Un discours inquiétant // A disturbing speech

Donald Trump et Scott Pruitt ne sont pas les seuls hommes politiques au monde à refuser de reconnaître la réalité du changement climatique. L’ancien Premier Ministre australien Tony Abbott a déclaré à un auditoire britannique que la politique pour lutter contre le changement climatique est semblable au comportement des populations primitives qui tuent des chèvres pour apaiser les dieux des volcans
Selon M. Abbott, « au moins jusqu’à présent, c’est la politique pour lutter contre le changement climatique qui fait du mal ; le changement climatique en soi fait du bien, ou du moins plus de bien que de mal. Dans la plupart des pays, beaucoup plus de gens sont victimes de vagues de froid plus que de vagues de chaleur, de sorte qu’une hausse graduelle des températures de la planète, surtout si elle s’accompagne d’une plus grande prospérité et d’une plus grande capacité d’adaptation au changement, pourrait même être bénéfique. »
M. Abbott a déclaré que le gouvernement australien ne devait surtout pas adopter la Clean Energy Target (CET) avec son objectif d’énergie propre. Il a rejeté l’argument selon lequel une grande majorité de scientifiques affirment que le changement climatique ne fait aucun doute et a déclaré que «l’affirmation selon laquelle 99% des scientifiques croient» est «comme si la vérité scientifique était déterminée par des votes plutôt que par des faits». Il a de nouveau souligné son opposition aux énergies renouvelables.

L’intervention de M. Abbott met dans l’embarras le gouvernement australien qui est sur le point de  finaliser une politique énergétique cette année. L’ancien chef de la Clean Energy Finance Corporation, a rappelé le gouvernement fédéral  avait besoin de la Clean Energy Target (CET) et son objectif d’énergie propre. Sans cette politique, la production d’électricité serait moins fiable parce que les anciennes centrales alimentées au charbon seraient utilisées plus longtemps et deviendraient inutilisables en raison de leur âge. Les vieilles centrales continueraient probablement à fonctionner et il pourrait y avoir un hiatus avec l’arrivée de l’énergie renouvelable. Dans ce cas, les vieilles centrales âgées de 50 ans tomberaient soudainement en panne et provoqueraient des pénuries massives d’électricité.
Source: ABC News.

———————————-

Donald Trump and Scott Pruitt are not the only politicians in the world to refuse to understand climate change. Former Australian Prime Minister Tony Abbott has told an audience in Britain that policy to deal with climate change is like primitive people killing goats to appease volcano gods

According to Mr Abbott, « at least so far it is climate change policy that is doing harm; climate change itself is probably doing good, or at least more good than harm. In most countries far more people die in cold snaps than in heatwaves, so a gradual lift in global temperatures, especially if it is accompanied by more prosperity and more capacity to adapt to change might even be beneficial. »

Mr Abbott said that the Australian government should not adopt a Clean Energy Target (CET).  He dismissed the argument that a large majority of scientists argue that the science of climate change is settled, saying « the claim that 99 per cent of scientists believe » is « as if scientific truth is determined by votes rather than facts ». He again outlined his opposition to renewable power.

Mr Abbott’s intervention further complicates the Australian government’s bid to finalise an energy policy this year. The former head of the Clean Energy Finance Corporation, warned the Federal Government it needed a CET. Without the policy, power would be less reliable because older coal-fired power stations would be kept in use longer and then fail because of their age. The old power plants will probably continue operating and there could be a hiatus in the construction of renewable energy. Then what will happen is those old 50-year power stations will suddenly fall over, they will fall over in unpredictable ways and cause massive power shortages.

Source: ABC News.

 

Publicités

Scott Pruitt fusille le Clean Power Plan d’Obama // Scott Pruitt kills Obama’s Clean Power Plan

Le 9 octobre 2017, Scott Pruitt, responsable de l’Agence pour la Protection de l’Environnement (EPA), a annoncé qu’il allait signer un nouveau décret qui annulerait le Clean Power Plan, une mesure prise sous la présidence de Barack Obama et visant à limiter les émissions de carbone des centrales au charbon. Pour Pruitt, l’annulation du Clean Power Plan marque l’aboutissement d’un long combat qu’il a commencé en tant que procureur général d’Oklahoma. Pruitt faisait partie de la vingtaine de procureurs généraux qui ont intenté un procès pour empêcher le président Obama de limiter les émissions de carbone. Étroitement lié à l’industrie pétrolière et gazière dans son Etat d’origine, Pruitt a toujours rejeté le consensus des scientifiques selon lequel les émissions anthropiques dues à la combustion de combustibles fossiles sont la principale cause du changement climatique dans le monde. Le président Donald Trump, qui a nommé Pruitt à la tête de l’EPA et partage son scepticisme à l’égard du réchauffement climatique, avait promis de détruire le Clean Power Plan au cours de la campagne présidentielle de 2016, avec la volonté de donner un nouvel essor aux mines de charbon en difficulté. Le président a annoncé plus tôt cette année qu’il retirerait les Etats-Unis de l’accord climatique de Paris
Le Clean Power Plan d’Obama a été conçu pour réduire les émissions de dioxyde de carbone des États-Unis à 32 pour cent sous le niveau de 2005 d’ici 2030. La mesure dictait des objectifs d’émissions spécifiques aux États où les centrales électriques étaient les plus nombreuses. La Cour suprême a mis le plan en attente l’année dernière suite à des contestations juridiques par les industriels et par des états favorables au charbon.
Les groupes environnementaux et les défenseurs de la santé publique ont vivement critiqué la décision de Scott Pruitt, l’accusant d’avoir une vision à court terme.
Source: Journaux américains.

————————————-

On October 9th, 2017, Scott Pruitt, the head of the Environmental Protection Agency (EPA) said that he will sign a new rule overriding the Clean Power Plan, an Obama-era effort to limit carbon emissions from coal-fired power plants. For Pruitt, getting rid of the Clean Power Plan will mark the culmination of a long fight he began as the elected attorney general of Oklahoma. Pruitt was among about two-dozen attorney generals who sued to stop President Barack Obama’s push to limit carbon emissions. Closely tied to the oil and gas industry in his home state, Pruitt rejects the consensus of scientists that man-made emissions from burning fossil fuels are the primary driver of global climate change. President Donald Trump, who appointed Pruitt and shares his skepticism of established climate science, promised to kill the Clean Power Plan during the 2016 campaign as part of his broader pledge to revive the nation’s struggling coal mines. The president announced earlier this year that he will pull the United States out of the landmark Paris climate agreement

Obama’s plan was designed to cut U.S. carbon dioxide emissions to 32 percent below 2005 levels by 2030. The rule dictated specific emission targets for states based on power-plant emissions. The Supreme Court put the plan on hold last year following legal challenges by industry and coal-friendly states.

Environmental groups and public health advocates quickly derided the decision as short sighted.

Source: American newspapers.

La Terre il y a 56 millions d’années, aujourd’hui et demain // The Earth 56 million years ago, today and tomorrow

Dans une étude récente publiée dans la revue Nature, des scientifiques ont examiné le réchauffement climatique qui s’est produit pendant le PETM (Maximum thermique du passage Paléocène-Éocène) et ont tiré des conclusions sur le réchauffement climatique qui affecte actuellement notre planète.
Le climat de la Terre a connu un réchauffement rapide pendant le PETM, il y a 56 millions d’années. Dans leur dernière études, les chercheurs ont identifié la cause de cette période de réchauffement climatique et ils ont établi un lien avec le changement climatique que nous connaissons actuellement.
Juste avant le PETM, la Terre ne ressemblait pas à ce qu’elle est aujourd’hui. Les régions polaires étaient dépourvues de glace ; il y avait des forêts tempérées ou même subtropicales le long des côtes de l’Antarctique et le Canada arctique ressemblait aux marécages des Everglades de la Floride d’aujourd’hui. La température des océans était de 10°C supérieure à ce qu’elle est aujourd’hui et les zones climatiques chaudes s’étaient toutes déplacées vers les pôles.
Au début du PETM, la planète s’est réchauffée d’au moins 5°C en quelques milliers d’années. La vie dans les profondeurs des océans a souffert de façon disproportionnée. De nombreuses espèces ont disparu et certaines zones des océans ont devenues anoxiques. Il a fallu environ 150 000 ans pour que le climat de la Terre retrouve un certain équilibre.
Une augmentation de 5°C sur quelques milliers d’années est extrêmement rapide à l’échelle géologique, mais n’est rien comparé à la vitesse actuelle du réchauffement climatique. Si nous continuons à brûler des combustibles fossiles au même rythme, les scénarios les plus pessimistes indiquent que nous pourrions atteindre 5°C d’ici la fin du siècle !
Le PETM peut nous éclairer sur l’avenir de notre planète. On pense depuis longtemps que la période chaude du PETM a été provoquée par l’augmentation des concentrations de gaz à effet de serre dans l’atmosphère. En effet, nous savons qu’il y a eu une énorme libération de carbone dans l’atmosphère et dans les océans à cette époque, grâce à l’analyse de sédiments datant de 56 millions d’années. Pourtant, l’origine de ce carbone a toujours été l’objet de désaccords. La dernière étude a identifié l’empreinte chimique de ce carbone. Il semble provenir des émissions produites par une activité volcanique intense et prolongée. L’étude montre également que le niveau atmosphérique de CO2 a plus que doublé en moins de 25 000 ans. Cela s’explique par le fait que le Groenland et l’Amérique du Nord s’éloignaient de l’Europe en créant l’Océan Atlantique Nord, avec une activité volcanique le long de ce qui est aujourd’hui la dorsale médio-atlantique. D’énormes quantités de carbone ont probablement été libérées dans l’atmosphère par l’activité volcanique pendant le PETM, en volumes beaucoup plus importants que toutes les réserves de combustibles fossiles actuellement accessibles. Toutefois la vitesse d’émission était probablement au moins 20 fois plus lente qu’aujourd’hui.

Le volcanisme du PETM a eu lieu en grande partie sous l’eau et à un rythme lent. L’équivalent moderne serait sûrement les «fumeurs noirs» que l’on rencontre dans les profondeurs de l’Atlantique.
Le carbone libéré par ces bouches au fond de l’océan est remonté à la surface et a déclenché un cycle qui a fini par affecter les océans proprement dits. Tout d’abord, la chaleur extrême du PETM a conduit à une altération plus rapide des roches et du sol, ce qui signifie que plus de nutriments comme le phosphore se sont propagés dans la mer, ce qui a stimulé la croissance du plancton. Lorsque le plancton est mort, il descend vers les fonds marins et stocke progressivement ce même carbone dans des sédiments profonds.
Alors que cette chaîne d’événements a provoqué l’élimination du carbone de l’atmosphère ancienne, elle a également entraîné une perte d’oxygène dans certaines parties des océans, comme cela se produit de nos jours dans les «zones mortes» du Golfe du Mexique où un excès de nutriments se répand dans l’eau chaude de l’océan.
La dernière étude a révélé que le PETM a été causé par des émissions massives de carbone provenant de l’intérieur de la Terre. Cette situation présente beaucoup de points commun avec celle que nous connaissons aujourd’hui, avec une élévation du niveau de CO2 dans notre atmosphère et nos océans par la combustion des combustibles fossiles qui ont été enterrés pendant des millions d’années. Le PETM nous donne une image de plus en plus claire de ce que sera la Terre si nous continuons à émettre des gaz à effet de serre. Il se pourrait que notre planète connaisse une situation qu’elle n’a jamais traversée en 56 millions d’années.
Source: The Guardian / Nature.

————————————–

In a recent study published in Nature, scientists examined the global warming that occurred during the PETM 56 million years ago and drew conclusions about the global warming that currently affects our planet.

Earth’s climate experienced rapid warming during the Palaeocene-Eocene Thermal Maximum (PETM), 56 million years ago. In their latest research, scientists have identified the cause of this well-known warm period. Its links to present day climate change are clear.

Just prior to the PETM, Earth looked very different than it does today. The polar regions were devoid of ice sheets, with temperate or even subtropical forests along the coastlines of Antarctica, and Arctic Canada resembling the swamplands of modern Florida. The deep oceans were about 10°C warmer than today, and warm climate zones were all shifted polewards.

Next, the planet warmed by at least a further 5°C over a few thousand years at the onset of the PETM. Life in the deep sea suffered disproportionately; many species went extinct and parts of the deep ocean became anoxic. It took about 150,000 years for Earth’s climate to naturally recover and regain some sort of equilibrium.

An increase of 5°C over a few thousand years is breakneck speed in geological terms, but is still nothing compared to our current rate of warming. In fact, if we keep burning fossil fuels at our current rate, the worst-case scenarios suggest we could hit 5°C by the end of the century.

What can the PETM tells us about the future? It has long been suspected that the warm period was triggered by increasing greenhouse gas concentrations in the atmosphere. We know there was a huge release of “new” carbon into the atmosphere and oceans at the time, thanks to analysis of 56million-year-old sediments. Yet where this carbon came from has always been disputed. The latest study identified the distinctive chemical fingerprint of this carbon; it pointed not to methane, but to emissions from intense and prolonged volcanic activity. The research also show that atmospheric CO2 levels more than doubled in less than 25,000 years. This makes sense: at the same time, Greenland and North America were drifting away from Europe, creating the North Atlantic Ocean and a string of volcanic activity along what is now the Mid-Atlantic Ridge. Huge quantities of carbon must have been released into the atmosphere by volcanic activity during the PETM, which is an order of magnitude higher than all currently-accessible fossil fuel reserves taken together. But the rate of emissions would have been at least 20 times slower than today. Given how much CO2 was released, the resulting global warming was about what we would predict based on calculations of current climate sensitivity.

PETM volcanism largely took place under water and at a slower pace, perhaps the best modern equivalent would be the “black smokers” still found today in the deep North Atlantic.

The carbon released by these vents would bubble up to the surface and kick off a cycle that would eventually affect the oceans themselves. First, extreme PETM warmth led to faster weathering of rocks and soil, which meant more nutrients like phosphorus were being washed into the sea. This in turn stimulated plankton growth. When the plankton died they drifted down to the seafloor and gradually stored that same carbon in deep marine sediments.

While this chain of events aided the removal of carbon from the ancient atmosphere it also led to oxygen starvation in some parts of the deep sea, analogous to the “dead zones” that form today in areas like the Gulf of Mexico where an excess of nutrients is washed into warm water.

The latest study found the PETM was caused by massive carbon emissions from Earth’s interior. It thus has many parallels to today, where we are ratcheting up CO2 levels in our atmosphere and oceans by burning fossil fuels that have been buried for millions of years. The PETM is giving us an increasingly clearer picture of what Earth will be like if we carry on, and take our planet to places it has not been in at least 56 million years.

Source: The Guardian / Nature.

Evolution du climat sur 65 millions d’années

L’avenir du permafrost en Alaska // The future of Alaska’s permafrost

Comme je l’ai écrit à plusieurs reprises sur ce blog, le permafrost (ou pergélisol) fond à une vitesse incroyable dans l’Arctique, avec des conséquences importantes pour l’environnement. Un article récemment publié dans le New York Times apporte plus de détails sur le phénomène.
L’Arctique se réchauffe environ deux fois plus vite que d’autres parties de la planète, et la hausse des températures est fortement ressentie en Alaska. La glace de mer et certains biotopes disparaissent; la hausse du niveau de la mer menace les villages côtiers. Pour les scientifiques du Woods Hole Research Center qui sont allés en Alaska étudier les effets du changement climatique, le problème le plus sérieux réside dans la fonte du permafrost.
Logé entre quelques dizaines de centimètres et quelques mètres sous la surface, le permafrost contient de grandes quantités de carbone dans la matière organique ; ce sont des plantes qui ont absorbé du dioxyde de carbone de l’atmosphère il y a des siècles, sont mortes et ont gelé avant de pouvoir se décomposer. Sur la planète, on pense que le permafrost contient aujourd’hui deux fois plus de carbone que l’atmosphère. Une fois que cette matière organique décongèle, les microbes en transforment une partie en dioxyde de carbone et en méthane qui peuvent passer dans l’atmosphère et accélérer son réchauffement.
En juillet 2017, les scientifiques du Woods Hole Research Center ont installé une station temporaire au bord d’un lac à 90 km au nord-ouest de Bethel, une ville située près de la côte ouest de l’Alaska, à environ 640 km d’Anchorage. Ils ont prélevé des carottes de permafrost, ainsi que des échantillons de sédiments et d’eau et enfoncé des sondes thermiques dans le sol gelé. Plus tard, dans le laboratoire de l’institution, ils ont entrepris le processus d’analyse des échantillons pour déterminer la teneur en carbone et en nutriments. L’objectif est de mieux comprendre comment la fonte du permafrost affecte le paysage et, en fin de compte, quelle quantité de gaz à effet de serre est évacuée dans l’atmosphère.
Même dans le nord de l’Alaska où le climat est plus froid et où le permafrost dans la région de North Slope descend à plus de 600 mètres sous la surface, les scientifiques voient des changements importants. La température à deux mètres de profondeur a augmenté de 3 degrés Celsius au cours des dernières décennies. Les changements à la surface ont été encore plus importants. Sur l’un des sites de mesures, la température du permafrost en surface est passée de moins 8 degrés Celsius à moins 3. A ce rythme, cette température deviendra positive vers le milieu du siècle. En plus des émissions de gaz à effet de serre, la fonte du permafrost a une incidence sur les infrastructures et provoque des affaissements de terrain lorsque la glace perd de son volume en fondant. J’ai précédemment donné l’exemple de la rue principale de Bethel, une agglomération où les bâtiments s’enfoncent et se fissurent.
La fonte du permafrost est un processus graduel. Le sol est totalement gelé en hiver et commence à décongeler de haut en bas lorsque la température de l’air augmente au printemps. À mesure que les températures moyennes augmentent, cette couche décongelée ou active en subit les effets en profondeur. Les chercheurs s’intéressent à la manière dont les feux de forêt affectent le permafrost. Comme les incendies font disparaître en surface une partie de la végétation qui agit comme un isolant, on pense que le feu et la combustion qu’il entraîne peuvent accélérer la fonte du pergélisol.
La fonte du permafrost sous un lac ou en bordure de celui-ci peut provoquer l’évacuation de l’eau, un peu comme une baignoire qui fuit. Cette fonte peut aussi entraîner des variations de niveau du sol, ce qui peut entraîner des changements dans l’écoulement de l’eau ; ainsi, certaines parties de la toundra peuvent s’assécher et d’autres être transformées en tourbières. Au-delà des effets sur la vie végétale et animale, les changements apportés au paysage peuvent avoir un impact important sur le changement climatique en modifiant la quantité de dioxyde de carbone et de méthane qui est émise. Bien que le méthane ne persiste pas dans l’atmosphère aussi longtemps que le dioxyde de carbone, il a une capacité de piégeage thermique beaucoup plus grande et peut contribuer à un réchauffement plus rapide. Si le permafrost en décomposition est humide, il y aura moins d’oxygène disponible pour les microbes, de sorte qu’ils produiront plus de méthane. Si le pergélisol est sec, la décomposition entraînera plus de dioxyde de carbone.
Les estimations varient en ce qui concerne la quantité de carbone émise lors de la fonte du permafrost dans le monde, mais on estime que les émissions d’ici la fin du siècle pourraient atteindre environ 1,5 milliard de tonnes par an, soit environ les émissions annuelles actuelles provenant de combustibles fossiles aux États-Unis.
La hausse des émissions de carbone dans la toundra de l’Alaska est tenue pour responsable de la hausse des températures et de la fonte du permafrost. Dans une étude publiée au début de cette année, les chercheurs ont constaté que la décomposition bactérienne du permafrost décongelé, ainsi que le dioxyde de carbone produit par la végétation vivante, se poursuit plus tard dans l’automne parce que le gel en surface est retardé. Selon les chercheurs, la hausse des émissions de CO2 a été si importante que l’Alaska pourrait passer du stade de simple réserve à celui de véritable source de carbone.
Source: The New York Times.

————————————–

As I put it several times in this blog, permafrost is thawing at an incredible speed in the Arctic, with significant consequences for the environment. An article recently published in The New York Times brings more details about the phenomenon.

The Arctic is warming about twice as fast as other parts of the planet, and even in sub-Arctic Alaska the rate of warming is high. Sea ice and wildlife habitat are disappearing; higher sea levels threaten coastal native villages. To the scientists from Woods Hole Research Center who have gone to Alaska to study the effects of climate change, the most urgent is the fate of permafrost.

Starting just a few tens of centimetres below the surface and extending a few metres down, it contains vast amounts of carbon in organic matter, plants that took carbon dioxide from the atmosphere centuries ago, died and froze before they could decompose. Worldwide, permafrost is thought to contain about twice as much carbon as is currently in the atmosphere. Once this ancient organic material thaws, microbes convert some of it to carbon dioxide and methane, which can flow into the atmosphere and cause more warming.

In July, Woods Hole scientists set up a temporary field station on a lake 90 km northwest of Bethel, a city located near the west coast of Alaska, approximately 640 km from Anchorage. They drilled permafrost cores, took other sediment and water samples and embedded temperature probes in the frozen ground. Later, back in the lab at Woods Hole, they began the process of analyzing the samples for carbon content and nutrients. The goal is to better understand how thawing permafrost affects the landscape and, ultimately, how much and what mix of greenhouse gases is released.

Even in colder northern Alaska, where permafrost in some parts of the North Slope extends more than 600 metres below the surface, scientists are seeing stark changes. Temperatures at a depth of 2 metres have risen by 3 degrees Celsius over decades. Near-surface changes have been even greater. At one northern site, permafrost temperatures at shallow depths have climbed from minus 8 degrees Celsius to minus 3. If emissions and warming continue at the same rate, near-surface temperatures will rise above freezing around the middle of the century. In addition to greenhouse-gas emissions, thawing wreaks havoc on infrastructure, causing slumping of land when ice loses volume as it melts. I previously gave the example of the main road in Bethel where building foundations move and crack.

The thawing of permafrost is a gradual process. Ground is fully frozen in winter, and begins to thaw from the top down as air temperatures rise in spring. As average temperatures increase, this thawed, or active, layer can increase in depth. The researchers are especially interested in how wildfires affect the permafrost. Because burning removes some of the vegetation that acts as insulation, the theory is that burning should cause permafrost to thaw more.

Thawing permafrost underneath or at the edge of a lake can cause it to drain like a leaky bathtub. Thawing elsewhere can bring about small elevation changes that can in turn lead to changes in water flow through the landscape, drying out some parts of the tundra and turning others into bogs. Beyond the local effects on plant and animal life, the landscape changes can have an important climate change impact, by altering the mix of carbon dioxide and methane that is emitted. Although methane does not persist in the atmosphere for as long as carbon dioxide, it has a far greater heat-trapping ability and can contribute to more rapid warming. If the decomposing permafrost is wet, there will be less oxygen available to microbes, so they will produce more methane. If the permafrost is dry, the decomposition will lead to more carbon dioxide.

Estimates vary on how much carbon is released from thawing permafrost worldwide, but by one calculation emissions over the rest of the century could average about 1.5 billion tons a year, or about the same as current annual emissions from fossil-fuel burning in the United States.

Already, thawing permafrost and warmer temperatures are being blamed for rising carbon emissions in the Alaskan tundra. In a study earlier this year, researchers found that bacterial decomposition of thawed permafrost, as well as carbon dioxide produced by living vegetation, continues later into the fall because freezing of the surface is delayed. The rise in emissions has been so significant, the researchers found, that Alaska may be shifting from a sink, or storehouse, of carbon, to a net source.

Source: The New York Times.

Carte montrant (en bleu) l’étendue du permafrost en Alaska en 2010

Projection montrant (en orange) la perte probable de permafrost en 2050

 (Source : Woods Hole Research Center)

Supercontinents et émissions de carbone d’origine volcanique

Des chercheurs de l’Université de Cambridge ont constaté que ce sont les mouvements des supercontinents au cours de centaines de millions d’années qui contrôlent les émissions de carbone d’origine volcanique. Les résultats, qui figurent dans la revue Science, pourraient conduire à une réinterprétation de la façon dont le cycle du carbone a évolué au cours de l’histoire de la Terre et sur son incidence sur l’évolution de l’habitabilité de notre planète.
Les chercheurs ont utilisé des mesures de carbone et d’hélium provenant de plus de 80 volcans dans le monde afin d’en déterminer l’origine. Le carbone et l’hélium émis par les volcans peuvent provenir des profondeurs de la Terre ou être recyclés près de la surface. La mesure de l’empreinte chimique de ces éléments peut déterminer leur source. Lorsque l’équipe scientifique a analysé les données, elle a constaté que la majeure partie du carbone émis par les volcans est recyclée près de la surface, contrairement aux hypothèses antérieures selon lesquelles le carbone provenait de l’intérieur de la Terre.
Au cours des millions d’années écoulées, les cycles du carbone ont oscillé entre les profondeurs de la Terre et sa surface. Le carbone est retiré de la surface à partir de processus qui permettent à l’oxygène atmosphérique de se développer. Les volcans permettent au carbone de revenir à la surface, bien que la quantité produite représente moins d’un centième  des émissions de carbone provoquées par l’activité humaine. Aujourd’hui, la majeure partie du carbone émis par les volcans est recyclée près de la surface, mais il est peu probable que ce fût toujours le cas.
Les volcans se forment le long d’arcs insulaires ou continentaux, là où les plaques tectoniques entrent en collision et où une plaque glisse sous  une autre, comme les Andes d’Amérique du Sud ou les volcans italiens. Ces volcans ont des empreintes chimiques différentes: les volcans d’arc insulaire émettent moins de carbone en provenance des profondeurs du manteau, tandis que les volcans d’arc continental émettent beaucoup plus de carbone en provenance de la surface.
Au cours des centaines de millions d’années écoulées, la Terre a connu des périodes où les continents se sont rapprochés ou se sont éloignés les uns des autres. Ce mouvement de va et vient a modifié, au cours des temps géologiques, l’empreinte chimique du carbone qui arrive à la surface de la Terre. On peut la mesurer au travers des différents isotopes du carbone et de l’hélium.
Les variations d’isotopes – ou d’empreinte chimique – du carbone sont généralement mesurées dans le calcaire. Les chercheurs avaient déjà pensé que la seule chose susceptible de modifier l’empreinte carbone dans le calcaire était la production d’oxygène atmosphérique. En tant que telle, l’empreinte isotopique du carbone dans le calcaire était utilisée pour interpréter l’évolution de l’habitabilité à la surface de la Terre. Les résultats proposés par l’équipe de chercheurs de Cambridge indiquent que les volcans ont joué un rôle plus important dans le cycle du carbone qu’on le croyait précédemment, et que les hypothèses antérieures doivent être reconsidérées.
Un bon exemple réside dans le Crétacé, il y a 144 à 65 millions d’années. Au cours de cette période, il y a eu une augmentation importante de la proportion d’isotopes de carbone trouvés dans le calcaire, ce qui a été interprété comme une augmentation de la concentration d’oxygène atmosphérique. Cette augmentation de l’oxygène atmosphérique a été liée à la prolifération des mammifères à la fin du Crétacé. Cependant, les résultats de l’équipe scientifique de Cambridge montrent que l’augmentation de la proportion d’isotopes de carbone dans le calcaire serait davantage due dans sa quasi totalité à des modifications dans les types de volcans à la surface de la Terre.
Source: Université de Cambridge.

——————————————

Researchers from the University of Cambridge have found that the formation and breakup of supercontinents over hundreds of millions of years controls volcanic carbon emissions. The results, reported in the journal Science, could lead to a reinterpretation of how the carbon cycle has evolved over Earth’s history, and how this has impacted the evolution of Earth’s habitability.
The researchers used existing measurements of carbon and helium from more than 80 volcanoes around the world in order to determine its origin. Carbon and helium coming out of volcanoes can either come from deep within the Earth or be recycled near the surface, and measuring the chemical fingerprint of these elements can pinpoint their source. When the team analysed the data, they found that most of the carbon coming out of volcanoes is recycled near the surface, in contrast with earlier assumptions that the carbon came from deep in the Earth’s interior.

Over millions of years, carbon cycles back and forth between Earth’s deep interior and its surface. Carbon is removed from the surface from processes which allows atmospheric oxygen to grow at the surface. Volcanoes are one way that carbon is returned to the surface, although the amount they produce is less than a hundredth of the amount of carbon emissions caused by human activity. Today, the majority of carbon from volcanoes is recycled near the surface, but it is unlikely that this was always the case.

Volcanoes form along large island or continental arcs where tectonic plates collide and one plate slides under the other, such as the Andes of South America or the volcanoes throughout Italy. These volcanoes have different chemical fingerprints: the island arc volcanoes emit less carbon which comes from deep in the mantle, while the continental arc volcanoes emit far more carbon which comes from closer to the surface.

Over hundreds of millions of years, the Earth has cycled between periods of continents coming together and breaking apart. This back and forth changes the chemical fingerprint of carbon coming to Earth’s surface systematically over geological time, and can be measured through the different isotopes of carbon and helium.
Variations in the isotope ratio, or chemical fingerprint, of carbon are commonly measured in limestone. Researchers had previously thought that the only thing that could change the carbon fingerprint in limestone was the production of atmospheric oxygen. As such, the carbon isotope fingerprint in limestone was used to interpret the evolution of habitability of Earth’s surface. The results of the Cambridge team suggest that volcanoes played a larger role in the carbon cycle than had previously been understood, and that earlier assumptions need to be reconsidered.

A great example of this is in the Cretaceous Period, 144 to 65 million years ago. During this time period there was a major increase in the carbon isotope ratio found in limestone, which has been interpreted as an increase in atmospheric oxygen concentration. This increase in atmospheric oxygen was causally linked to the proliferation of mammals in the late Cretaceous. However, the results of the Cambridge team suggest that the increase in the carbon isotope ratio in the limestones could be almost entirely due to changes in the types of volcanoes at the surface.

Source: University of Cambridge.

Processus de circulation du carbone dans les zones de subduction (Source : Université de Cambridge)

 

Les incendies de forêts en Sibérie accélèrent le réchauffement climatique // Wildfires in Siberia accelerate global warming

Avec la hausse des températures liée au réchauffement climatique et à l’émission de gaz à effet de serre, les incendies de forêt sont devenus de plus en plus répandus dans le monde. En 2016, l’un d’eux à Fort McMurray (Alberta) a été la catastrophe naturelle la plus coûteuse dans l’histoire du Canada. Au cours des dernières semaines, de nouveaux feux de forêt ont affecté des parties de l’Arizona, de la Californie et de l’Alaska. Selon l’organisation Climate Central, la saison des feux de forêt en Alaska est beaucoup plus longue qu’il y a 75 ans et les départs de feux sont deux fois plus fréquents qu’à cette époque.
Chaque année, la Sibérie est, elle aussi, victime d’incendies qui détruisent de vastes étendues de forêt boréale. Le changement climatique a entraîné une hausse vertigineuse de leur nombre au cours des dernières décennies et les projections concernant le changement climatique en prévoient encore plus dans les années à venir. Les feux actuels, qui ont débuté fin juin, ont déjà brûlé quelque 538 kilomètres carrés de forêts dans le sud de la Sibérie.
Le changement climatique a entraîné une hausse des températures dans le monde entier, mais les régions les plus septentrionales, comme la Sibérie, connaissent une élévation de la température deux fois plus importante qu’ailleurs dans le monde. Depuis novembre, les températures dans le sud de la Sibérie ont augmenté de 4°C par rapport à la moyenne. A mesure que le temps devient plus sec et plus chaud, les forêts de la région deviennent de plus en plus exposées aux incendies. Ces derniers constituent une menace directe pour le rôle que jouent forêts sibériennes dans l’absorption des émissions de carbone. En effet, chaque année, les forêts russes absorbent 500 millions de tonnes de carbone de l’atmosphère.
Les images du satellite Aqua de la NASA (voir ci-dessous) montrent toute une série de feux de forêt et d’impressionnants nuages de fumée dans le sud de la Sibérie. Un autre satellite, Suomi NPP, a mesuré la qualité de l’air dans la région et révélé un indice d’aérosol de 19, preuve de la présence d’une fumée très dense à haute altitude. Selon l’Observatoire de la Terre (Earth Observatory) de la NASA, les scientifiques étudient actuellement trois formations probables de pyrocumulus (nuages de la famille des cumulus qui se forment au-dessus d’une source de chaleur intense) dans la région, ce qui peut y modifier le climat par la présence de cendre et de particules très haut dans l’atmosphère.
Cependant, l’impact le plus dévastateur de ces feux de forêt n’est pas visible depuis l’espace. Les forêts boréales de Sibérie jouent un rôle crucial dans le cycle du carbone. Elles représentent près de 10% de la surface terrestre de la planète et abritent plus de 30% du carbone sur Terre. Cela signifie que lorsque ces forêts brûlent, elles libèrent de vastes quantités de carbone dans l’atmosphère. La perte d’absorption de carbone combinée à l’émission de carbone crée un cercle vicieux qui entraîne un réchauffement climatique et, par conséquent, davantage de feux de forêt.
En outre, ces incendies accélèrent la fonte de la glace de l’Arctique, qui disparaît déjà à une vitesse inquiétante. Cette fonte s’accélère lorsque les feux produisent de grosses quantités de suie qui retombe ensuite sur la neige et la glace, obscurcissant leur surface et leur permettant d’absorber plus de lumière solaire. Par la chaleur qu’ils dégagent, les feux de forêt accélèrent également la fonte du pergélisol (ou permafrost) en Sibérie. Comme je l’ai déjà écrit, le pergélisol fond déjà depuis plusieurs années. On en a une preuve avec les «forêts ivres» où les racines des arbres qui ne sont plus maintenues en place par le sol gelé.
Source: Science Alert.

—————————————-

With the rising temperatures linked to global warming and the emission of greenhouse gases, wildfires have become more and more widespread around the world. Last year, a wildfire in Fort McMurray, Alberta, became the costliest natural disaster in Canadian history. In recent weeks, more wildfires have affected parts of Arizona, California and Alaska. According to Climate Central , the wildfire season in Alaska is 40 percent longer and large fires twice as common as they were 75 years ago.

Every year, Siberia is also struck by wildfires that destroy large areas of boreal forest. Climate change has caused wildfire activity in Siberia to increase radically over the past few decades.  The boreal forests in Siberia are burning at extraordinary rates, and climate change projections predict even more wildfires to come. The current wildfires, which started in late June, have already burned roughly 538 square kilometres of forest in southern Siberia.

Climate change has been increasing temperatures across the globe, but northernmost regions, like Siberia, are experiencing temperature rises at twice the rate.  Since November, temperatures in southern Siberia have been up 4°C from the average.  And as the weather turns drier and warmer, the forests in the region become more and more prone to wildfires. These wildfires are a direct threat to the role of Siberian forests in absorbing carbon emissions. Indeed, each year, the Russian forests absorb 500 million tonnes of carbon from the atmosphere.

The images from NASA’s Aqua satellite (see below) reveal a series of wildfires and huge plumes of smoke across southern Siberia. Another satellite, Suomi NPP, measured the air quality in the region and found the aerosol index reached over 19, indicating very dense smoke at high altitudes. According to NASA Earth Observatory, scientists are also currently investigating three possible pyrocumulus cloud formations in the area, which can alter local climates by lofting ash and particles high into the atmosphere.

However, the most devastating impact of these wildfires cannot be seen from a satellite. Siberian boreal forests play a crucial role in the carbon cycle, making up nearly 10 percent of the planet’s land surface and housing more than 30 percent of the carbon on Earth. That means that when these forests burn, they are releasing vast quantities of carbon into the atmosphere. The loss of carbon absorption in combination with the release of carbon, creates a vicious cycle that leads to more global warming and, as a result, more wildfires.

Besides, these wildfires can also hasten the melting of Arctic ice, which is already disappearing at alarming rates. This occurs when the fires produce hordes of soot that fall on snow and ice, darkening their surface and causing them to absorb more sunlight. The wildfires are also accelerating the melting of permafrost in Siberia. As I put it before, the permafrost has already been thawing for several years. An evidence of this are the “drunken forests” with the roots of the trees no longer held in place by the ice in the ground.

Source: Science Alert.

Feux de forêts et fumée au-dessus de la Sibérie vus depuis l’espace (Source: NASA Earth Observatory)

Les émissions de CO2 de la toundra // The tundra’s carbon dioxide emissions

drapeau-francaisAu cours de ces dernières années, j’ai consacré plusieurs notes à la fonte du permafrost et ses conséquences sur l’environnement. Un nouvel article paru dans la presse alaskienne confirme les craintes des scientifiques.

Avec la hausse des températures dans l’Arctique, les sols plus chauds vont envoyer dans l’atmosphère de plus en plus de gaz carbonique. Selon une étude conduite par des chercheurs de l’Université de Yale, suite au réchauffement climatique, les sols enverront dans l’atmosphère 55 milliards de tonnes de gaz carbonique au milieu du 21ème siècle. Cela équivaut à environ 17% des émissions provoquées par la combustion des combustibles fossiles et d’autres activités humaines à l’échelle de la planète. L’étude, publiée dans la revue Nature, indique que c’est dans les plus hautes latitudes et les plus hautes altitudes que les sols libèrent la plus grande quantité de dioxyde de carbone.

D’une manière générale, les sols plus chauds stimulent davantage l’activité microbienne souterraine qui produit le gaz carbonique, mais le phénomène est encore plus évident dans les régions arctiques où règne le pergélisol et où le réchauffement se produit au moins deux fois plus vite qu’ailleurs dans le monde. Dans les hautes latitudes et à des altitudes élevées, le dégel du pergélisol libère le CO2 qui était jusqu’alors emprisonné dans le sol et le rend accessible aux processus microbiens qui produisent des gaz qui s’échappent à la surface.
Selon une autre étude effectuée par des scientifiques de l’Université de Fairbanks, il semble peu probable que les plantes arctiques aient la capacité d’absorber l’excès de gaz carbonique émis par le permafrost de la toundra. Des mesures récentes effectuées dans la région de North Slope au nord de l’Alaska ont révélé que les émissions de CO2 en provenance du sol de la toundra dépassent la capacité d’absorption de ce gaz par les plantes. Les chercheurs ont utilisé des capteurs montés sur des trépieds pour mesurer le dioxyde de carbone – le gaz à effet de serre dominant – et le méthane libéré dans l’atmosphère et absorbé par différents types de toundra. Le volume de carbone net rejeté dans l’air était tellement plus élevé que prévu que le directeur de la recherche a même demandé aux techniciens de faire un examen supplémentaire des résultats pour s’assurer qu’il n’y avait pas d’erreurs.
La plupart des études précédentes sur les émissions de CO2 de la toundra se sont limitées à l’été, saison où les plantes arctiques absorbent du carbone atmosphérique et font de la toundra un puits de carbone (ou puits CO2). Les scientifiques ont eu la confirmation, sur les sites de mesures, que les courts étés arctiques sont des saisons favorables à l’absorption de CO2. Toutefois, sur une année, les émissions sont largement supérieures à la capacité d’absorption des plantes. En effet, la fin de l’automne et le début de l’hiver, périodes où les plantes ont cessé leur photosynthèse mais où les sols ont toujours des températures positives et sont suffisamment chauds pour permettre l’activité microbienne, jouent un rôle important dans les émissions annuelles de dioxyde de carbone de la toundra.
Une étude de l’USGS publiée au début de cette année a conclu que l’Alaska dans son ensemble, en dépit du dégel du pergélisol et de la chaleur émise par les feux de forêt, conservera son statut de puits de carbone jusqu’à la fin du siècle. Toutefois, cela ne semble pas être le cas pour les régions de toundra situées au nord de la forêt boréale. Sur la toundra arctique, la végétation ne dispose que d’une courte période de photosynthèse, avec des plantes essentiellement à petites feuilles ; il n’existe pas le type de grandes feuilles susceptibles d’absorber une grande quantité de dioxyde de carbone.
Source: Alaska Dispatch News.

———————————

drapeau-anglaisIn recent years, I have devoted several notes to the melting of the permafrost and its consequences on the environment. A new article in the Alaskan press confirms the fears of scientists.

With temperatures rising in the Arctic, there have been worries about how much carbon dioxide might stream into the atmosphere from warmer soils. According to a comprehensive study led by researchers at Yale, warming will drive 55 billion metric tons of carbon gases from soils into the atmosphere by mid-century. That amount is equal to about 17 percent of projected emissions from global fossil-fuel burning and other human activities. The study, published in the journal Nature, cites the highest latitudes and highest altitudes as the biggest contributors of carbon from the ground.

While warmer soils all around the world stimulate more of the below-ground microbial activity that produces carbon gases, the changes are most striking in permafrost regions, namely the Arctic, where warming is happening at least twice as fast as the global rate, and the tops of the highest mountains. In those high latitudes and high altitudes, permafrost thaw is freeing once-locked carbon and making it available to the microbial processes that produces gases that are emitted above the ground.

Prospects for Arctic plants to absorb the extra carbon gases appear dim, according to another newly published study led by scientists at the University of Alaska Fairbanks. On at least part of Alaska’s North Slope region, new carbon streaming out of the soil is already outpacing any carbon uptake by plants on top of the ground. The study used tripod-mounted sensors to measure carbon dioxide, the dominant greenhouse gas, and methane being released and absorbed by different types of tundras. The volume of net carbon released into the air was so much higher than anticipated that the leader of the research asked technicians to do an extra review of the results.

Most previous studies of tundra carbon flux have been limited to summers, a season when the tiny Arctic plants on the ground’s surface take in atmospheric carbon and make the tundra a carbon sink. The study found the confirmation that the brief and bright Arctic summers were seasons for carbon absorption at the site. But the net, year-round emissions significantly outweighed summer plants’ absorption. Late fall and early winter, a time when plants have ceased their photosynthesis but soils are still above thaw temperatures and warm enough to allow microbial activity, has turned out to be a significant player in annual carbon emissions from the tundra.

A U.S. Geological Survey study released earlier this year concluded that Alaska as a whole, despite its thawing permafrost and increasing wildfire burns, will keep its status as an overall carbon sink through the end of the century. But that does not appear to be the case for tundra regions north of the boreal forest. On the Arctic tundra, vegetation has just a short season to photosynthesize, and it is small, lacking the type of big leaves that draw in a lot of carbon dioxide.

Source : Alaska Dispatch News.

La toundra fond…

toundra-01

Elle est superbe à l’automne…

toundra-02

J’adore randonner au sein d’une multitude de couleurs…

toundra-03

On est rarement seul dans la toundra…

toundra-04

toundra-05

Photos: C. Grandpey