprecedented climate change. In 2013, the IPCC, based on the results of some 40 climate projections, estimated that this slowdown would gradually take place over a long period of time. A rapid cooling of the North Atlantic during the 21st century thus seemed unlikely.
In the framework of the European project EMBRACE, a team of oceanographers has re-examined these 40 climate projections focusing on a key point in the northwest Atlantic: the Labrador Sea. This sea is the seat of a phenomenon of convection, which contributes on a larger scale to the thermohaline circulation. Its surface water cools strongly in winter, becomes denser than deep water and plunges to the bottom. Deep water heat is transferred to the surface and prevents the formation of pack ice. Choosing to study this phenomenon of convection in detail, the researchers developed an algorithm capable of detecting the rapid variations of the temperatures on the surface of the ocean. The algorithm revealed that 7 of the 40 climate models studied projected a complete cessation of convection, resulting in abrupt cooling – 2 or 3 degrees in less than ten years – of the Labrador Sea, resulting in severe temperature drops in coastal regions of the North Atlantic.
Is such a rapid cooling, simulated only by a few models, likely? To answer this question, researchers looked at the most important variable in the triggering of winter convection: ocean stratification. These vertical variations in the density of water bodies are well reproduced in 11 of the 40 models. Among these 11 models, which can be considered as the most reliable, 5  – 45% ! – simulate a rapid decline in North Atlantic temperatures.
These results from climate models may be compared with future data from the international OSNAP project, which involves the installation of fixed buoys in the subpolar gyre. They will help to anticipate possible rapid cooling in the years to come. This risk should also be taken into account in climate change adaptation policies in the regions bordering the North Atlantic. »

++++++++++

The article is interesting, but it seems risky today to make such forecasts for the 21st century. It is true that the scientists mentioned in the report will never be put under investigation because they will no longer be of this world! Some time ago, many scientists predicted for the short term a cooling of the Arctic due to the depletion of El Niño and the appearance of La Niña. Nature behaved differently and new records of heat have just been recorded in the high latitudes. Will climate change affect ocean currents? Maybe, but it is not certain. Should such an upheaval occur, our descendants would undoubtedly face serious problems of life, even survival.

circulacion_termohalina

Vue simplifiée de la circulation thermohaline (Source: Wikipedia)

gr-08

Les générations à venir verront-elles apparaître la glace de mer au large de la Bretagne ?

(Photo: C. Grandpey)

El Chichon (Mexique) a-t-il provoqué aussi l’ « Age des Ténèbres » ? // Did El Chichon also trigger the « Dark Ages » ?

drapeau-francaisDans ma note précédente, j’ai expliqué qu’une éruption du volcan El Chichon (Mexique) en l’an 540 de notre ère a pu contribuer à l’effondrement de la civilisation maya. Un pic de soufre dans des carottes glace prélevées aux pôles indique qu’il y a deux signatures éruptives très proches l’une de l’autre, respectivement en 536 et en 540. Par ailleurs, les analyses de cernes d’arbres en Europe du Nord révèlent un très fort refroidissement du climat.
Dans une étude publiée dans la revue Climate Change, un chercheur allemand au Centre GEOMAR pour la Recherche Océanique à Kiel pense que les deux éruptions – en 536 et 540 – « représentent probablement l’événement volcanique qui a le plus affecté le climat de l’hémisphère nord au cours des 1500 dernières années. » Comme je l’ai écrit auparavant, l’impact combiné des deux éruptions a fait chuter la température de deux degrés Celsius au cours de ce qui fut probablement la décennie la plus froide des deux derniers millénaires.
Cette baisse soudaine de la température, causée par l’écran des particules de soufre dans la stratosphère, a eu un impact dévastateur sur l’agriculture, avec une famine dans une grande partie de l’Europe et même au-delà. La première épidémie de peste sur le continent a eu lieu un an après la deuxième éruption, mais on ne sait pas si l’hiver volcanique a joué un rôle direct dans la propagation de la maladie. A une plus grande échelle, la double éruption a marqué la transition entre les dernières années de l’Antiquité et l’ « Age des Ténèbres », période agitée qui s’étire entre la chute de Rome en 476 et la renaissance carolingienne des 8ème et 9ème siècles.
Source: Phys.org (http://phys.org/)

————————————-

drapeau-anglaisIn my preceding note, I explained that an eruption of El Chichon volcano (Mexico) in 540 may have contributed to the collapse of the Mayan civilisation. A sulphur spike in ice core records from the poles indicates there are two closely spaced signatures in the ice record, with the first one occurring in AD 536 and another one in AD 540. Besides, tree ring data in northern Europe from this time indicates there was very strong cooling.

In a study released in the journal Climate Change, a German researcher at the GEOMAR Helmholtz Centre for Ocean Research in Kiel thinks that the two eruptions – in 536 and 540 – « were likely the most powerful volcanic event affecting the northern hemisphere climate over at least the past 1,500 years. »  As I put it before, their combined impact lowered temperatures by two degree Celsius during what is probably the coldest decade in the last two millennia.

This sudden drop, caused by a sun-blocking blanket of sulphur particles in the stratosphere, had a devastating impact on agriculture, provoking famine throughout much of Europe and beyond. The continent’s first pandemic plague occurred one year after the second blast, though it is not known whether the volcanic winter played a direct role in the disease’s spread. More broadly, the twin blasts marked the pivot between the waning years of Antiquity and the prolonged period of social decline and turmoil known as the Dark Ages.

Source : Phys.org (http://phys.org/)

El_Chichón

El Chichon après la dernière éruption de 1982 (Crédit photo: Wikipedia)