Mauvaises nouvelles pour la planète ! // Bad news for the planet !

La NASA vient de confirmer ce que j’écrivais précédemment : le mois d’avril 2019 a été le deuxième plus chaud depuis le début des relevés effectués par l’Administration en 1880.  Depuis cette année, seul le mois d’avril 2016 a été plus chaud.

Dans le même temps, la barre des 415 ppm a été franchie pour la première fois depuis le début des enregistrements à Hawaii. Précisions qu’il s’agit là d’une valeur quotidienne et non mensuelle. L’observatoire du Mauna Loa mesure les niveaux de CO2 dans l’atmosphère depuis la fin des années 1950. Les premiers relevés faisaient état d’une concentration de 315 ppm en 1958.

Mauvaises nouvelles pour les glaciers et la banquise !

—————————————

NASA has just confirmed what I wrote previously: April 2019 was the second warmest since the beginning of the archives compiled by the Administration in 1880. Since that year, only April 2016 was hotter.
At the same time, the 415 ppm mark was crossed for the first time since records began in Hawaii. This is a daily value and not a monthly value. The Mauna Loa Observatory has been measuring CO2 levels in the atmosphere since the late 1950s. Early records showed a concentration of 315 ppm in 1958.
Bad news for glaciers and the ice sheet!

Courbe de Keeling (Source: NOAA)

CO2 dans l’atmosphère : Ça continue ! // More and more CO2 in the atmosphere

Ce n’est pas une surprise, mais c’est une mauvaise nouvelle pour le climat et pour les glaciers. Les émissions mondiales de CO2 ont de nouveau augmenté en 2018, tirées par une consommation d’énergie toujours plus forte. C’est ce que viennent de révéler des données publiées par l’Agence Internationale de l’Energie (AIE). Après avoir stagné entre 2014 et 2016, la dynamique a changé en 2017 et 2018. Selon l’Agence, la croissance économique « n’a pas été obtenue grâce à une meilleure efficacité énergétique, les technologies bas carbone ne se sont pas développées aussi rapidement que la croissance de la demande d’énergie », qui a atteint 2,3%, sa plus rapide progression en une décennie. Ainsi l’an dernier, les émissions de CO2 liées à la production et à la combustion de toutes les énergies (pétrole, gaz, charbon, électricité renouvelable, etc.) ont progressé de 1,7% à un niveau « historique » de 33,1 gigatonnes (soit 33,1 milliards de tonnes).

La Chine, l’Inde et les Etats-Unis sont responsables de 85% de cette hausse. Cette progression est en effet essentiellement due à la consommation de charbon en Asie pour produire de l’électricité. La situation est d’autant plus inquiétante pour l’avenir que les centrales à charbon y ont une moyenne d’âge de 12 ans, alors que leur durée de vie est d’environ 50 ans.

A l’inverse, les émissions ont diminué au Royaume-Uni et en Allemagne, du fait de l’expansion des énergies vertes. Elles ont également chuté au Japon, grâce notamment à la remise en service de réacteurs nucléaires. La France a également des résultats encourageants grâce à de bons niveaux de production des barrages hydroélectriques et des centrales nucléaires.

Malgré une croissance à deux chiffres de l’éolien et du solaire, ce sont encore les énergies fossiles (charbon, pétrole, gaz) qui ont assouvi l’appétit mondial en énergie. Sa consommation s’est accrue l’an dernier du fait de la croissance économique et des besoins plus importants pour le chauffage et la climatisation dans certaines régions du monde.

Dans la conclusion de son rapport, l’AIE écrit que ces données démontrent une nouvelle fois qu’une action plus urgente est nécessaire sur tous les fronts,  que ce soit le développement des solutions d’énergie propre ou dans le domaine des innovations, notamment dans la capture et le stockage du carbone.

La courbe de Keeling, tracée au vu des concentrations se CO2 au sommet du Mauna Loa (Hawaii), confirme cette hausse des émissions de dioxyde de carbone. Depuis plusieurs semaines elles dépassent le seuil de 410 ppm, ce qui est considérable et inquiétant.

Source : France Info.

———————————————–

This does not come as a surprise, but it is bad news for the climate and the glaciers. Global CO2 emissions increased again in 2018, driven by ever-increasing energy consumption. This is what has been revealed by data just published by the International Energy Agency (IEA). After stagnating between 2014 and 2016, the situation accelerated in 2017 and 2018. According to the Agency, economic growth « has not been achieved through better energy efficiency, low carbon technologies have not developed as quickly as the growth in energy demand « , which reached 2.3%, its fastest growth in a decade. Last year, CO2 emissions from the production and combustion of all forms of energy (oil, gas, coal, renewable electricity, etc.) increased by 1.7% to a « historic » level of 33,1 gigatonnes (33.1 billion tonnes).
China, India and the United States are responsible for 85% of this rise. This increase is essentially due to the consumption of coal in Asia to produce electricity. The situation is all the more worrying for the future as coal-fired power plants have an average age of 12, while their lifespan is around 50 years.
Conversely, emissions decreased in the United Kingdom and Germany due to the expansion of green energy. They also fell in Japan, partly thanks to the reactivation of nuclear reactors. France also has encouraging results thanks to good production levels of hydroelectric dams and nuclear power plants.
Despite double-digit growth in wind and solar energy, fossil fuels (coal, oil, gas) continued to fuel the global energy appetite. Consumption increased last year as a result of economic growth and increased heating and cooling requirements in some parts of the world.
In the conclusion of its report, the IEA writes that these data demonstrate once again that more urgent action is needed on all fronts, whether the development of clean energy solutions or in the field of innovations, in particular in carbon capture and storage.
The Keeling Curve, drawn in the light of CO2 concentrations at the summit of Mauna Loa (Hawaii), confirms this rise in carbon dioxide emissions. For several weeks they have exceeded the threshold of 410 ppm, which is considerable and worrying.
Source: France Info.

Source: Scripps Institution of Oceanography

2018 : Probablement la 4ème plus chaude année dans le monde et la plus chaude en France // Probably the 4th warmest in the world and the hottest in France

J’attends les données officielles publiées habituellement mi janvier par la NASA et la NOAA aux Etats-Unis. Ils se peut cette année qu’elles arrivent avec du retard à cause du « shutdown » qui affecte les administrations américaines. En attendant, on peut s’appuyer sur un communiqué du C3S (Copernicus Climate Change Service) qui confirme des prévisions émises fin 2018. Sur les cinq dernières années, la température moyenne a été 1,1°C au-dessus de la moyenne préindustrielle et 2018 a été la quatrième année la plus chaude enregistrée depuis le début de l’ère industrielle. En parallèle, la concentration de dioxyde de carbone (CO2) a poursuivi sa progression dans l’atmosphère, avec une hausse comprise entre 1,7 et 3,3 ppm (parties par million de molécules d’air) par an, comme le montre la courbe de Keeling ci-dessous. Il est bon de rappeler que le CO2 est le principal responsable de l’effet de serre puisqu’il contribue à piéger le rayonnement solaire et à faire augmenter la température de l’atmosphère. On remarquera que la courbe de Keeling atteint actuellement plus de 411 ppm, du jamais vu !

Le plus inquiétant, c’est que le réchauffement s’accélère. La température de l’air à la surface du globe a augmenté en moyenne de 0,1 °C tous les cinq à six ans depuis le milieu des années 1970 et les cinq dernières années ont été d’environ 1,1 °C supérieures aux températures de l’ère préindustrielle.

Il faut attendre les chiffres officiels, mais 2018 risque fort d’être en France l’une des années les plus chaudes, voire la plus chaude depuis 1900 et le début des relevés météorologues.

Les climatologues indiquaient au mois de novembre 2018 que jamais un tel écart à la moyenne n’avait été observé en métropole sur la période entre janvier et octobre. Avec 1,3°C de plus que la moyenne, cet écart dépasse nettement le +1,1°C de la période janvier-octobre 2014, qui détenait le record jusqu’à présent.

—————————————————-

I’m waiting for the official data usually released in mid January by NASA and NOAA in the United States. This year they may arrive late because of the shutdown affecting US administrations. In the meantime, we can rely on a C3S (Copernicus Climate Change Service) press release confirming forecasts issued at the end of 2018. Over the last five years, the average temperature has been 1.1°C above the pre-industrial average and 2018 was the fourth warmest year since the beginning of the industrial era. In parallel, the concentration of carbon dioxide (CO2) continued to increase in the atmosphere, with an increase ranging between 1.7 and 3.3 ppm (parts per million of air molecules) per year, as shown by the Keeling Curve below. It is worth remembering that CO2 is one of the main greenhouse gases as it helps to trap solar radiation and increase the temperature of the atmosphere.
Most disturbing is that global warming is accelerating. Global air temperature has risen by an average of 0.1°C every five to six years since the mid-1970s, and the last five years have been about 1.1°C above temperatures of the pre-industrial era. One can notice that the Keeling curve lies currently above 411 ppm, a level never observed before!

We’ll have to wait for the official figures, but 2018 is likely to be in France one of the hottest years, even the hottest since 1900 and the beginning of meteorological surveys.
Climatologists indicated in November 2018 that such a deviation from the average had never been observed in mainland France between January and October. At 1.3°C above average, this difference clearly exceeded 1.1°C for the January-October 2014 period, which held the record so far.

Niveau de concentration de CO2 dans l’atmosphère (Source: Scripps Institution)

Des concentrations record de CO2 dans l’atmosphère // Record CO2 concentrations in the atmosphere

La nouvelle fait la une des bulletins d’information aujourd’hui. Ce n’est pourtant pas un scoop. L’Organisation Météorologique Mondiale (OMM) indique que les concentrations de CO2 dans l’atmosphère atteignent un niveau record. La courbe de Keeling montre ces concentrations telles qu’elles sont relevées sur le volcan Mauna Loa à Hawaii. Le 20 novembre 2018, date de la dernière mise à jours, les concentrations atteignaient 408,50 ppm, ce qui est considérable. En observant la courbe ci-dessous, on se rend compte que la hausse est de plus de 3 ppm par rapport à novembre 2017.

Dans son rapport, l’OMM se montre pessimiste et précise qu’il n’y a pas de signe de possible renversement de cette tendance, ce qui entraînera, sur le long terme, le changement climatique, la montée de l’eau de la mer, l’acidification des océans et des conditions météorologiques extrêmes. L’OMM rappelle que l’augmentation de l’émission des gaz à effet de serre est causée par l’industrialisation, l’utilisation d’énergie à partir de combustibles fossiles, l’intensification de l’agriculture, l’augmentation de l’utilisation des terres et de la déforestation.

Ce rapport intervient quelques jours avant la COP 24 qui se tiendra du 2 au 14 décembre 2018 à Katowice, en Pologne.

———————————————–

The piece of news is one of the headlines of the news bulletins today. To me, it is not a revelation. The World Meteorological Organization (WMO) reports that CO2 concentrations in the atmosphere are at record levels. The Keeling Curve shows these concentrations on the Mauna Loa volcano in Hawaii. On November 20th, 2018, the date of the last update, the concentrations reached 408.50 ppm, which is considerable. By observing the curve below, we realize that the increase reaches more than 3 ppm compared to November 2017.
In its report, the WMO is pessimistic and points out that there is no sign of a reversal of this trend, which will, in the long term, lead to climate change, sea rise, ocean acidification and extreme weather conditions.
The WMO recalls that the increase in greenhouse gas emissions is caused by industrialization, the use of energy from fossil fuels, the intensification of agriculture, the increase in land use and deforestation.
This report comes just days before COP 24, which will take place from 2 to 14 December 2018 in Katowice, Poland.

Dernier relevé fourni par la Scripps Institution of Oceanography:

Bilan des émissions de CO2 depuis les années 1960. La courbe se passe de tout commentaire:

Source: Scripps Institution of Oceanography

La hausse des émissions de CO2 liées à l’énergie en 2018 // Increase of energy-related CO2 emissions in 2018

Un rapport diffusé par l’Agence Internationale de l’Energie (AIE).explique que les émissions de gaz à effet de serre du secteur de l’énergie (avec trois postes majeurs: le pétrole, le charbon et le gaz) devraient encore croître en 2018 après avoir atteint un niveau record en 2017. C’est une bien mauvaise nouvelle à quelques semaines de la COP24 prévue en décembre à Katowice (Pologne). La réunion de Katowice est censée finaliser l’accord de Paris qui entrera en vigueur en 2020 et appelle à limiter le réchauffement climatique « bien en dessous » de 2°C, voire 1,5°C si possible.

Suite à ma note sur la Courbe de Keeling, il est bon de rappeler que la notion de concentration de CO2 est à distinguer de ces chiffres concernant les émissions de CO2. Les émissions représentent ce qui entre dans l’atmosphère en raison des activités humaines, la concentration indique ce qui reste dans l’atmosphère au terme des interactions entre l’air, la biosphère et les océans. D’une année à l’autre, la concentration de CO2 peut s’accélérer ou ralentir en raison de phénomènes naturels comme El Niño, ce qui signifie que la tendance n’est pas forcément exactement la même que pour les émissions de CO2 liées à la combustion des énergies fossiles.

Du point de vue des lois de la physique et de la chimie, la limitation du réchauffement planétaire à 1,5ºC est possible, mais il faudrait, pour la réaliser, des changements sans précédent. C’est ce qu’a expliqué le GIEC dans son dernier rapport publié le 8 octobre 2018 (voir ma note à ce sujet). Au rythme actuel, le seuil de 1,5°C serait atteint entre 2030 et 2052.

Pour rester en dessous de 1,5°C de réchauffement, il faudrait une baisse émissions de CO2 de 45% d’ici 2030 par rapport à leur niveau de 2010 pour parvenir à un bilan nul des émissions aux alentours de 2050. C’est un secret de polichinelle ; le monde ne se dirige pas vers les objectifs de l’accord de Paris ; il s’en éloigne. Alors que les énergies renouvelables ont fortement augmenté, leur croissance n’est toutefois pas assez importante pour inverser les tendances des émissions de CO2.

En 2017, selon l’AIE, la consommation mondiale d’énergie primaire avait avoisiné 14 050 millions de tonnes équivalent pétrole. (Mtep), ce qui correspond à une hausse de 2,1% par rapport à 2016 et de 40% par rapport à 2000. La part des énergies fossiles dans la demande énergétique mondiale est à un niveau stable depuis plus de trois décennies malgré la forte croissance des énergies renouvelables.

La consommation de charbon avait augmenté de près de 1% en 2017, après deux années de déclin, en raison d’une forte demande asiatique pour sa production d’électricité. Les consommations de pétrole et de gaz naturel au niveau mondial avaient respectivement augmenté de 1,6% et 3%. La production du parc nucléaire mondial avait augmenté de 3%.

Les énergies renouvelables ont représenté près d’un quart de la hausse de la consommation mondiale l’an dernier. Leur développement est tiré par les filières productrices d’électricité (+6,3% en 2017), en particulier par l’éolien, le solaire photovoltaïque et l’hydroélectricité.

Source : Agence Internationale de l’Energie, Global Climat.

———————————————-

A report released by the International Energy Agency (IEA) explains that greenhouse gas emissions from the energy sector (with three major fields: oil, coal and gas) are expected to increase. in 2018 after reaching a record high in 2017. This is bad news just a few weeks before COP24 in December in Katowice (Poland). The Katowice meeting is supposed to finalize the Paris agreement, which will come into force in 2020 and calls for limiting global warming « well below » 2°C, or 1.5°C, if possible.
Following my note on the Keeling Curve, it is worth remembering that the notion of CO2 concentration is to be distinguished from the figures concerning CO2 emissions. Emissions represent what enters the atmosphere because of human activities, whereas the concentration indicates what remains in the atmosphere in the wake of the interactions between the air, the biosphere and the oceans. From one year to the other, the CO2 concentration can accelerate or slow down due to natural phenomena like El Nño, which means that the trend is not necessarily exactly the same as for the CO2 emissions related to the burning of fossil energies.
From the point of view of the laws of physics and chemistry, the limitation of global warming to 1.5ºC is possible, but it would require unprecedented changes. This was explained by the IPCC in its latest report published on October 8th, 2018 (see my note on this topic). At the current rate, the 1.5°C threshold would be reached between 2030 and 2052.
To stay below 1.5°C of global warming, it would be necessary to reduce CO2 emissions by 45% by 2030 compared to their 2010 level to achieve zero emissions in the 2050’s. It is an open secret; the world is not moving towards the objectives of the Paris Agreement; it is moving away from it. Even though renewable energies have risen sharply, their growth is not large enough to reverse CO2 trends.
In 2017, according to the IEA, the world’s primary energy consumption was around 14,050 million tonnes of oil equivalent. (Mtoe), which corresponds to an increase of 2.1% compared to 2016 and 40% compared to 2000. The share of fossil fuels in global energy demand has been stable for more than three decades despite the strong growth of renewable energies.
Coal consumption increased by almost 1% in 2017, after two years of decline, due to strong Asian demand for electricity generation. World oil and natural gas consumption increased by 1.6% and 3%, respectively. The output of the world’s nuclear power stations increased by 3%.
Renewables accounted for almost a quarter of the increase in global consumption last year. Their development is driven by the electricity generating sectors (+ 6.3% in 2017), in particular by wind, solar, photovoltaic and hydropower.
Source: International Energy Agency, Global Climat.

Estimation préliminaire (en violet) des émissions de CO2 en gigatonnes (109 tonnes) pour 2018. [Source : IEA]

La Courbe de Keeling // The Keeling Curve

Dans mes notes sur le changement et le réchauffement climatiques, je fais souvent référence à la Courbe de Keeling pour montrer les concentrations de dioxyde de carbone (CO2) dans l’atmosphère. Voici quelques explications sur cette courbe et son histoire.
La Courbe de Keeling enregistre les variations dans les concentrations de CO2 depuis les années 1950. Elle s’appuie sur des mesures en continu effectuées à l’observatoire du Mauna Loa à Hawaii, sous la supervision de Charles David Keeling dans les premières années. Les relevés de Keeling ont été les premiers à montrer de manière très claire l’augmentation rapide des concentrations de dioxyde de carbone dans l’atmosphère.
Charles David Keeling, de la Scripps Institution of Oceanography, organisme dépendant de l’Université de Californie à San Diego, a été le premier à effectuer régulièrement des mesures de concentration du CO2 dans l’atmosphère. À cette fin, il s’est rendu au pôle Sud et à Hawaii à partir de 1958. De nombreux scientifiques considèrent que les observations de Charles Keeling représentent l’un des travaux scientifiques les plus importants du 20ème siècle.
Des mesures de concentration du dioxyde de carbone dans l’atmosphère avaient été effectuées avant celles réalisées sur le Mauna Loa, mais en divers lieux de la planète. En 1960, Keeling et ses collaborateurs ont déclaré que les mesures effectuées en Californie, en Antarctique et à Hawaii étaient suffisamment fiables pour mettre en valeur non seulement des variations diurnes et saisonnières, mais aussi une augmentation de CO2 d’une année à l’autre, ce qui correspondait plus ou moins à la quantité de combustibles fossiles brûlés chaque année. Dans un article qui le rendit célèbre, Keeling écrivit: « Au pôle Sud, l’augmentation observée correspond pratiquement à la combustion de combustibles fossiles ».
En raison de coupes budgétaires au milieu des années 1960, Keeling fut contraint d’abandonner les mesures continues au pôle Sud, mais il réussit à rassembler suffisamment d’argent pour maintenir celles sur le Mauna Loa, qui se poursuivent aujourd’hui, parallèlement au programme de surveillance de la NOAA.
Les mesures effectuées sur le Mauna Loa montrent une augmentation constante de la concentration moyenne de CO2 dans l’atmosphère. On est passé d’environ 315 parties par million en volume (ppmv) en 1958 à 405,97 ppmv le 14 octobre 2018 Cette augmentation du CO2 atmosphérique est due à la combustion de combustibles fossiles et s’est accélérée ces dernières années. Étant donné que le dioxyde de carbone est un gaz à effet de serre, cela a des conséquences importantes sur le réchauffement de la planète. Les mesures effectuées dans d’anciennes bulles d’air piégées dans des carottes de glace polaire montrent que la concentration moyenne de CO2 dans l’atmosphère se situait historiquement entre 275 et 285 ppmv pendant la période holocène (à partir de 9 000 ans av. J.-C.), mais qu’elle a commencé à augmenter fortement au début du 19ème siècle.
Keeling et ses collaborateurs ont effectué des mesures sur les alizés à Hawaii, en se plaçant au-dessus de la couche d’inversion thermique afin de minimiser la contamination locale par les gaz volcaniques. De plus, les données sont normalisées pour éliminer toute influence de la contamination locale. Les mesures effectuées dans de nombreux autres sites isolés ont confirmé la tendance de la courbe de Keeling sur le long terme, bien qu’aucun site ne possède un historique de mesures aussi long que l’observatoire du Mauna Loa.
La courbe de Keeling montre une variation cyclique d’environ 5 ppmv chaque année (voir courbe ci-dessous). Cela correspond à la variation saisonnière d’absorption du CO2 par la végétation. La majeure partie de cette végétation se trouve dans l’hémisphère Nord, car c’est là que se trouvent la plupart des terres. D’un maximum en mai, le niveau diminue au printemps et en été dans le nord, à mesure que la croissance de nouvelles plantes absorbe le CO2 de l’atmosphère par photosynthèse. Après avoir atteint un minimum en septembre, le niveau augmente à nouveau dans le nord à l’automne et pendant l’hiver, à mesure que les plantes et les feuilles meurent et se décomposent, libérant le gaz dans l’atmosphère. L’impact du plancton vert sur les océans du monde, qui pourrait contribuer à éliminer jusqu’à 60% du dioxyde de carbone de l’atmosphère par la photosynthèse, n’a pas encore été étudié.
Les mesures de CO2 à l’observatoire du Mauna Loa sont effectuées à l’aide d’un type de spectrophotomètre infrarouge appelé à ses débuts ‘capnographe’ par son inventeur, John Tyndall, en 1864. Il est désormais connu sous le nom de capteur infrarouge non dispersif. Aujourd’hui, plusieurs capteurs à laser ont été ajoutés pour fonctionner simultanément avec le spectrophotomètre IR de la Scripps, tandis que les mesures effectuées par la NOAA sur le Mauna Loa utilisent un capteur infrarouge non dispersif. De nombreux autres capteurs et de nouvelles technologies sont également utilisés sur le Mauna Loa pour améliorer les mesures.
Charles David Keeling est décédé en 2005. Son fils, Ralph Keeling, professeur de géochimie à la Scripps Oceanography, a pris le relais. .

Adapté de plusieurs articles parus dans la presse américaine.

On peut voir l’évolution de la courbe de Keeling à cette adresse :

https://scripps.ucsd.edu/programs/keelingcurve/

—————————————————-

In my posts about climate change and global warming, I often refer to the Keeling curve to show the carbon dioxide (CO2) concentrations in the atmosphere. Here are a few explanations about this curve and its history.

The Keeling Curve has recorded the changes in CO2 concentrations since the 1950s. It is based on continuous measurements taken at the Mauna Loa Observatory in Hawaii that began under the supervision of Charles David Keeling. Keeling’s measurements were the first to show the significant evidence of rapidly increasing carbon dioxide levels in the atmosphere.

Charles David Keeling, of the Scripps Institution of Oceanography at the University of California San Diego, was the first person to make frequent regular measurements of atmospheric CO2 concentrations. For that purpose, he took readings at the South Pole and in Hawaii from 1958 onwards. Many scientists consider C.D. Keeling’s observations as one of the most important scientific works of the 20th century.

Measurements of carbon dioxide concentrations in the atmosphere had been taken prior to the Mauna Loa measurements, but on an ad-hoc basis across a variety of locations. By 1960, Keeling and his group determined that the measurement records from California, Antarctica, and Hawaii were long enough to see not just the diurnal and seasonal variations, but also a year-on-year increase that roughly matched the amount of fossil fuels burned per year. In the article that made him famous, Keeling observed: « at the South Pole the observed rate of increase is nearly that to be expected from the combustion of fossil fuel ».

Due to funding cuts in the mid-1960s, Keeling was forced to abandon continuous monitoring efforts at the South Pole, but he managed to save enough money to maintain operations at Mauna Loa, which have continued to the present day, alongside the monitoring program by NOAA.

The measurements collected at Mauna Loa show a steady increase in mean atmospheric CO2 concentration from about 315 parts per million by volume (ppmv) in 1958 to 405.97 ppmv on October 14th, 2018. This increase in atmospheric CO2 is due to the combustion of fossil fuels, and has been accelerating in recent years. Since carbon dioxide is a greenhouse gas, this has significant implications for global warming. Measurements of carbon dioxide concentration in ancient air bubbles trapped in polar ice cores show that mean atmospheric CO2 concentration has historically been between 275 and 285 ppmv during the Holocene epoch (9,000 BCE onwards), but started rising sharply at the beginning of the nineteenth century.

Keeling and collaborators made measurements on the incoming ocean breeze and above the thermal inversion layer to minimize local contamination from volcanic vents. In addition, the data are normalized to negate any influence from local contamination. Measurements at many other isolated sites have confirmed the long-term trend shown by the Keeling Curve, though no sites have a record as long as Mauna Loa.

The Keeling Curve also shows a cyclic variation of about 5 ppmv in each year corresponding to the seasonal change in uptake of CO2 by the world’s land vegetation. Most of this vegetation is in the Northern hemisphere, since this is where most of the land is located. From a maximum in May, the level decreases during the northern spring and summer as new plant growth takes carbon dioxide out of the atmosphere through photosynthesis. After reaching a minimum in September, the level rises again in the northern fall and winter as plants and leaves die off and decay, releasing the gas back into the atmosphere. The impact of green plankton material in the world’s oceans, which may actually be responsible for taking up to 60% of the carbon dioxide out of the atmosphere through photosynthesis is yet to be fathomed though.

Carbon dioxide measurements at the Mauna Loa observatory in Hawaii are made with a type of infrared spectrophotometer first called a capnograph by its inventor, John Tyndall, in 1864 but now known as a nondispersive infrared sensor. Today, several laser-based sensors are being added to run concurrently with the IR spectrophotometer at Scripps, while NOAA measurements at Mauna Loa use nondispersive infrared sensor. Multiple other sensors and technologies are also used at Mauna Loa to augment these measurements.

Charles David Keeling died in 2005. Supervision of the measuring project was taken over by his son, Ralph Keeling, a professor of geochemistry at Scripps Oceanography.

Adapted from several articles released in the American press.

One can see the evolution of the Keeling Curve at this address:

https://scripps.ucsd.edu/programs/keelingcurve/

Observatoire du Mauna Loa (Photo: C. Grandpey)

Courbe montrant la variation cyclique sur une année

Evolution des concentrations de CO2 sur deux ans

Evolution des concentrations de CO2 depuis 1958

[Source: Scripps Institution of Oceanography]

 

 

Tazieff l’avait prédit !

C’était le 4 septembre 1979. Au cours de l’émission télévisée « Les Dossiers de l’Ecran » animée par Jérôme Pasteur, qui rassemblait le Commandant Cousteau, le glaciologue Claude Loroius et Haroun Tazieff, le volcanologue a tenu des propos qui semblent incroyablement prophétiques aujourd’hui. Garouk a expliqué que si la montée du niveau de la mer est effectivement à craindre, « ce ne seront pas les volcans qui le feront […] Ce qui peut le faire, c’est la pollution industrielle. »  Selon lui, elle dégage des quantités de produits chimiques de toutes natures dont une énorme quantité de gaz carbonique. Ce dernier se propage dans l’atmosphère et risque de faire de cette dernière «une espèce de serre», un constat admis aujourd’hui mais qui, à l’époque, semblait difficilement concevable.

Le Commandant Cousteau n’était pas d’accord avec Tazieff et a qualifié ses propos de « baratin.» Selon lui, si l’homme «fabrique beaucoup de CO2, il y a des «correcteurs automatiques», référence aux forêts et aux océans.

Haroun Tazieff a poursuivi son raisonnement et dressé un portrait bien sombre des années à venir, mais que l’on retrouve dans les messages d’alerte lancés par différentes organisations environnementales aujourd’hui. Il a en particulier évoqué «une fusion des glaces polaires aussi bien au sud qu’au nord, des glaces de montagnes» qui serait possible avec seulement deux ou trois degrés d’augmentation de la température de la planète. Il a conclu son propos en parlant d’une «montée des eaux et donc noyade de toutes les côtes basses, New York et Le Havre, Marseille et Nice et Londres.» Jérôme Pasteur lui a alors fait remarquer qu’il était «en train de paniquer les populations». C’était peut-être le moment de le faire !

Vous pourrez retrouver le débat en cliquant sur ce lien :

https://www.youtube.com/watch?v=d6whs8t0WHU

Il faut se souvenir qu’à la fin des années 1970, la science mettait déjà le monde en garde sur le risque d’une catastrophe planétaire à cause du dioxyde de carbone. En cette même année 1979, le Rapport Charney, commandé par l’administration du Président Jimmy Carter à l’Académie des Sciences américaine ne laissait que peu de doute sur ce qui devait se produire : « Si le dioxyde de carbone continue à s’accumuler dans l’atmosphère, le groupe d’experts ne voit aucune raison de douter que des changements du climat en résulteront, ni aucune raison de penser qu’ils seront négligeables. » Et de conclure : « Attendre pour voir avant d’agir signifie attendre qu’il soit trop tard. »

En 1979, il était peut-être encore temps d’agir, mais aujourd’hui ? La courbe Keeling (conçue à partir de relevés effectués sur le Mauna Loa à Hawaii) sur la seule dernière année (octobre 2017-octobre 2018) confirme que le gaz carbonique continue de s’accumuler dans l’atmosphère : 403,50 ppm en 2017 et 405,97 ppm en octobre 2018 !

Source: Scripps Institution of Oceanography