Les cristaux d’olivine du Kilauea (Hawaii) // The olivine crystals of Kilauea Volcano (Hawaii)

Les cristaux d’olivine – le minéral vert très répandu dans les laves hawaïennes – enregistrent quand et comment le magma se déplace à l’intérieur des volcans hawaïens avant les éruptions. Les géologues du HVO expliquent qu’ils peuvent utiliser ces cristaux comme des horloges pour mieux comprendre les événements qui ont précédé les éruptions sommitales du Kilauea en décembre 2020 et septembre 2021.
Les laves et leurs minéraux fournissent des indices sur l’histoire des magmas émis pendant les éruptions. Les récentes éruptions sommitales du Kilauea permettent aux scientifiques d’avoir « une fenêtre sur l’intérieur » du volcan et d’en savoir plus sur l’origine de la lave qui a percé le cratère de l’Halema’uma’u, et à quelle vitesse elle s’est déplacée vers la surface.
Les géologues mesurent la chimie des matériaux émis pour connaître la température du magma, pendant combien de temps il a séjourné à l’intérieur du volcan avant l’éruption, et si des magmas différents – plus anciens et plus froids – ont pu se mélanger au magma juvénile.
L’olivine est principalement composée d’éléments magnésium (Mg) et fer (Fe) ainsi que de silice. Le rapport entre Mg et Fe, également connu sous le nom de teneur en forstérite (Fo), peut donner des informations sur le magma dans lequel le cristal s’est développé.
Un taux de Mg plus élevé dans l’olivine (et donc un Fo plus élevé) signifie que les cristaux se sont développés dans des magmas plus chauds et généralement plus profonds. Au contraire, si la teneur en olivine Fo est faible, cela indique que les cristaux se sont développés dans un magma plus froid et généralement moins profond.
Après avoir recherché des cristaux d’olivine dans les matériaux émis par le Kilauea en décembre 2020 et septembre 2021, les scientifiques du HVO ont travaillé avec le laboratoire de microsonde électronique de l’Université d’Hawaï à Manoa pour photographier l’intérieur des cristaux d’olivine.
Ces images montrent que l’olivine récemment émise par le Kilauea peut être zonée, ce qui signifie que les noyaux des cristaux ont un Fo différent de celui de leurs bords. Cela correspond à un zonage normal dans lequel le Fo décroît de l’intérieur du cristal vers l’extérieur.
Le zonage normal des cristaux indique aux géologues qu’ils se sont d’abord développés dans une partie plus profonde et plus chaude du Kilauea, puis que leurs bords se sont développés plus tard après que le magma se soit déplacé vers une région moins profonde et plus froide.
La présence de cristaux zonés est intéressante pour le sommet du Kilauea. En effet, l’olivine du lac de lave qui était active de 2008 à 2018, avant l’effondrement du sommet, était généralement homogène, ce qui signifie qu’elle ne présentait aucun zonage.
Ces changements intervenus dans le Fo de l’olivine sont également intéressants à étudier car ils enregistrent en fait le temps mis par le processus de diffusion. Dans ce processus, les atomes de Mg du noyau d’olivine peuvent diffuser vers les bords au fil du temps pendant que l’olivine se trouve dans un magma chaud. En mesurant le changement de Fo du noyau au bord, puis en appliquant un modèle de ce changement, les géologues peuvent calculer combien de temps les cristaux sont restés au niveau le moins profond, là où les bords se sont développés avant d’entrer en éruption.
Les cristaux d’olivine de l’éruption de 2020 du Kilauea ont présenté des temps de diffusion d’environ 60 jours ou moins. Cela montre que les cristaux, qui à l’origine étaient logés profondément dans le volcan, se sont déplacés vers des régions peu profondes environ 60 jours avant leur éruption.
Environ 60 jours avant l’éruption du Kilauea en décembre 2020, le HVO a détecté fin octobre la première série d’essaims sismiques au cours de la période d’activité qui a conduit à l’éruption. Bien que l’essaim sismique initial se soit produit sous le terrain de camping de Nāmakanipaio, les temps de diffusion des cristaux d’olivine montrent que les séismes étaient peut-être le signe que le magma pénétrait à faible profondeur sous le sommet du Kilauea.
Au cours des prochaines semaines, les cristaux d’olivine de l’éruption du Kilauea qui a commencé le 29 septembre 2021 seront mesurés sur la microsonde électronique de l’Observatoire des Volcans de Californie. Les données seront ensuite modélisées pour calculer les échelles de temps à partir des «horloges» les plus récentes fournies par les cristaux. Cela permettra aux géologues de savoir si le même processus s’est répété cet automne ou si quelque chose de nouveau et de différent s’est produit avant la dernière éruption du Kilauea.
Source : USGS/HVO.

——————————————————

Olivine crystals – the green mineral common in Hawaiian lavas – record when and where magmas move inside Hawaiian volcanoes before they erupt. HVO geologists explain that theye can use these little crystals like clocks to better understand the magmatic events leading to the December 2020 and September 2021 summit eruptions at Kilauea.

Lavas and their minerals erupted from Hawaiian volcanoes provide clues to the history of the magmas that are eventually erupted. Kilauea’s recent summit eruptions allow scientists to get “a glimpse inside” the volcano and the chance to learn more about where the magma that erupted in Halema‘uma‘u crater came from and how quickly it moved to the surface.

Geologists measure the chemistry of the erupted materials to find out how hot the magma was, how long it stayed inside the volcano prior to erupting at the surface, and how different magmas – older and cooler – might have mixed.

Olivine is primarily made of the elements magnesium (Mg) and iron (Fe) along with silica. The ratio of Mg and Fe, also known as the forsterite (Fo) content, can give information about the magma that the crystal grew in.

Higher Mg in olivine (and therefore higher Fo) means that crystals grew in hotter, and usually deeper, magmas. If the olivine Fo content is low, it tells us that crystals grew in a cooler, and usually shallower, magma.

After searching for olivine crystals in tephra erupted by Kilauea in December 2020 and September 2021, HVO scientists worked with the electron microprobe lab housed at the University of Hawaii at Manoa to take pictures of the insides of the olivine crystals.

These images show that Kilauea’s recently erupted olivine can be zoned, meaning that the cores of the crystals have different Fo than their rims. This corresponds to normal zoning where Fo decreases from the inside of the crystal to the outside.

Normal zoning in these crystals tells geologists that they first grew in a deeper, hotter part of Kilauea and then the rims of the crystals grew later after the magma had moved to a shallower, cooler region.

The presence of zoned crystals is interesting for Kilauea’s summit. Indeed, olivine from the lava lake that was active from 2008–2018, prior to the summit collapse, were typically homogeneous, meaning that they did not have any zoning.

These changes in olivine Fo are also special because they actually record time through a process called diffusion. In this process, Mg atoms from the olivine core can diffuse toward its rim over time while the olivine sits in a hot magma. By measuring the change in Fo from core to rim, and then applying a model of this change, geologists can calculate how long crystals sat at the shallower level where the rims grew before they erupted.

Kilauea’s 2020 olivine crystals have modeled diffusion times of about 60 days or less. This suggests that the crystals, which originally grew deeper in the volcano, moved up to shallow regions about 60 days before they erupted.

Around 60 days before Kilauea’s December 2020 eruption, HVO detected in late October the first set of earthquake swarms during the period of unrest leading to the eruption. Though the initial earthquake swarm occurred under Nāmakanipaio Campground, the modeled olivine crystal diffusion times suggest that the earthquakes could have been a sign that magma was intruding shallowly under Kilauea’s summit.

In the next few weeks, olivine crystals from Kilauea’s eruption that began on September 29th will be measured on the California Volcano Observatory’s electron microprobe. The data will then be modeled to calculate the timescales from these most recent “crystal clocks,” letting geologists know if the same process was repeated this Fall or if something new and different happened prior to the most recent eruption of Kilauea.

Source: USGS / HVO.

Dans ces images de cristaux mises en ligne par le HVO, on peut voir à gauche une vue au microscope de l’olivine émise lors de l’éruption du Mauna Loa en 1852.

Au centre, on a une vue grossie de l’intérieur d’une olivine prélevée pendant l’éruption du Kīlauea en décembre 2020, où les niveaux de gris indiquent l’abondance relative de fer (Fe). Le noyau plus foncé (noir à l’intérieur) de l’olivine est plus élevé en Mg (et donc avec une teneur en Fo plus élevée) que le bord plus clair (gris à l’extérieur). Ce cristal mesure environ 800 microns de diamètre.

À droite, on a une autre image électronique de l’olivine du 29 septembre 2021 qui présente, elle aussi, des changements dans la teneur en Fo entre le noyau et le bord. Ce cristal est plus petit, avec un diamètre de seulement 400 microns.

Images obtenues par la microsonde électronique de l’Université d’Hawaii à Manoa. (Source: HVO)

——————————————

Images of olivine from Hawaiian volcanoes:

Left: Green olivine from Mauna Loa’s 1852 eruption, viewed under a microscope.

Middle: Zoomed in image of the inside of an olivine from Kilauea’s December 2020 eruption, where grayscale indicates the relative abundance of iron (Fe). The darker core (black inside) of the olivine is higher in Mg (and a higher Fo content) than the lighter rim (gray outside). This crystal is approximately 800 microns across.

Right: Another electron image of olivine from 29 September 2021 that also has changes in Fo content between the core and rim. This crystal is smaller, only 400 microns across.

Images from the University of Hawai‘i at Mānoa electron microprobe. (Source: HVO)

Une bonne synthèse de l’éruption du Cumbre Vieja (La Palma) et une histoire d’olivine…

Si vous comprenez l’espagnol, je vous conseille de visionner la vidéo ci-dessous. Elle est bien illustrée, en particulier avec des images de drones. Santi Castañeda, un scientifique espagnol, présente un état des lieux de l’éruption du Cumbre Vieja.

Dans la vidéo, le scientifique décrit les minéraux contenus dans la lave vomie par le Cumbre Vieja. Selon des études et des analyses menées par l’Institut volcanologique des îles Canaries, la lave du volcan contient, entre autres matériaux, des cristaux d’olivine, un minéral considéré comme une pierre semi-précieuse et qui, en raison de sa beauté, est utilisé dans le fabrication de bijoux.
Un bijoutier explique que, comme il s’agit d’une pierre semi-précieuse, les orfèvres la présentent sur des montures en or et en argent, ce qui donne des pièces exclusives et représentatives de la région. On rencontre effectivement de beaux nodules de péridotite sur d’autres îles comme Lanzarote (voir photo ci-dessous)
Le bijoutier insiste sur le fait que « chacun des bijoux fabriqués dans les ateliers des Canaries et qui contient de l’olivine est dûment certifié comme une authentique gemme semi-précieuse volcanique ». C’est important car de fausses pierres synthétiques de la couleur de l’olivine sont également mises à la vente.
Il explique comment la fausse olivine est détectée : »Je m’assure, qu’il s’agit d’une véritable olivine, même si son origine n’est pas canarienne. Il existe de nombreux gisements sur la planète où l’on trouve le péridot, comme au Sri Lanka, en Amérique latine, en Inde… Sur le marché canarien, les contrefaçons sont très courantes. Les prix d’une olivine sculptée oscillent entre 40 et 300 € le carat.
Pour les bazars et autres marchands de souvenirs, il est difficile d’offrir un véritable bijou.Ils commercialisent donc la zircone de couleur « vert olivine » qui est une pierre synthétique avec une couleur injectée très similaire à l’olivine. Si l’on ne s’y connaît pas en pierres précieuses, il est difficile de distinguer le vrai du faux, mais si un touriste a la vraie et la fausse olivine devant vos yeux, il verra la différence. »

Nodule de péridotite à Lanzarote (Photo: C. Grandpey)

La géochimie de la lave du Kilauea // The geochemistry of Kilauea’s lava

En 2011, quand j’ai travaillé sur le processus de refroidissement de la lave (voir le résumé de mon étude sous l’entête de ce blog) dans le Parc National des Volcans d’Hawaii, en relation avec le HVO, Jim Kawaikawa, alors en charge de l’Observatoire, m’a expliqué l’importance de l’analyse chimique de la lave dans le contexte de la prévision éruptive. Il m’a d’ailleurs remercié d’avoir publié les résultats concernant les échantillons de lave que j’avais prélevés sur le terrain.  

Chaque nouvelle éruption du Kilauea donne un aperçu de ce qui se passe à l’intérieur du volcan et en particulier du ou des réservoirs magmatiques. La récente éruption sommitale, qui a débuté le 20 décembre 2020, offre au HVO une fenêtre à l’intérieur du volcan et permet de mieux connaître l’origine du magma qui alimente l’éruption.

Pour savoir à quel endroit est stocké le magma et comment il se comporte avant une éruption, les scientifiques analysent la chimie des matériaux émis (minéraux, gaz dissous ou bulles de gaz). Les analyses renseignent sur la température du magma dans la chambre magmatique, le temps pendant lequel il est resté à l’intérieur du volcan avant d’arriver à la surface, et comment différents magmas (anciens ou juvéniles, plus froids ou plus chauds) ont pu se mélanger avant que le volcan entre en éruption.

Un moyen simple de répondre à ces questions est d’examiner la quantité de magnésium (Mg) à l’intérieur de la lave. Les géochimistes utilisent le magnésium (exprimé en MgO, ou oxyde de magnésium) pour déterminer la chaleur d’un magma qui indique le laps de temps mis pour atteindre la surface depuis la source. Des teneurs élevées en MgO indiquent des magmas juvéniles à haute température qui sont arrivés dans le réservoir superficiel du Kilauea peu de temps avant l’éruption. En revanche, des teneurs plus faibles en MgO reflètent des magmas plus anciens et plus froids qui sont restés stockés à l’intérieur du volcan pendant de plus longues périodes.

Les 20 et 21 décembre 2020, donc peu de temps après le début de la dernière éruption, des scientifiques du HVO ont travaillé en collaboration avec le laboratoire de l’Université d’Hawaï à Manoa et sa microsonde électronique pour mesurer le MgO dans la lave nouvellement émise. Elle présente une teneur en MgO d’environ 7% de son poids, ce qui est très proche de la composition du lac de lave au sommet du Kilauea en 2018. [NDLR : L’analyse la lave que j’avais prélevée en 2011 reéléit un taux de MgO équivalant à 7.34%]. Les dernières analyses montrent que l’éruption actuelle n’a pas débuté avec un magma juvénile venant d’entrer dans le réservoir sommital peu profond du Kilauea. L’éruption actuelle a probablement mis e jeu du magma en provenance de la même source superficielle qui a alimenté le lac de lave entre 2008 et 2018.

Les cristaux d’olivine – souvent présents dans les laves hawaïennes – contiennent également beaucoup de magnésium. Dans l’olivine, la teneur en Mg est exprimée en fonction de la teneur en forstérite (Fo), rapport entre la quantité de Mg et la teneur en fer (Fe) [Mg / (Mg + Fe) x100]. [ NDLR : De composition Mg2SiO4, la forstérite est le pôle pur magnésien de l’olivine]. Comme pour les verres, une plus grande teneur en Mg dans l’olivine (par exemple, plus de Fo) signifie que les cristaux se sont développés à partir de magmas plus chauds et plus récents. En revanche, si la teneur en olivine Fo est faible, cela indique que les cristaux se sont développés dans un magma plus froid. Les premiers cristaux d’olivine apparus dans les magmas les plus récents – et donc les plus chauds – sous le Kilauea ont généralement des teneurs en Fo de 88–90.

Sur le Kilauea, les cristaux d’olivine les plus récents, d’un diamètre d’environ 0,5 mm en général, ont des valeurs de Fo relativement faibles, autour de 82. Cela signifie que les cristaux se sont développés dans des magmas relativement froids stockés à faible profondeur, à quelques kilomètres sous la surface. Les cristaux sont également chimiquement homogènes, ce qui signifie qu’il n’y a pas de variations de la teneur en Fo entre leur centre et leur surface. Cela montre que le mélange entre les magmas plus chauds (avec une teneur en MgO élevée) et les magmas plus froids (avec moins de MgO) n’a pas eu lieu récemment au sommet du Kilauea.

D’une manière plus globale, la présence de verres à faible teneur en MgO et d’olivine homogène à faible teneur en Fo indique que du magma juvénile à haute température n’a pas été émis. Au lieu de cela, on a affaire à du magma plus ancien et plus froid. Il s’agit probablement d’un reste de magma de l’éruption de 2018 qui a maintenant atteint le sommet du Kilauea.

Source : USGS / HVO.

—————————————————-

In 2011, when I worked on the lava cooling process (see the summary of my study under the heading of this blog) in Hawaii Volcanoes National Park, in relation with HVO, Jim Kawaikawa, then in charge of the Observatory, explained to me the importance of the chemical analysis of the lava in the context of eruptive prediction. He also thanked me for posting the results of the lava samples I had collected in the field.

Each new eruption at Kilauea provides a glimpse into what is happening inside the volcano and its magma reservoirs. The recent summit eruption, which began on December 20th, 2020, provides HVO with a window  inside the volcano and allows to learn more about where the magma supplying the eruption is coming from.

To know about where magma is stored and how it moves prior to an eruption, geologists can measure the chemistry of erupted materials such as minerals, and dissolved gases or gas bubbles. The chemistry can tell them a lot about how hot the magma was at depth, how long it sat inside the volcano prior to arriving at the surface, and how different magmas (old vs. fresh, cooler vs. hotter) might have mixed together before erupting.

A simple way to start investigating is to look at how much magnesium (Mg) the lava contains.

Geochemists use Mg (expressed as MgO, or magnesium oxide) to determine how hot a magma is, which indicates how recently it arrived at Kilauea from its source. Higher MgO contents indicate “fresh” hot magmas entering Kilauea’s shallow reservoir shortly prior to eruption, whereas lower MgO contents reflect “older” and colder magmas that have been stored within the volcano for longer periods of time.

Shortly after the first tephra erupted on December 20th and 21st, 2020, HVO scientists worked with the electron microprobe lab housed at the University of Hawaii at Manoa to measure MgO in the new lavas. These have glass MgO contents of approximately 7 weight percent, which is very similar to the composition of Kilauea’s previous lava lake in 2018. This indicates that the current eruption did not begin with “fresh” hot magma entering Kilauea’s shallow summit reservoir. Instead, the eruption is likely drawing magma from the same shallow source that fed the 2008–2018 lava lake.

Olivine crystals – commonly found in Hawaiian lavas – also have a lot of Mg. In olivine, the abundance of Mg is expressed as the forsterite content (Fo), which is a ratio of how much Mg there is compared to the iron (Fe) content [Mg/(Mg+Fe)x100]. Similar to the glasses, higher Mg in olivine (for example, higher Fo) means that the crystals grew from hotter, fresher magmas. If the olivine Fo content is low, it tells scientists that the crystals grew in a cooler magma. The first olivine crystals to grow in the freshest, hottest magmas rising beneath Kilauea typically have Fo contents of 88–90.

Kilauea’s newest olivine crystals, which are typically about 0.5 mm in diameter, have relatively low Fo values of 82. This suggests that the crystals grew in relatively cool magmas stored at shallow depths, a few kilometres below the ground surface. The crystals are also chemically homogeneous, meaning that there are no changes in Fo content from the middle to the rim. This shows that mixing between hotter (higher MgO) and colder (lower MgO) magmas has not occurred recently at Kilauea’s summit.

Together, the low-MgO glasses and homogeneous, low-Fo olivine indicate that hot, fresh magma has not been erupted. Instead, these compositions reveal that older, “cooler” magma, possibly the left-over magma from 2018 eruption, is being emitted now at Kilauea’s summit.

Source: USGS / HVO.

Vue au microscope, le 26 décembre 2020, d’un échantillon de lave émise lors de la dernière éruption, avec cheveux et larmes de Pele.

Zoom sur l’image électronique de cette lave, où les niveaux de gris indiquent la teneur relative en fer. On aperçoit de très petits cristaux de clinopyroxène et de plagioclase à côté des vésicules.

Autre image électronique de la lave qui contient de petits cristaux d’olivine ainsi que des spinelles.

(Source : Université d’Hawaii à Manoa, USGS / HVO).

Des volcans jeunes sur Vénus? // Young volcanoes on Venus ?

Je n’arrive pas à comprendre pourquoi nous sommes si impatients de trouver des volcans potentiellement actifs sur d’autres planètes alors que nous en savons si peu sur ceux qui existent sur Terre. Nous savons à peine prévoir les éruptions et pas du tout les séismes et nous nous acharnons à étudier le comportement des volcans sur des planètes sur lesquelles nous ne mettrons probablement jamais les pieds!
En lisant le site web space.com, nous apprenons qu’il se pourrait bien que Vénus héberge des volcans potentiellement actifs car des éruptions ont peut-être eu lieu il y a quelques années. C’est la conclusion d’une étude récente publiée dans la revue Science Advances.
Certains signes montrent que Vénus pourrait posséder des volcans actifs. Les scientifiques ont en effet détecté des traces de gaz sulfureux dans son atmosphère. De plus, en analysant en 2010 les données fournies par la sonde Venus Express de l’ESA, ils ont découvert que certaines coulées de lave sur Vénus sont âgées de moins de 2,5 millions d’années, et peut-être même moins de 250 000 ans. Ils ont trouvé des émissions inhabituellement élevées de lumière visible dans le proche infrarouge sur un certain nombre de sites sur Vénus. En théorie, on devrait détecter des émissions plus faibles de cette lumière sur les surfaces les plus anciennes suite à leur longue exposition à l’atmosphère chaude et caustique de Vénus. Les chercheurs ont donc conclu que ces zones d’émissions plus élevées de lumière visible dans le proche infrarouge étaient liées à des coulées de lave récentes. Cependant, leur âge exact reste incertain. En effet, nous ne savons pas à quelle vitesse les roches volcaniques s’altèrent au contact de l’atmosphère très agressive de Vénus et comment ces modifications interagissent avec les émissions de lumière visible dans le proche infrarouge.
Pour voir si les coulées de lave sur Vénus sont récentes, les scientifiques ont fait des expériences avec des cristaux d’olivine. Ils ont chauffé l’olivine dans les conditions d’atmosphère terrestre à l’intérieur d’un four à 900°C maximum pendant un mois. Ils ont découvert que l’olivine se recouvre en quelques jours d’une couche composée essentiellement d’hématite d’un noir rougeâtre rendant certaines caractéristiques de l’olivine plus difficiles à détecter.
Étant donné que le Venus Express de l’ESA – qui a tourné autour de Vénus de 2006 à 2014 – a été capable de détecter des signes réels d’olivine, les dernières expériences laissent supposer que cette olivine provenait d’éruptions volcaniques récentes, sinon, les réactions chimiques avec l’atmosphère de Vénus l’auraient obscurcie.
Les scientifiques poursuivront leurs recherches avec d’autres minéraux volcaniques , mais cette fois dans des conditions semblables à l’atmosphère de Vénus qui est riche en soufre et dioxyde de carbone.
Source: Space.com.

——————————————

 I fail to understand why we are so eager to find possibly active volcanoes on other planets while we know so little about volcanoes on Earth. We are not able to predict eruptions or earthquakes and we insist on studying the behaviour of volcanoes on planets we will probably never set foot on!

Reading the website space.com, we learn that Venus may still harbour active volcanoes, with eruptions taking place as recently as a few years ago. This is the conclusion of a new study published in the journal Science Advances.

There are indeed indications that Venus might harbour active volcanoes. Scientists have detected traces of sulphurous gases in its atmosphere. In addition,  researchers analyzing data from ESA’s Venus Express probe in 2010 discovered that some of the lava flows on Venus are less than 2.5 million years old, and possibly even less than 250,000 years old. They found unusually high emissions of visible to near-infrared light from a number of sites on Venus. Surface regions that are old are expected to have lower emissions of such light after long exposure to weathering from Venus’ hot, caustic atmosphere, so these patches of higher emissions were linked to recent lava flows. However, their exact ages remain uncertain. This is because we do not know how quickly volcanic rocks alter in response to Venus’ harsh atmosphere and how such changes influence emissions of visible to near-infrared light.

To see if lava flows on Venus are recent, scientists experimented with crystals of olivine. They heated olivine along with regular Earth air in a furnace up to 900 degrees Celsius for up to a month. They found olivine became coated within days mostly with the reddish-black mineral hematite, which in turn made certain features of olivine more difficult to detect.

Since ESA’s Venus Express – which orbited Venus from 2006 to 2014 – apparently could detect signs of olivine even from orbit, these new findings suggested that such olivine came from volcanic eruptions recently; otherwise, chemical reactions with Venus’ atmosphere would have obscured it.

The scientists will continue their research with other volcanic minerals baked in air more similar to Venus’ atmosphere which is laden with carbon dioxide and sulphur.

Source: Space.com.

Eruption sur Io, la lune de Jupiter (Source: NASA)