Accélération de la hausse du niveau des océans // Sea level rise is accelerating

Selon une nouvelle étude récemment publiée dans la revue Proceedings (= Comptes-rendus) de l’Académie Nationale des Sciences, la hausse du niveau des océans s’est accélérée au cours des dernières décennies et n’a pas été progressive comme on avait tendance à la croire. L’étude s’est basée sur 25 ans de données fournies par les satellites de la NASA et de l’Agence Spatiale Européenne. Cette accélération, due principalement à la fonte intense du Groenland et de l’Antarctique, pourrait multiplier par deux la hausse totale du niveau de la mer d’ici à 2100.
Au train où vont les choses, le niveau de la mer augmentera de 65 centimètres d’ici à 2100, ce qui sera largement suffisant pour causer des problèmes importants aux villes côtières. L’un des auteurs de l’étude a déclaré: « Il s’agit certainement d’une estimation en dessous de la vérité ; en effet, notre extrapolation suppose que le niveau de la mer continuera à s’élever dans le futur comme il l’a fait au cours des 25 dernières années, ce qui est fort peu probable. »
Les concentrations de plus en plus importantes de gaz à effet de serre dans l’atmosphère entraînent une augmentation de la température de l’air et de l’eau, avec une hausse du niveau de la mer qui se produit de deux façons. Premièrement, l’eau plus chaude se dilate et cette «expansion thermique» de l’océan a contribué à environ la moitié des 7 centimètres de hausse moyenne du niveau de la mer au cours des 25 dernières années. Deuxièmement, l’eau de fonte de la glace sur Terre se déverse dans l’océan, ce qui contribue également à faire s’élever le niveau de la mer à travers le monde.
Ces hausses du niveau des océans sont évaluées à l’aide de mesures altimétriques satellitaires depuis 1992, notamment par les missions des satellites Topex / Poséidon, Jason-1, Jason-2 et Jason-3, gérées conjointement par plusieurs agences comme la NASA, le CNES, l’EUMETSAT et la NOAA. Le vitesse d’élévation du niveau de la mer depuis l’utilisation de ces satellites est passée d’environ 2,5 millimètres par an dans les années 1990 à environ 3,4 millimètres par an aujourd’hui.
«Les missions d’altimétrie Topex / Poseidon et Jason fournissent en informations l’équivalent d’un réseau mondial de près de 500 000 marégraphes, avec des données précises sur la hauteur de la surface de la mer tous les 10 jours depuis plus de 25 ans. Dans la mesure où l’on possède maintenant près de trois décennies de données, celles concernant la perte de glace terrestre au Groenland et en Antarctique apparaissent désormais dans les estimations mondiales et régionales du niveau moyen de la mer.
Même avec un ensemble de données s’échelonnant sur 25 ans, la détection de l’accélération de la hausse des océans n’est pas chose facile. Des épisodes tels que les éruptions volcaniques peuvent créer une variabilité. Ainsi, l’éruption du Pinatubo en 1991 a entraîné une diminution du niveau moyen de la mer à l’échelle mondiale, juste avant le lancement du satellite Topex / Poséidon. En outre, le niveau global des océans peut fluctuer en raison de phénomènes climatiques tels que El Niño et La Niña, qui influencent la température de l’océan et les régimes de précipitations sur Terre.
Les chercheurs ont utilisé des modèles climatiques pour tenir compte des effets d’éruptions volcaniques, ainsi que d’autres données pour déterminer les effets d’El Niño et La Niña, ce qui leur a permis de découvrir l’accélération de l’élévation du niveau de la mer au cours du dernier quart de siècle. L’équipe scientifique a également utilisé les données fournies par les marégraphes pour corriger les éventuelles erreurs dans les estimations altimétriques.
En plus de sa participation à des missions d’observation directe du niveau de la mer depuis l’espace, la NASA participe à un large éventail de missions et de campagnes sur le terrain et à des recherches qui contribuent à améliorer la compréhension des variations du niveau de la mer. Les campagnes aéroportées permettent d’effectuer des mesures sur les calottes glaciaires et les glaciers, tandis que la modélisation informatique améliore notre compréhension de la réaction de l’Antarctique et du Groenland face au réchauffement climatique.
En 2018, la NASA lancera deux nouvelles missions satellitaires qui seront essentielles pour améliorer les prévisions de variation du niveau de la mer. Un satellite continuera les mesures de la masse des calottes glaciaires du Groenland et de l’Antarctique, tandis qu’un autre effectuera des observations très précises du niveau des calottes glaciaires et des glaciers.
Source: NASA.

L’étude complète se trouve à cette adresse: http://www.pnas.org/content/early/2018/02/06/1717312115

——————————————

According to a new study recently published in the journal Proceedings of the National Academy of Sciences, the global sea level rise has been accelerating in recent decades, rather than increasing steadily. The study is based on 25 years of NASA and European satellite data. This acceleration, driven mainly by increased melting in Greenland and Antarctica, has the potential to double the total sea level rise projected by 2100 when compared to projections that assume a constant rate of sea level rise,

If the rate of ocean rise continues to change at this pace, sea level will rise 65 centimetres by 2100, enough to cause significant problems for coastal cities. One of the researchers said: « This is almost certainly a conservative estimate. Our extrapolation assumes that sea level continues to change in the future as it has over the last 25 years. Given the large changes we are seeing in the ice sheets today, that’s not likely. »

Rising concentrations of greenhouse gases in Earth’s atmosphere increase the temperature of air and water, which causes sea level to rise in two ways. First, warmer water expands, and this « thermal expansion » of the ocean has contributed about half of the 7 centimetres of global mean sea level rise we have seen over the last 25 years. Second, melting land ice flows into the ocean, also increasing sea level across the globe.

These increases were measured using satellite altimeter measurements since 1992, including the Topex/Poseidon, Jason-1, Jason-2 and Jason-3 satellite missions, which have been jointly managed by multiple agencies, including NASA, CNES, EUMETSAT, and NOAA. The rate of sea level rise in the satellite era has risen from about 2.5 millimetres per year in the 1990s to about 3.4 millimetres per year today.

« The Topex/Poseidon/Jason altimetry missions have been essentially providing the equivalent of a global network of nearly half a million accurate tide gauges, providing sea surface height information every 10 days for over 25 years. As this climate data record approaches three decades, the fingerprints of Greenland and Antarctic land-based ice loss are now being revealed in the global and regional mean sea level estimates.

Even with a 25-year data record, detecting acceleration is challenging. Episodes like volcanic eruptions can create variability: the eruption of Mount Pinatubo in 1991 decreased global mean sea level just before the Topex/Poseidon satellite launch, for example. In addition, global sea level can fluctuate due to climate patterns such as El Niños and La Niñas which influence ocean temperature and global precipitation patterns.

The researchers used climate models to account for the volcanic effects and other datasets to determine the El Niño/La Niña effects, ultimately uncovering the underlying rate and acceleration of sea level rise over the last quarter century. The team also used tide gauge data to assess potential errors in the altimeter estimate.

In addition to NASA’s involvement in missions that make direct sea level observations from space, the agency’s Earth science work includes a wide-ranging portfolio of missions, field campaigns and research that contributes to improved understanding of how global sea level is changing. Airborne campaigns gather measurements of ice sheets and glaciers, while computer modelling research improves our understanding of how Antarctica and Greenland will respond in a warming climate.

In 2018, NASA will launch two new satellite missions that will be critical to improving future sea level projections. One satellite will continue measurements of the mass of the Greenland and Antarctic ice sheets; the other satellite will make highly accurate observations of the elevation of ice sheets and glaciers.

Source: NASA.

The complete study can be found at this address : http://www.pnas.org/content/early/2018/02/06/1717312115

Graphique montrant les dernières prévisions de hausse des océans jusqu’en 2100 (Source : University of Colorado-Boulder)

Des volcans sous-marins au large de l’Australie // Submarine volcanoes off Australia

C’est un fait bien connu: de nombreux volcans actifs se trouvent au fond des océans et n’ont jamais été étudiés. Nous connaissons mieux la surface de Mars que nos propres fonds marins.
Les scientifiques ont découvert 26 volcans sous-marins âgés de 35 millions d’années près de l’Australie, et la carte topographique qu’ils ont publiée ressemble au domaine fictif du Mordor dans le Seigneur des Anneaux. Ces volcans sont situés au sud de l’Australie, au fond de l’océan, dans une zone récemment localisée par des chercheurs australiens et écossais.
Les scientifiques ont utilisé la reconnaissance sismique 3D pour repérer quelque 25 volcans qui se trouvent en moyenne à environ 250 mètres sous les sédiments des fonds marins. Certains de ces volcans sont hauts de 600 mètres et montrent des coulées de lave que les scientifiques n’avaient jamais vues auparavant.
L’étude, qui a été publiée dans la revue Geochemistry, Geophysics, Geosystems, a déterminé que les volcans se sont formés au cours de l’Eocène, il y a entre 50 et 33 millions d’années. L’éruption sous-marine qui a produit les coulées de lave s’est probablement produite il y a environ 35 millions d’années.
L’équipe scientifique, composée de chercheurs de l’Université d’Adélaïde, de l’Université d’Aberdeen et de l’Organisation de Recherche Scientifique et Industrielle du Commonwealth (CSIRO), a utilisé des données de reconnaissance sismique tridimensionnelle  pour cartographier le paysage. Ils ont découvert 26 coulées de lave anciennes enfouies dans les sédiments et qui mesurent jusqu’à 34 km de longueur et 15 km de largeur, ainsi qu’une multitude d’anciens volcans ayant jusqu’à 625 mètres de hauteur. Les coulées se ramifient en plusieurs branches, s’élèvent pour former des plateaux, disparaissent dans des fractures et forment des «îlots» de lave durcie de forme elliptique. Les chercheurs ont comparé ces îlots aux «kipuka» que l’on rencontre sur les volcans terrestres ; ce sont des collines ou des parcelles de terres légèrement élevées qui sont complètement encerclées par la lave après les éruptions [NDLR : On en trouve se superbes spécimens à Hawaii sur le Kilauea]. De telles structures n’ont jamais été décrites auparavant par des données sismiques sous-marines, de sorte que cette nouvelle étude donne aux chercheurs un regard neuf sur le comportement des éruptions sous-marines. Les données pourront être utilisées pour améliorer notre compréhension de l’évolution des volcans lorsqu’ils entrent en éruption sous l’eau.
Sources: BBC, The Guardian, Live Science.

———————————–

It is a well-known fact: Many active volcanoes lie at the bottom of the oceans and have never been studied. We know the surface of Mars better than the ocean sea floor.

Scientists have discovered 26 underwater volcanoes up to 35 million years old near Australia, and the topographical map they have released resembles the fictional realm of Mordor from the Lord of the Rings. These volcanoes are located south of Australia, in a place deep under the sea, where it was recently located by researchers from Australia and Scotland.

The researchers used 3D seismic reflection to spot the more than two dozen volcanoes, which averaged about 250 metres underneath the sediment on the seabed. Some of the volcanoes were up 600 metres in height and had distinct features indicating lava flows that scientists had never seen before.

The study, which was published in the journal Geochemistry, Geophysics, Geosystems, determined that the volcanoes were created during the Eocene epoch between 50 and 33 million years ago. The undersea eruption that created the lava flows on the volcanoes probably happened about 35 million years ago.

The research team, consisting of a team from the University of Adelaide, University of Aberdeen and Commonwealth Scientific and Industrial Research Organisation (CSIRO) used newly acquired 3-D seismic reflection data to map the landscape. They found 26 ancient, buried lava flows that measure up to 34 km in length and 15 km in width, along with a multitude of ancient volcanoes up to 625 metres in height. The flows branch into pathways, rise into plateaus, plunge into trenches and spread into elliptical-shaped « islands » of hardened lava. Researchers compared these islands to land-based lava features known as « kipukas, » isolated hills or plots of slightly elevated land that become completely encircled by lava after eruptions. Features like these have never been described by underwater seismic data before, so this new study gives researchers a fresh look at the behaviour of submarine eruptions. The data is now being used to improve our understanding of how volcanoes evolve when they erupt underwater.

Sources: BBC, The Guardian, Live Science.

Carte des volcans du Mordor (Source: Wikipedia)

Kipuka sur le Kilauea à Hawaii (Crédit photo: Wikipedia)

Histoire de banquettes, deltas et plates-formes à Hawaii // A story of benches, deltas and shelves in Hawaii

L’histoire en question est celle des entrées de lave sur la Grand Ile d’Hawaii, comme celle que l’on pouvait encore observer il y a quelques jours sur le site de Kamokuna. Plusieurs mots ou expressions ont été utilisés pour désigner la formation de cette nouvelle terre.
Il y a quelques années, « banquette » était le terme communément utilisé pour désigner l’accumulation de lave à son entrée dans l’océan. Les géologues ont abandonné ce mot parce que la définition géologique d’une banquette ne correspond pas au processus par lequel de nouvelles terres se forment quand la lave entre dans la mer.
« Delta de lave » est maintenant le terme géologique accepté. Toutefois, comme le mot « banquette » a été utilisé pendant de longues années, il est parfois difficile d’adopter un nom différent pour désigner la nouvelle terre en formation lors de l’entrée de la lave dans l’océan.
Dans un article intitulé Volcano Watch, publié régulièrement sur le site web de l’Observatoire des Volcans d’Hawaii (HVO), les scientifiques tentent de mettre fin à la confusion entre les termes désignant l’entrée de la lave dans l’océan. Ils en profitent aussi pour décrire les processus par lesquels les deltas de lave se forment et évoluent.
« Banquette » n’est pas un terme approprié. En effet, pour les géologues, les banquettes sont des éléments d’érosion, alors que les deltas sont des éléments de dépôt, formés par l’accumulation de nouveaux matériaux.
Les banquettes côtières sont des terres presque horizontales formées généralement par l’érosion des vagues sur de longues périodes. Ces structures plates et étroites se forment à la base des falaises près du niveau de marée haute. À Hawaii, Hanauma Bay (l’un de mes spots de snorkelling préférés !) est l’exemple d’une banquette qui a découpé la paroi sud d’un anneau de tuf tout près de Koko Head sur l’île d’Oahu. En outre, le mot banquette est également utilisé pour désigner le niveau de lave dans un tunnel.
«Plate-forme» est un autre terme fréquent, mais erroné, utilisé pour décrire l’entrée de la lave dans l’océan. Une plate-forme est une élévation peu profonde et presque horizontale de la croûte continentale qui s’étend au-dessous du niveau de la mer au large des côtes à partir du continent. On peut observer de telles plates-formes au large des îles d’Hawaii, mais elles sont généralement beaucoup plus vastes que les deltas de lave.
Contrairement à l’origine érosive d’une banquette, un « delta de lave » est un dépôt construit par accumulation de lave près de la base de la falaise littorale, au niveau de l’entrée dans l’océan. Pour comprendre ce processus, il faut imaginer un delta, comme celui du Mississippi.  Il se forme lorsque les alluvions sont transportées le long de la rivière, puis se déposent là où la rivière pénètre dans un plus grand corps d’eau stagnante ou plus lente, comme un océan. La lave qui circule dans un tunnel se comporte comme une rivière; elle circule jusqu’à la côte où elle pénètre dans l’océan.
Lorsque la lave à une température d’environ 1140°C s’écoule dans l’océan, elle se refroidit rapidement, créant une interaction potentiellement explosive. De petites explosions et les assauts des vagues décomposent la lave en petits morceaux de roche et de sable qui se déposent ensuite au fond de la mer au-dessous de l’entrée de la lave dans l’océan. L’accumulation de ces matériaux forme la base instable sur laquelle reposent les deltas de lave.
Au fur et à mesure que le delta de lave continue de croître, son front peut commencer à s’affaisser, car le poids croissant du delta déstabilise ses fondations. Quand un delta de lave devient trop lourd, ou se brise par gravité, il s’effondre, partiellement ou complètement.
Au cours de ce processus, des explosions se produisent fréquemment, avec des projections de matériaux incandescents à la fois vers l’intérieur des terres et vers la mer, avec des risques pour les visiteurs. Ces dangers ont déjà été expliqués à plusieurs reprises.
Source: USGS / HVO.

——————————————

The story deals with lava entries on Hawaii Big Island, like one that could be observed at Kamokuna a few days ago. Several words or expressions have been used to refer to this formation of a new land.

A few years ago, “bench” was the term commonly used for the accumulation of lava at an ocean entry. But geologists have moved away from that word, because the geologic definition of a bench does not agree with the process by which new land forms when lava enters the sea.

“Lava delta” is now the accepted geologic characterization. But, because the word “bench” was used for so long, it can be hard to transition to a different name for the new land formed at an ocean entry.

In an article entitled Volcano Watch which is regularly released on their website by the Hawaiian Volcano Observatory (HVO), scientists try to help resolve any confusion about what new land at an active ocean entry should be called, and to describe the processes by which lava deltas form and evolve.

Bench” is considered as a wrong word. Indeed, to geologists, benches are erosional features, whereas deltas are depositional features, formed by the accumulation of new material.

Coastal benches are nearly horizontal terrains commonly formed by wave erosion over long periods of time. These flat and narrow features form at the base of sea cliffs near the high tide mark. In Hawaii, Hanauma Bay is an example of a bench that cut into the southeast wall of a tuff ring next to Koko Head on the Island of Oahu. Besides, the word bench is also used to refer to the level of lava within a tunnel.

Referring to a lava delta as a “shelf” is another common, but misguided, term that is used to describe the ocean entry feature. A shelf is a nearly horizontal, shallow ledge of continental crust that extends below sea level off the coast of a land mass. Island shelves can be found off the coast of the Hawaiian Islands as well, but they are generally much larger than lava deltas.

In contrast to the erosional origin of a bench, a “lava delta” is a depositional feature built by the accumulation of lava near the base of the sea cliff at an ocean entry. To understand this process, one should picture a river delta, like that of the Mississippi. It forms when alluvium is transported down the river and then deposited where the river enters a larger body of standing or slower-moving water, such as an ocean. Molten lava insulated in a tube is like a river. It is transported to the coast, where it enters the ocean.

As the approximately 1140-degree Celsius (2080-degree Fahrenheit) lava flows into the ocean, it quickly cools, creating a potentially explosive interaction. Small explosions and surf action break the lava into smaller pieces of rubbly rock and sand, which are then deposited onto the sea floor beneath the ocean entry. The accumulation of this unconsolidated material produces the unstable foundation on which lava deltas are built.

As a lava delta continues to grow, its front can begin to subside, because the increasing weight of the delta causes its rubbly foundation to shift. When a lava delta becomes too heavy, or is undercut downslope, it collapses, either partially or completely.

When a lava delta collapses, it can trigger explosions that throw blocks of solid rock and fragments of molten lava both inland and seaward, with hazards to the visitors. They have been explained many times before.

Source: USGS / HVO.

Delta de lave sur la Grande Ile d’Hawaii

Hanauma Bay, sur l’île d’Oahu

(Photos: C. Grandpey)

Les glaciers Pine Island et Thwaites (Antarctique) : un danger pour l’humanité ? // Are the Pine Island and Thwaites glaciers (Antarctica) a danger to mankind ?

Dans plusieurs notes publiées entre 2014 et 2016, j’ai attiré l’attention sur les conséquences inquiétantes de la fonte de deux glaciers majeurs du continent antarctique: Pine Island et Thwaites.
S’étirant sur plus de 240 km de long, les glaciers Pine Island et Thwaites avancent depuis des millénaires vers la mer d’Amundsen, un recoin du vaste Océan Austral. Une fois à l’intérieur des terres, les glaciers prennent du volume pour former une masse de glace de 3 km d’épaisseur qui occupe une superficie équivalente à celle du Texas.
Il ne fait aucun doute que cette glace est destinée à fondre avec le réchauffement climatique à venir. La question de savoir QUAND se produire cette fonte. Ces deux glaciers de Pine Island Bay font partie des plus grands et des plus rapides de tout l’Antarctique. Ensemble, ils forment un rempart qui retient suffisamment de glace pour faire monter de 3,50 mètres le niveau des océans dans le monde, ce qui submergerait toutes les villes côtières de la planète. Pour cette raison, comprendre à quelle vitesse ces glaciers vont s’effondrer dans la mer est l’une des questions les plus importantes auxquelles les scientifiques essayent de répondre aujourd’hui.
Dans ce but, les chercheurs se sont penchés sur la fin de la dernière période glaciaire, il y a environ 11 000 ans, lorsque les températures de la planète étaient à peu près au niveau actuel. Il y a de plus en plus de preuves que les glaciers de Pine Island Bay se sont effondrés rapidement dans la mer à l’époque, avec une hausse des océans qui a inondé les côtes, en partie à cause de «l’instabilité des falaises de glace».
Le plancher océanique atteint de plus grandes profondeurs en se rapprochant du centre de cette partie de l’Antarctique, de sorte que chaque nouvel iceberg qui se détache révèle des falaises de plus en plus hautes. La glace devient si lourde que ces hautes falaises s’effondrent sous leur propre poids. Une fois qu’elles commencent à s’effondrer, la destruction totale est inévitable. Les scientifiques pensent aujourd’hui que  l’instabilité des falaises de glace pourrait déclencher la désintégration de toute la calotte glaciaire de l’Antarctique de l’Ouest au cours de ce siècle, donc beaucoup plus rapidement qu’on ne le pensait auparavant.
Un effondrement massif des glaciers Pine Island et Thwaites provoquerait une catastrophe. Des icebergs géants envahiraient l’Antarctique. Partout dans le monde, la mer lors des hautes marées recouvrirait les côtes de la planète, inondant les villes côtières, avec des centaines de millions de réfugiés climatiques. Tout cela pourrait se jouer dans un laps de temps de 20 à 50 ans, beaucoup trop vite pour que l’humanité puisse s’adapter.
Cette nouvelle source d’inquiétude est largement motivée par les recherches effectuées par deux climatologues de l’Université du Massachusetts-Amherst et de la Penn State University. L’étude qu’ils ont publiée l’année dernière a été la première à incorporer les dernières données sur l’instabilité des falaises de glace dans une modélisation globale de l’Antarctique.
Leurs résultats ont conduit à des estimations de l’élévation des mers au cours de ce siècle. Au lieu de la hausse de 90 centimètres prévue jusqu’à présent, les scientifiques affirment qu’une élévation de 1,80 mètre est plus probable. De plus, si les émissions de carbone continuent de croître et donnent naissance à un scénario catastrophe,  on pourrait atteindre une hausse de 3,30 mètres.
Une hausse de 90 centimètres du niveau de la mer serait déjà désastreuse, avec des inondations plus fréquentes dans des villes américaines telles que la Nouvelle-Orléans, Houston, New York et Miami. Les nations insulaires du Pacifique, comme les îles Marshall, perdraient la plus grande partie de leur territoire. Malheureusement, il semble maintenant que ces 90 centimètres ne soient envisagés que dans les scénarios les plus optimistes. Avec une hausse de 1,80 m, environ 12 millions de personnes aux États-Unis seraient déplacées, et les mégapoles les plus vulnérables du monde, comme Shanghai, Mumbai et Ho Chi Minh-Ville, pourraient être rayées de la carte. Avec une hausse de 3,30 mètres, les terres actuellement occupées par des centaines de millions de personnes dans le monde se retrouveraient sous l’eau. Le sud de la Floride serait en grande partie inhabitable; les inondations semblables à celles provoquées par l’ouragan Sandy se produiraient deux fois par mois à New York et dans le New Jersey car l’attraction lunaire suffirait à elle seule à envoyer l’eau dans les maisons et les bâtiments.

Les chercheurs ont observé les anciens niveaux de la mer et les ont confrontés au comportement actuel des calottes glaciaires. Il y a environ 3 millions d’années, alors que les températures à l’échelle de la planète étaient semblables à celles prévues au cours de ce siècle, le niveau des océans était des dizaines de centimètres plus haut qu’aujourd’hui.
Les modèles présentés ces dernières années indiquaient qu’il faudrait des centaines ou des milliers d’années pour qu’une élévation du niveau de la mer de cette ampleur se produise. Après avoir intégré l’instabilité des falaises de glace dans leur modèle, les chercheurs américains ont annoncé une catastrophe si le monde ne réduisait pas de façon spectaculaire ses émissions de carbone.
Les scientifiques pensaient jusqu’à présent que les calottes glaciaires prendraient probablement des millénaires pour réagir au changement climatique. Toutefois, la dernière étude démontre qu’une fois qu’un certain seuil de température est atteint, les plates-formes glaciaires qui avancent dans la mer, comme celles à proximité de Pine Island Bay, commenceront à fondre à la fois par dessus et par dessous, ce qui affaiblira leur structure et accélérera leur disparition via l’instabilité des falaises de glace.
Le glacier Jakobshavn au Groenland, l’un des glaciers qui s’effondrent le plus rapidement dans la mer, est le seul endroit au monde où l’instabilité des falaises de glace se manifeste aujourd’hui. Afin de construire leurs modèles informatiques, les chercheurs de l’Université du Massachusetts-Amherst et Penn State University ont pris en compte la vitesse d’effondrement du Jakobshavn, l’ont réduite de moitié, puis l’ont appliquée aux glaciers Thwaites et Pine Island. Il y a toutefois des raisons de penser que Thwaites et Pine Island pourraient s’effondrer encore plus vite que Jakobshavn car il y a des signes d’une possible déstabilisation rapide de toute la calotte glaciaire de l’Antarctique de l’Ouest au cours de ce siècle. Qui plus est, d’autres glaciers de l’Antarctique seront également vulnérables. Et puis il y a le Groenland, qui pourrait contribuer jusqu’à 6 mètres d’élévation du niveau de la mer si ses glaciers se mettaient à fondre.
Certains scientifiques ne sont pas entièrement convaincus par l’alarme déclenchée par leurs collègues américains. Un chercheur pense qu’il est peu probable que les glaciers Thwaites ou Pine Island s’effondrent d’un seul coup. De plus, si un effondrement rapide se produisait, le phénomène générerait un amas d’icebergs qui pourrait jouer le rôle de une plate-forme de glace temporaire, ralentissant ainsi la vitesse de recul glaciaire.
Malgré ces divergences d’opinion, il existe un consensus au sein de la communauté scientifique sur le fait que nous devons faire beaucoup plus d’études pour déterminer le risque d’élévation rapide du niveau de la mer. Evénement rare et qui montre l’urgence de la situation, en 2015, les gouvernements des États-Unis et du Royaume-Uni ont commencé à planifier un programme d’étude et de recherche sur le glacier Thwaites. Intitulé “How much, how fast?” – « De combien et à quelle vitesse? » – le projet devrait débuter au début de l’année prochaine et durer cinq ans.
Source: Presse scientifique américaine.

Voici un aperçu de ce qui nous attend si nous continuons à émettre des gaz à effet de serre : Effondrement majeur d’un glacier au Groenland (Extrait du superbe film « Chasing Ice » de James Balog)

https://youtu.be/hC3VTgIPoGU

—————————————————-

In several posts written between 2014 and 2016, I have drawn attention to the worrying consequences of the melting of two major glaciers on the Antarctic continent: Pine Island and Thwaites.

Stretching across a frozen plain more than 240 km long, the Pine Island and Thwaites glaciers have steadily moved forward for millennia toward the Amundsen Sea, part of the vast Southern Ocean. Further inland, the glaciers widen into a 3-km-thick reserve of ice covering an area the size of Texas.

There is no doubt this ice will melt as the world gets warmer and warmer. The vital question is when. These glaciers of Pine Island Bay are two of the largest and fastest-melting in Antarctica. Together, they act as a plug holding back enough ice to pour 3.50 metres of sea-level rise into the world’s oceans, an amount that would submerge every coastal city on the planet. For that reason, finding out how fast these glaciers will collapse is one of the most important scientific questions in the world today.

To figure that out, scientists have been looking back to the end of the last ice age, about 11,000 years ago, when global temperatures stood at roughly their current levels. There is growing evidence that the Pine Island Bay glaciers collapsed rapidly back then, flooding the world’s coastlines, partially the result of “marine ice-cliff instability.”

The ocean floor gets deeper toward the center of this part of Antarctica, so each new iceberg that breaks away exposes taller and taller cliffs. Ice gets so heavy that these taller cliffs can’t support their own weight. Once they start to crumble, the destruction becomes unstoppable. In the past few years, scientists have identified marine ice-cliff instability as a feedback loop that could trigger the disintegration of the entire West Antarctic ice sheet this century, much more quickly than previously thought.

A wholesale collapse of Pine Island and Thwaites would set off a catastrophe. Giant icebergs would stream away from Antarctica. All over the world, high tides would creep higher, slowly burying every shoreline on the planet, flooding coastal cities and creating hundreds of millions of climate refugees. All this could play out in a mere 20 to 50 years, much too quickly for humanity to adapt.

A lot of this newfound concern is driven by the research of two climatologists at the University of Massachusetts-Amherst and Penn State University. A study they published last year was the first to incorporate the latest understanding of marine ice-cliff instability into a continent-scale model of Antarctica.

Their results drove estimates for how high the seas could rise this century. Instead of a 90-centimetre increase in ocean levels by the end of the century, 180 centimetres was more likely. But if carbon emissions continue to track on something resembling a worst-case scenario, the full 3.30 metres of ice locked in West Antarctica might be freed up.

90 centimetres of sea-level rise would be bad, leading to more frequent flooding of U.S. cities such as New Orleans, Houston, New York, and Miami. Pacific Island nations, like the Marshall Islands, would lose most of their territory. Unfortunately, it now seems like 90 centimetres is possible only under the most optimistic scenarios. At 180 centimetres, though, around 12 million people in the United States would be displaced, and the world’s most vulnerable megacities, like Shanghai, Mumbai, and Ho Chi Minh City, could be wiped off the map. At 3.30 metres, land currently inhabited by hundreds of millions of people worldwide would wind up underwater. South Florida would be largely uninhabitable; floods on the scale of Hurricane Sandy would strike twice a month in New York and New Jersey, as the tug of the moon alone would be enough to send tidewaters into homes and buildings.

The researchers observed ancient sea levels at shorelines around the world with current ice sheet behaviour. Around 3 million years ago, when global temperatures were about as warm as they are expected to be later this century, oceans were dozens of centimetres higher than today.

Previous models suggested that it would take hundreds or thousands of years for sea-level rise of that magnitude to occur. But once they accounted for marine ice-cliff instability with their model, the researchers pointed toward a catastrophe if the world does not dramatically reduce carbon emissions.

Scientists used to think that ice sheets could take millennia to respond to changing climates.

The new evidence, though, says that once a certain temperature threshold is reached, ice shelves of glaciers that extend into the sea, like those near Pine Island Bay, will begin to melt from both above and below, weakening their structure and hastening their demise, and paving the way for ice-cliff instability to kick in.

The only place in the world where you can see ice-cliff instability in action today is at Jakobshavn glacier in Greenland, one of the fastest-collapsing glaciers in the world. In order to construct their models, the researchers at the University of Massachusetts-Amherst and Penn State University took the collapse rate of Jakobshavn, cut it in half to be extra conservative, then applied it to Thwaites and Pine Island.  But there’s reason to think Thwaites and Pine Island could go even faster than Jakobshavn as there are signals of the possible rapid destabilization of the entire West Antarctic ice sheet in this century. What is more, other glaciers around Antarctica will be similarly vulnerable. And then there is Greenland, which could contribute as much as 6 metres of sea-level rise if it melts.

Still, some scientists aren’t fully convinced the alarm is warranted. Another scientist thinks it is unlikely that Thwaites or Pine Island would collapse all at once. For one thing, if rapid collapse did happen, it would produce a pile of icebergs that could act like a temporary ice shelf, slowing down the rate of retreat.

Despite the differences of opinion, however, there is growing agreement within the scientific community that we need to do much more to determine the risk of rapid sea-level rise. In 2015, the U.S. and U.K. governments began to plan a rare and urgent joint research program to study Thwaites glacier. Called “How much, how fast?”, the effort is set to begin early next year and run for five years.

Source : U.S. scientific press.

Here’s a glimpse of what lies ahead if we continue to emit greenhouse gases: Major glacier collapse in Greenland (Excerpt from James Balog’s superb movie « Chasing Ice »).

https://youtu.be/hC3VTgIPoGU

Plate-forme glaciaire flottante au niveau du front du glacier de Pine Island. Une fracture montre qu’un vêlage d’iceberg est imminent (Crédit photo : NASA)