La source magmatique du Mauna Loa et du Kilauea (Hawaï) // The magma source of Mauna Loa and Kilauea (Hawaii)

En utilisant près de 200 années d’archives sur la chimie de la lave du Kilauea et du Mauna Loa, des scientifiques de l’Université d’Hawaï à Manoa et leurs collègues ont montré que les deux volcans les plus actifs d’Hawaï partagent une source magmatique commune au sein du panache mantellique hawaïen. Leur étude a été publiée dans le Journal of Petrology.
On pensait autrefois que la composition chimique distincte des laves du Kilauea et du Mauna Loa correspondait à des conduits d’alimentation magmatique complètement distincts depuis leur source dans le manteau jusqu’à la surface. Cependant, les dernières études montrent que c’est inexact. La matière en fusion provenant d’une source commune dans le manteau au sein du panache hawaïen peut alimenter alternativement le Kilauea ou le Mauna Loa sur une échelle de temps de plusieurs décennies.
Les chercheurs ont obtenu sur le long terme un modèle d’activité éruptive alternée entre le Kilauea et le Mauna Loa en analysant près de deux siècles de données sur la chimie de la lave. Les données indiquent que lorsqu’un volcan connaît une période prolongée d’activité, l’autre a tendance à rester en sommeil. Ce schéma semble lié à des changements dans le transport du magma en provenance de la source commune sous l’archipel hawaïen.
Le Mauna Loa est entré en éruption en 2022 après sa plus longue période d’inactivité connue. Cette période a en grande partie coïncidé avec l’éruption du Pu’uO’o sur le Kilauea, de 1983 à 2018. Elle s’est terminée par un effondrement de la caldeira sommitale et une éruption qui a détruit quelque 700 structures. Les fontaines de lave atteignaient jusqu’à 80 mètres de hauteur.
Les chercheurs ont observé que les variations dans la chimie de la lave correspondent aux changements dans la fréquence et l’intensité des éruptions. Le Kilauea est resté très actif pendant que le Mauna Loa est resté relativement calme entre le milieu du 20ème siècle et 2010. Au cours de cette période, la composition chimique de la lave du Kīlauea a ressemblé de plus en plus à celle de la lave typique du Mauna Loa. Ce changement tend à montrer que le magma s’est déplacé du Mauna Loa vers le Kilauea.
Depuis 2010, la composition chimique de la lave du Kilauea a de nouveau commencé à changer, ce qui indique que le magma se dirige maintenant vers le Mauna Loa. Ce changement a d’abord été observé dans les rapports d’éléments traces tels que le niobium et l’yttrium (Nb/Y), qui reflètent le degré de fusion du manteau. L’étude montre que ces changements chimiques pourraient être un précurseur d’une hausse d’activité éruptive au Mauna Loa dans les décennies à venir.
La nouvelle étude propose une nouvelle approche pour prévoir les éruptions sur la Grande Île d’Hawaï. Selon les chercheurs, la surveillance à long terme de la composition chimique de la lave pourrait permettre de savoir quel volcan est susceptible de devenir plus actif à l’avenir. «Notre étude montre que la surveillance de la composition chimique de la lave est un outil susceptible d’être utilisé pour prévoir la fréquence des éruptions de ces volcans voisins sur une échelle de temps de plusieurs décennies. Une hausse future de l’activité éruptive du Mauna Loa est probable si la composition chimique de la lave continue de changer sur le Kilauea. »

Les résultats de l’étude ont des implications pour l’évaluation des risques et les stratégies de surveillance. Les scientifiques pourraient être en mesure de fournir des prévisions plus précises sur le moment et le lieu de la prochaine éruption majeure si le mouvement du magma provenant de la source commune peut être suivi grâce à la chimie de la lave. Ces connaissances pourraient permettre de mieux gérer les risques dans les localités à proximité de ces volcans.
Source : Big Island Now.

Coulée de lave sur le Kilauea (Photo: C. Grandpey)

Dernière éruption du Mauna Loa en 2022 (Crédit photo: USGS)

—————————————————-

Using a nearly 200-year record of lava chemistry from Kīlauea and Mauna Loa, scientists from the University of Hawaiʻi at Mānoa and their colleagues revealed that Hawaii’s two most active volcanoes share a magma source within the Hawaiian plume. Their discovery was published in the Journal of Petrology.

In the past, the distinct chemical compositions of lavas from Kīlauea and Mauna Loa were thought to require completely separate magma pathways from their source in the mantle to the surface. However, the latest research shows that this is incorrect. Melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Mauna Loa on a timescale of decades.

Researchers identified a long-term pattern of alternating eruptive activity between Kīlauea and Mauna Loa by analyzing nearly 2 centuries of lava chemistry data. The data indicates that when one volcano experiences an extended period of heightened activity, the other tends to remain dormant. The pattern has been linked to shifts in the transport of magma from the shared source beneath the Hawaiian Islands.

Mauna Loa erupted in 2022 after its longest-known dormancy period. The period of inactivity largely coincided with the prolonged Pu’uO’o eruption at Kīlauea which lasted from 1983 to 2018. It ended with a summit caldera collapse and a voluminous eruption. Lava fountains were as tall as 80 meters

Researchers have observed that variations in lava chemistry correspond to changes in the frequency and intensity of eruptions. Kīlauea was highly active while Mauna Loa remained relatively quiet between the mid-20th century and 2010. During this period, the chemical composition of Kīlauea’s lava became increasingly similar to typical Mauna Loa lava. The shift suggests that magma transport had moved from Mauna Loa to Kīlauea.

Since 2010, lava chemistry at Kīlauea has once again begun to change which indicates that magma is now being redirected back to Mauna Loa. The shift was first observed in trace element ratios such as niobium to yttrium (Nb/Y) which reflect the degree of mantle melting. The study suggests that these chemical shifts could be a precursor to increased eruptive activity at Mauna Loa in the coming decades.

The new study provides a new approach to forecasting volcanic eruptions on Hawaii Big Island. It suggests that long-term monitoring of lava chemistry could serve as an indicator of which volcano is likely to become more active in the future. “Our study suggests that monitoring of lava chemistry is a potential tool that may be used to forecast the eruption rate and frequency of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Mauna Loa is likely if the chemistry of lava continues to change at Kīlauea.”

The findings of the study have implications for hazard assessment and monitoring strategies.

Scientists may be able to provide more accurate predictions about when and where the next major eruption will occur if magma movement from the shared source can be tracked through lava chemistry. The knowledge could help mitigate risks for the communities living near these volcanoes.

Source : Big Island Now.

https://bigislandnow.com/

Origine des dépôts de tephra sur la Grande Ile d’Hawaii // Origin of tephra deposits on Hawaii Big Island

Le Mauna Loa et le Kilauea sont les deux volcans les plus actifs de la Grande Ile d’Hawaï et leurs histoires éruptives se chevauchent. Ils sont situés à faible distance d’un de l’autre; leurs cratères sommitaux ne sont éloignés que d’environ 34 kilomètres.De plus, une partie du Kilauea s’est édifiée sur le flanc sud-est du Mauna Loa, le plus ancien des deux volcans.
Le Mauna Loa et le Kilauea produisent des coulées de lave qui peuvent parcourir plusieurs kilomètres depuis la source. De plus, ils émettent des panaches de tephra qui peut monter haut dans l’atmosphère et parcourir de longues distances en étant poussés par le vent. C’est pourquoi il peut parfois être difficile de déterminer quel volcan est responsable d’une coulée de lave ou d’un dépôt de tephra.
Connaître la source des matériaux émis, qu’il s’agisse du Mauna Loa ou du Kilauea, est important pour évaluer les risques volcaniques sur la Grande Ile d’Hawaï. Les géologues se tournent vers les événements du passé, qu’ils soient effusifs ou explosifs, pour comprendre la fréquence des éruptions volcaniques. Le calcul des intervalles de récurrence permet de déterminer la fréquence à laquelle des événements effusifs ou explosifs se produisent, et cela peut aider à prévoir quand ils sont susceptibles de se produire à l’avenir.
Par exemple, si les géologues observent un affleurement dans lequel six couches de tephra sont prises en sandwich entre une coulée de lave supérieure datée d’il y a 800 ans et une coulée de lave inférieure datée d’il y a 2 000 ans – donc avec une période de temps de 1 200 ans entre les deux coulées – ils peuvent conclure que l’intervalle de récurrence minimum serait de 200 ans (1 200 ans divisés par six éruptions explosives). Cela signifie qu’un événement éruptif explosif s’est produit, en moyenne, tous les 200 ans au cours de cette période de 1 200 ans. Si on sait qu’il y a six couches de tephra, mais si on ne sait pas si elles proviennent du Mauna Loa ou du Kilauea, il est difficile de comprendre à quelle fréquence les éruptions se sont produites à partir de chacun de ces volcans.
Par exemple, si une seule des couches de tephra provient du Mauna Loa, l’intervalle de récurrence minimum est de 240 ans pour le Kilauea et de plus de 1 200 ans pour le Mauna Loa. Mais si trois des couches de tephra proviennent du Mauna Loa, l’intervalle de récurrence minimum est de 400 ans pour le Kilauea et de 400 ans pour le Mauna Loa.
Afin de déterminer quel volcan a produit telle coulée ou tel couche de tephra, les géologues ont recours à plusieurs méthodes. Ils utilisent souvent une cartographie détaillée. En effet, une éruption explosive laisse généralement des dépôts plus épais près de la source et ils s’amincissent en s’éloignant de cette même source.
Les géologues peuvent également avoir recours à la géochimie pour déterminer si un produit éruptif particulier provient du Mauna Loa ou du Kilauea. Des études ont montré que les deux volcans ont des signatures géochimiques différentes. Par exemple, les laves du Mauna Loa contiennent généralement plus de silice (Si) et moins de calcium (Ca), de titane (Ti) et de potassium (K) à une teneur donnée en magnésium (Mg) que les laves du Kilauea.
Par ailleurs, les deux volcans et leurs prédécesseurs plus anciens ont généralement des concentrations d’éléments traces et des signatures isotopiques différentes. Les géochimies définissent deux familles différentes le long de l’archipel hawaiien. Sur la Grande Ile d’Hawaï, le Mauna Loa et le Hualalai forment une famille, tandis que le Kilauea, le Mauna Kea et le Kohala en forment une autre. On pense que les différences chimiques proviennent du panache du point chaud et démontrent que les systèmes magmatiques des deux volcans ne sont pas interconnectés.
Une nouvelle étude a appliqué ces différences chimiques entre le Mauna Loa et le Kilauea pour comprendre la source volcanique des couches dans un dépôt de tephra de deux mètres d’épaisseur sur le flanc sud-est du Mauna Loa. Le dépôt de tephra se trouve à environ 19 kilomètres au sud de Moku’āweoweo, la caldeira sommitale du Mauna Loa, et à 35 kilomètres au sud-ouest de l’Halema’uma’u, le cratère sommital du Kilauea. En raison de la variation des directions du vent, l’un ou l’autre des volcans pourrait potentiellement être la source du dépôt de tephra. Les premières analyses chimiques d’éclats de verre volcanique prélevés dans les couches de tephra laissent supposer que des tephra du Kilauea et du Mauna Loa sont présents sur le site. Les tephra de l’ancienne éruption du Keanakākoʻi et de celle du Kulanaokuaiki, émis par le Kilauea, semblent être présents, ainsi qu’au moins une couche de tephra en provenance du Mauna Loa.
Les nouvelles données ainsi obtenues seront importantes pour déterminer les calculs d’intervalle de récurrence pour les événements explosifs sur le Mauna Loa et le Kilauea et permettront aux scientifiques du HVO de fournir des évaluations des risques plus fiables pour la Grande Ile d’Hawaï.
Source : USGS, HVO.

——————————————-

Mauna Loa and Kilauea are the two most active volcanoes on the Island of Hawaii, and they have overlapping eruption histories. They are located in close proximity, with their summit craters only about about 34 kilometers apart. In fact, part of Kilauea is built on the southeast flank of Mauna Loa, which is the older of the two volcanoes.

Both volcanoes produce lava flows that can travel many kilometers from the volcanic vent. Additionally, they produce tephra that can rise high into the atmosphere and travel long distances by wind. With this in mind, it can sometimes be difficult to determine which volcano is responsible for a specific lava flow or tephra layer.

Knowing the source of the erupted material, whether from Mauna Loa or Kilauea, is important for assessing volcanic hazards on Hawaii Big Island. Geologists look to past eruptions, both effusive and explosive, to understand the frequency of volcanic eruptions. Recurrence intervals can be calculated to determine how often effusive or explosive events occur, which can help forecast when they may occur in the future.

For example, if geologists observe an outcrop with six tephra layers sandwiched between an upper lava flow dated at 800 years ago and a lower lava flow dated at 2,000 years ago – a time period of 1,200 years preserved between the two flows – the minimum recurrence interval would be 200 years (1,200 years divided by six explosive eruptions). This means that an explosive eruptive event occurred, on average, every 200 years within that 1,200 year time period. If we know that there are six tephra layers, but we don’t know if they erupted from Mauna Loa or Kilauea, it is difficult to understand how often eruptions occurred from the individual volcanoes.

For example, if only one of the tephra layers were from Mauna Loa, the minimum recurrence interval would be 240 years for Kilauea and over 1,200 years for Mauna Loa. But if three of the tephra layers were from Mauna Loa, the minimum recurrence interval would be 400 years for Kilauea and 400 years for Mauna Loa.

In order to determine which volcano produced a certain flow or tephra, geologists resort to several methods. They often use detailed mapping. An explosive eruption, for example, will generally have thicker deposits near the source and thin out away from the source.

Geologists can also use geochemistry to determine if a particular eruptive product is from Mauna Loa or Kilauea. Studies have shown that the two volcanoes have different geochemical signatures. For example, Mauna Loa lavas generally have higher silica (Si) and lower calcium (Ca), titanium (Ti), and potassium (K) at a given magnesium (Mg) content than Kilauea lavas.

The two volcanoes and their older predecessors generally have different trace element concentrations and isotope signatures as well, with the geochemistries defining two different families along the island chain. On the Island of Hawaii, Mauna Loa and Hualalai form one family, while Kilauea, Mauna Kea, and Kohala form another. The chemical differences are thought to originate in the hotspot plume and demonstrate that the magma systems for the two volcanoes are not interconnected.

A new study is applying these geochemical differences between Mauna Loa and Kilauea to understand the volcanic source of individual layers within a two-meter-thick tephra exposure on the southeast flank of Mauna Loa. The exposure is located approximately 19 kilometers south of Moku‘āweoweo, the summit caldera of Mauna Loa, and 35 kilometers southwest of Halema’uma’u, the summit crater of Kilauea. Due to varying wind directions, either volcano could potentially be the source of the tephra.

Initial geochemistry obtained from fresh glass shards found in the tephra layers suggests that tephra from both Kilauea and Mauna Loa are present at the field site. Tephras from both the Keanakākoʻi Ash (circa 1500–1820 CE) and the Kulanaokuaiki Tephra (circa 400–1000 CE), which erupted from Kilauea, appear to be present, as well as at least one tephra layer from Mauna Loa.

The new data will be important for constraining recurrence interval calculations for explosive events on Mauna Loa and Kilauea and will help the USGS Hawaiian Volcano Observatory provide more robust hazard assessments for the Island of Hawaii.

Source : USGS, HVO.

Sommet du Mauna Loa (Crédit photo : USGS)

Caldeira sommitale du Mauna Loa (Photo : C. Grandpey)

Caldeira sommitale du Kilauea en 2006 (Photo: C. Grandpey)

Caldeita sommitale du Kilauea après l’éruption de 2018 (Crédit photo: HVO)

Première bougie pour le lac au fond de l’Halema’uma’u (Hawaii) // Halema’uma’u’s lake (Hawaii) is one year old

Le 25 juillet 2020 a marqué le premier anniversaire du petit lac qui est apparu ce même jour de 2019 au fond du cratère de l’Halema’uma’u, au sommet du Kilauea. Au cours des douze derniers mois, l’Observatoire des Volcans d’Hawaii (HVO) a scruté cette surprenante étendue d’eau qui, après avoir été une petite mare est devenue un petit étang puis un véritable lac, le premier observé dans la caldeira du Kilauea depuis au moins 200 ans.
Le HVO observe et analyse attentivement ce lac en utilisant plusieurs méthodes. Des caméras classiques et thermiques suivent l’évolution de la couleur et de la température à la surface du lac. La couleur est changeante et la température de surface se situe généralement entre 70°C et 85°C. Les mesures effectuées au télémètre laser permettent de suivre l’évolution du niveau du lac qui s’élève régulièrement d’environ 75 centimètres chaque semaine. De plus, deux missions d’échantillonnage de l’eau ont été effectuées à l’aide d’un drone.

On observe de nombreux lacs de cratère sur les volcans de la planète, mais très peu d’entre eux se trouvent sur des volcans basaltiques comme le Kilauea. Le cratère de l’Halema’uma’u, qui s’est effondré lors de l’éruption de 2018, est si profond (environ 500 m) que le plancher se trouve en dessous de la nappe phréatique. En tant que tel, il offre au HVO une fenêtre unique sur une partie du volcan normalement invisible.
Les eaux souterraines n’ont pas rempli tout de suite le cratère de l’Halema’uma’u. C’est normal car il faut du temps pour que l’eau pénètre lentement à travers les pores et les fissures de la roche environnante, et aussi parce que la chaleur du volcan peut faire s’évaporer les eaux souterraines comme elle le fait avec les eaux de surface. Avec le temps, les eaux souterraines ont réussi à se frayer un chemin et le sous-sol s’est refroidi suffisamment pour que l’eau puisse rester à l’état liquide. De la sorte, l’eau peut maintenant s’infiltrer dans le cratère qui continuera à se remplir jusqu’à ce qu’un point d’équilibre soit atteint.
Pendant les premiers mois, l’origine de cette eau est restée un mystère. Les scientifiques du HVO ne savaient pas si elle provenait des eaux souterraines, elles-mêmes alimentées par les précipitations, ou si elle provenait de la condensation de la vapeur d’eau émise par le         magma. La réponse a été apportée par les missions d’échantillonnage à l’aide du drone. L’analyse des isotopes a indiqué que l’eau était d’origine météorique, et provenait donc des précipitations. Alors qu’une petite quantité de pluie tombe directement dans le cratère de l’Halema’uma’u, la majeure partie de l’eau provient des eaux souterraines (des précipitations qui ont percolé à travers le sol) qui s’infiltrent jusqu’au niveau où la nappe phréatique rencontre le cratère.
Avec le temps, les minéraux et les gaz volcaniques se dissolvent dans l’eau et la chimie du lac évolue. Au début, lorsque le lac s’est formé, l’eau était de couleur bleu-vert clair, une couleur que l’on peut encore voir dans certaines zones du lac où l’apport d’eau est le plus important. La surface du lac montre aujourd’hui surtout des nuances d’orange et de marron, probablement en raison des minéraux sulfatés dissous qui sont riches en fer. L’eau n’est pas brassée uniformément et des poches de couleurs, de chimie et de température différentes circulent à l’intérieur du lac.
En plus d’être rare en raison de son existence même, ce lac montre la particularité d’avoir une faible acidité, avec un pH d’environ 4,0, tandis que la plupart des lacs volcaniques sont soit fortement acides (comme le Kawah Ijen en Indonésie, dont le pH est voisin de 0), soit fortement alcalins. A titre de comparaison, le jus d’orange est également légèrement acide avec un pH de 3,5. Il se peut que l’acidité de l’eau soit modérée à ce stade précoce du développement du lac et qu’elle augmentera par la suite.
Au bout d’une année d’existence, le lac couvre désormais une superficie de plus de 2,5 hectares et atteint une profondeur de plus de 40 m.
Source: USGS / HVO.

—————————————

July 25th, 2020 was the first anniversary of the water pond that appeared on that same day of 2019 at the bottom of Halema‘uma‘u at the summit of Kilauea Volcano. Over the past twelve months, the Hawaiian Volcano Observatory (HVO) has watched this surprising body of water grow from a tiny pond into a real lake, the first ever observed within the Kilauea caldera in at least 200 years.

HVO closely monitors the lake using a variety of methods. Visual and thermal cameras track the lake’s surface colour and temperature. Colour is variable and the lake surface temperature is hot, usually between 70°C and 85°C. Laser rangefinder measurements track the surface level, which has risen steadily by about 75 centimetres each week. Moreover, two water-sampling missions have been flown using unoccupied aircraft systems.

Crater lakes occur at volcanoes around the world, but very few of those crater lakes occur at basaltic volcanoes like Kilauea. Halema‘uma‘u, which collapsed and deepened during Kilauea’s 2018 eruption, is so deep (about 500 m) that the bottom is actually below the local water table, providing HVO with a unique window into a realm that is normally hidden from direct view.

Groundwater did not rush in and fill the crater immediately because it takes time for water to squeeze through the pores and cracks of the surrounding rock, and because volcanic heat can evaporate groundwater just as it does surface water. With time, the surrounding groundwater slowly squeezed through the voids, and the subsurface cooled enough for water to be able to remain in liquid form and accumulate within this newly exposed subaerial space. Water will continue to flow into the crater, and the lake will continue to get deeper until a point of equilibrium is reached.

For the first few months, the source of the water was not known. HVO scientists did not know whether it came from groundwater, in turn, fed by rainfall, orif it came from the condensation of water vapour released directly from magma. Thee answer was brought by the water sampling missions. Analysis of the isotopes in the water indicated that it was meteoric in origin, meaning that it originally came from rainfall. While a small amount of rain falls directly into the crater, most of the water is coming from groundwater (that started off as rainfall that percolated into the ground) seeping in where the water table intersects the crater.

With time, minerals and volcanic gases dissolve into the water and the lake’s chemistry changes. When the lake first formed it was light blue-green in colour, a colour that is still seen in parts of the lake where there is a higher influx. The surface water is mostly shades of orange and brown now, likely due to dissolved iron-rich sulfate minerals. The water within the lake is not uniformly mixed, and cells of water with different colours, chemistry and temperature are seen to circulate.

Besides being uncommon because of its very existence, this lake is unique in that it is only mildly acidic, with a pH of about 4.0, while most volcanic lakes are either strongly acidic or strongly alkaline. For reference, orange juice is also mildly acidic with a pH of 3.5. The water’s acidity is likely to be moderated at this early stage of development, and it may become more acidic in the future.

Following a year of steady growth, the lake now covers an area of more than 2.5 hectares and reaches a depth of more than 40 m.

Source: USGS / HVO.

Graphique montrant l’évolution du niveau de l’eau dans le lac au cours de l’année écoulée. Les mesures par télémètre laser ont été effectuées 2 à 3 fois par semaine. Les photos permettent de comparer le lac entre le 27 août 2019, alors qu’il avait une profondeur d’environ 7 mètres, et le 7 juillet 2020, jour où il présentait une profondeur d’environ 40 mètres. (Source: USGS).

Eruption du Kilauea (Hawaii) : Chimie de la lave // Lava chemistry

L’USGS a publié un article très intéressant sur l’évolution et les changements subis par la lave lors de l’éruption actuelle du Kilauea dans la Lower East Rift Zone  (LERZ).
Lorsque le premier échantillon de lave a été prélevé dans la LERZ  le 3 mai 2018, le laboratoire de géochimie de l’Université d’Hawaii a travaillé avec le HVO pour conclure en quelques heures que la lave provenait du magma déjà stocké sous la zone de rift. La lave de la LERZ était beaucoup plus froide (environ 1090 ° C) et plus «évoluée» que la lave d’une température de 1140°C émise par le Pu’uO’o au cours des 35 dernières années. Même si cette découverte ne fut pas vraiment une surprise, c’était la première fois qu’elle était documentée lors d’une éruption.
Il y eu tout de même une surprise: La Fracture n° 17 – la seule à ne pas être dans l’alignement des autres – a émis la lave avec la plus basse température et la plus chimiquement évoluée jamais observée sur le Kilauea. Sa température atteignait seulement 1030°C.
Les éruptions précédentes dans la LERZ du Kilauea ont montré une évolution semblable: Le magma évolué a été émis en premier, suivi un peu plus tard par un magma à plus basse température. La lave émise dans la LERZ au début de l’éruption dans les Leilani Estates est semblable à la première lave émise lors de l’éruption de 1955 dans la même région.
La découverte de magma évolué stocké dans zones basses du Kilauea n’est guère surprenante. En effet, au cours des événements passés, tout le magma n’a pas atteint la surface. Ce magma stocké a évolué avec le temps. Comme le Kilauea est très volumineux, il peut s’écouler des décennies avant que le magma ne revienne dans une région donnée. Pendant ce laps de temps, le magma stocké refroidit, développe des cristaux et change lentement de composition. Quand une nouvelle intrusion se fraye un chemin sous l’édifice volcanique et atteint la surface, elle peut rencontrer un ou plusieurs de ces corps magmatiques du passé. Le magma d’intrusion peut repousser et / ou se mélanger avec le magma déjà stocké et qui est encore liquide.
Alors que l’éruption dans la LERZ se poursuivait, les échantillons prélevés le 11 mai 2018 ont montré que la composition de la lave avait évolué vers un magma légèrement plus chaud (1105°C) et moins évolué. Peu de temps après, les éruptions au niveau de la Fracture n° 20 ont produit des coulées de lave a’a qui se sont déversées dans l’océan.
Au cours des 12 jours suivants, les analyses chimiques ont révélé une lave progressivement plus chaude et moins évoluée, jusqu’à ce qu’elle se stabilise à des températures de 1130-1140°C. L’arrivée de cette lave plus chaude a précédé l’éruption spectaculaire de la Fracture n° 8.
Cette nouvelle lave comprend des cristaux d’olivine abondants et visibles, dont certains ressemblent aux cristaux d’olivine présents dans le magma au sommet du Kilauea avant le début de l’activité éruptive dans la LERZ. La composition de la lave qui s’écoule en ce moment ne correspond pas exactement à celle émise récemment par le Pu’uO’o ou le sommet, mais elle lui ressemble beaucoup. Ceci est à mettre en parallèle avec les observations géophysiques selon lesquelles le volume de l’effondrement sommital présente une ampleur identique au volume de lave émis par l’éruption dans la LERZ.
Source: USGS / HVO.

——————————————–

USGS has released a very interesting article about the evolution and the changes undergone by lava during the current Kilauea eruption in the Lower East Rift Zone (LERZ).

When the first LERZ lava sample was collected on May 3rd, 2018, the University of Hawaii geochemistry lab worked with the Hawaiian Volcano Observatory (HVO) to determine, within hours, that the erupted lava was from stored magma. The LERZ lava was much cooler (about 1090°C) and more “evolved” than any Pu’uO’o lava (typically 1140°C) erupted over the past 35 years. While this finding was not a surprise, it was the first time it had been documented during an eruption.

However, there was one surprise: Fissure 17 – the only vent not in line with the others – erupted the coolest and most chemically evolved lava ever found on Kilauea. Its temperatures were as low as 1030°C.

Previous lower rift zone eruptions on Kilauea have shown a similar pattern: evolved magma erupted first, followed later by hotter, “fresher” magma. The early LERZ lava erupted in Leilani Estates is similar in composition to the early 1955 lava, which erupted in the same area.

Finding evolved magma stored in the lower regions of Kilauea, the site of many past eruptions and intrusions, is to be expected. During past events, not all of the magma reached the surface. That stored magma then evolved over time. Because Kilauea is very massive, it can take decades before magma comes back to a given area. During that time, stored magma cools, grows crystals, and slowly changes in composition. When a new intrusion forces its way through the volcano and up to the surface, it may encounter one or more of these stored magma bodies. The intrusion magma can push out and/or mix with any stored magma that is still liquid.

As the LERZ eruption continued, samples collected on May 11th, 2018 showed that the lava composition had shifted to slightly hotter (1105°C) and less evolved magma. Soon afterward, eruptions from Fissure 20 produced a’a flows that rushed to the ocean.

Over the next 12 days, the lava chemistry became progressively hotter and less evolved until it stabilised at temperatures of 1130–1140°C. The arrival of this hotter lava preceded the high-volume, sustained eruption of Fissure 8.

This new lava includes abundant and visible olivine crystals, some of which resemble the type of olivine crystallizing in summit magma before the LERZ eruption sequence began. The lava composition we see now does not exactly match recent Pu’uO’o or summit lavas, but it is similar. This correlates well with geophysical observations that the volume of the summit collapse is similar in magnitude to the volume of LERZ erupted lava.

Source : USGS / HVO.

Crédit photo: USGS