Volcans du monde // Volcanoes of the world

Suite au shutdown aux États Unis (qui a pris fin le 12 novembre), la Smithsonian Institution n’est pas en mesure de diffuser son bulletin hebdomadaire habituel sur l’activité volcanique dans le monde. Mes informations concernent donc un nombre limité de sites éruptifs.

**********

L’Épisode 36 de l’éruption du Kilauea (Hawaï) s’est brutalement achevé le 9 novembre 2025 à 16h16 (heure locale), après un peu moins de 5 heures de fontaines de lave. Les fontaines ont atteint une hauteur maximale de 300 à 330 mètres durant cet épisode, produisant environ 8 à 9 millions de mètres cubes de lave. Le débit éruptif moyen des deux fontaines a dépassé 500 mètres cubes par seconde ; c’est le débit le plus élevé enregistré lors de cette éruption. Les coulées de lave ont recouvert environ 60 à 80 % du plancher du cratère de l’Halemaʻumaʻu. La fin de l’éruption a coïncidé avec une déflation sommitale et une diminution de l’intensité du trémor éruptif. L’inclinomètre sommital a enregistré une déflation de 23,5 microradians lors de l’Épisode 36 et une inflation de 3 microradians le matin du 10 novembre. Selon le HVO, il se pourrait que l’Épisode 37 se déclenche entre le 22 et le 30 novembre 2025.
Source : HVO.

Image webcam de l’Épisode 36

++++++++++

Un débordement de lave est apparu dans la zone cratèrique nord du Stromboli (Sicile) dans la matinée du 9 novembre 2025, alimentant une coulée dans la partie supérieure de la Sciara del Fuoco. Cette activité s’est accompagnée de projections de lave modérées mais continues depuis au moins deux bouches dans la zone cratèrique nord. Ces projections et l’effondrement de matériaux instables ont provoqué le roulement de blocs incandescents le long de la Sciara del Fuoco. Aucun changement significatif n’a été observé dans les paramètres volcaniques.
Le 10 novembre, INGV indiquait que les images des caméras de surveillance montraient que la coulée de lave avait cessé et que la lave était en train de refroidir. Une activité explosive ordinaire avec des projections de lave modérées persistait dans la zone cratèrique nord, avec des intensités variables. Le 13 novembre, un nouveau bulletin précise que l’écoulement de lave a repris.
Source : INGV.
Voici une vue de la coulée de lave telle qu’elle apparaît dans une vidéo diffusée sur le réseau social X :

https://x.com/i/status/1987557916371792220

Image d’un débordement de lave sur le Stromboli (Source: INGV)

++++++++++

Un effondrement partiel s’est produit sur le Merapi (Java, Indonésie) le 10 novembre 2025, provoquant des coulées de lave sur ses flancs.
https://youtu.be/sqAchXkFvnE

Cet événement fait suite à une activité volcanique continue observée ces derniers jours, avec notamment une coulée pyroclastique qui a parcouru environ 1 500 mètres sur le flanc sud-ouest le 9 novembre.
https://twitter.com/i/status/1987459738339291614

Cette activité accompagne assez fréquemment la formation du dôme de lave. Le volcan demeure au niveau d’alerte III (Siaga) et il est conseillé à la population de suivre les consignes de sécurité officielles.
Source : CVGHM.

Image extraite de la vidéo ci-dessus

++++++++++

Une période de reprise d’activité éruptive a été observée sur le complexe volcanique du Planchón-Peteroa (frontière Chili-Argentine) entre fin octobre et début novembre 2025. Une nouvelle séquence éruptive a débuté le 25 octobre, avec des émissions soutenues de gaz et de cendres visibles des deux côtés de la frontière. Les émissions de cendres ont atteint une altitude de 4 600 m. L’activité sismique avait commencé à augmenter plusieurs mois avant la séquence éruptive. Les réseaux de surveillance locaux ont signalé un dégazage persistant et des explosions de faible intensité. Les paramètres thermiques ont indiqué des points chauds intermittents au niveau du cratère, correspondant probablement à une interaction magmatique superficielle et hydrothermale. Cependant, aucune mesure de déformation n’a révélé une intrusion magmatique à grande échelle dans la partie supérieure du conduit d’alimentation volcanique. Aucun rapport ne fait état de coulées de lave, d’une activité pyroclastique significative ou d’un effondrement structural majeur. Le comportement observé correspond à une activité éruptive de faible intensité, caractéristique du profil éruptif récent du volcan depuis la séquence éruptive de 2018-2019. Le niveau d’alerte volcanique reste à la couleur Jaune. Le SERNAGEOMIN recommande d’éviter de s’approcher de la zone du cratère en raison du risque d’explosions mineures et de retombées de cendres. La dernière phase éruptive de ce volcan s’est déroulée de novembre 2018 à mai 2019, avec un indice d’explosivité volcanique (VEI) estimé à 2.
Source : SERNAGEOMIN.

Image satellite du panache de cendre du Planchón-Peteroa le 8 novembre 2025. (Source : Copernicus EU/Sentinel-2, The Watchers)

++++++++++

En Islande, le soulèvement du sol et l’accumulation de magma sous Svartsengi se poursuivent, bien qu’à un rythme plus lent. C’est ce que vient d’expliquer le Met Office islandais. L’activité sismique reste faible dans la région. Fin octobre, environ 14 millions de mètres cubes de magma s’étaient accumulés sous Svartsengi depuis la fin de la dernière éruption le 5 août 2025. En comparant les éruptions depuis mars 2024, la quantité de magma émise par le réservoir stocké sous Svartsengi a varié entre 12 et 31 millions de mètres cubes à chaque fois.
Selon le Met Office, le ralentissement de l’inflation signifie que certains apports magmatiques profonds diminuent progressivement. « Cela laisse supposer que la situation approche probablement de son terme, même si nous ignorons encore quand. Plus l’inflation est lente, plus l’incertitude est grande. »
Au début de l’activité éruptive, le soulèvement du sol était rapide, ce qui permettait de prévoir plus facilement l’imminence d’une nouvelle éruption. « À présent, rien n’est certain. Il se peut que le soulèvement du sol se termine par une éruption — ou non — et il peut s’écouler des semaines, voire des mois, avant que quoi que ce soit ne se produise. Nous sommes dans l’expectative.» Autrement dit, la prévision éruptive est actuellement proche de zéro.
Le 10 novembre 2025, il y avait exactement deux ans que les habitants de Grindavík avaient été contraints d’évacuer leurs maisons. De puissants séismes avaient frappé le port de pêche et causé d’importants dégâts.
Source : Met Office.

Grindavik il y a deux ans (Crédit photo: Iceland Monitor)

++++++++++

L’éruption du Nyamulagira (également appelé Nyamuragira) en République Démocratique du Congo reste effusive. Elle est marquée par une activité continue du lac de lave et un fort dégazage. L’image fournie par le satellite Sentinel-2 le12 novembre 2025 (voir ci-dessous) montre que la lave du lac actif a débordé de la lèvre nord de la caldeira sommitale et a progressé le long du flanc nord-ouest, sur une longueur d’environ 6,5 km. Aucune activité explosive ni émission de cendres significative n’ont été observées, confirmant que l’éruption reste principalement effusive.
Source : The Watchers.

Image du Nyamulagira aqcquise le 12 novembre 2025 par la satellite Copernicus EU/Sentinel-2 / The Watchers.

++++++++++

Flux RSS

Petit rappel : on me demande parfois comment il est possible de recevoir et lire mes articles au moment de leur parution. Pour cela, rendez-vous en haut de la colonne de droite de mon blog où figure le flux RSS qui permet de recevoir automatiquement des mises à jour du blog.

Vous pouvez également cliquer sur « Suivre Claude Grandpey : Volcans et Glaciers ».

——————————————

Due to the shutdown in the United States (that came to an end on November 12), the Smithsonian Institution is unable to release its usual weekly bulletin on global volcanic activity. My information therefore concerns a limited number of eruption sites.

**********

Episode 36 of the Kilauea eruption (Hawaii) ended abruptly at 4:16 p.m. (local time) on November 9 2025 after just under 5 hours of lava fountaining. Lava fountains reached a maximum height of 300-330 m during this episode which produced an estimated 8-9 million cubic meters of lava. The average eruption rate was over 500 cubic meters per second from the dual fountains, which is the highest effusion rate recorded during this eruption. Lava flows from the fountains covered about 60- 80% of the floor of Halemaʻumaʻu crater. The end of the eruption was coincident with a flattening of summit tilt and a decrease in seismic tremor intensity. The summit tiltmeter recorded 23.5 microradians of deflationary tilt during episode 36 and had recorded 3 microradians of inflationary tilt on the morning of November 10. Very preliminary results for the forecast window suggest that Episode 37 could occur between November 22 to November 30.

Source : HVO.

++++++++++

A lava overflow started from Stromboli’s North Crater area (Sicily) at around in the morning of November 9, 2025, feeding a lava flow on the upper slope of the Sciara del Fuoco. The activity was accompanied by modest but continuous spattering from at least two vents in the North Crater area. The spattering and collapse of unstable material are producing the rolling of incandescent blocks down the Sciara del Fuoco. No significant changes have been observed in the volcano’s parameters.

INGV indicated that the surveillance camera images showed that the lava overflow had ceased and was cooling. Ordinary explosive activity and moderate spattering activity in the North Crater area persisted, at varying intensities. A new bulletin released on November 13 specified that lava was again flowing along the Sciara del Fuoco.

Source : INGV.

Here is a view of the lava overflow as shown on a video released on the X social network :

https://x.com/i/status/1987557916371792220

++++++++++

A partial collapse occurred at Mount Merapi (Java / Indonesia) on November 10, 2025, producing lava flows on its slopes.

https://youtu.be/sqAchXkFvnE

The event follows continuous volcanic activity observed in recent days, including a pyroclastic flow that traveled about 1 500 m on the southwest flank on November 9.

https://twitter.com/i/status/1987459738339291614

This activity is consistent with its ongoing dome-building. The volcano remains at Alert Level III (Siaga), and residents are advised to follow official safety recommendations.

Source : CVGHM.

++++++++++

A period of renewed eruptive activity occurred at Planchón-Peteroa volcanic complex (Chile–Argentina border) between late October and early November 2025. A new eruption began on October 25, producing sustained gas and ash emissions visible from both sides of the border. Ash emissions reached altitudes of up to 4 600 m. Seismic activity began increasing several months before the eruption. Local monitoring networks reported persistent degassing and minor explosions. Thermal observations indicated intermittent hotspots at the crater consistent with shallow magma–hydrothermal interaction. However, no deformation measurements suggested large-scale magma intrusion into the upper conduit. No reports of lava flows, significant pyroclastic activity, or major structural collapse were issued. The observed behaviour corresponded to low-intensity eruptive activity typical of the volcano’s recent pattern since its 2018–2019 eruption sequence. The volcanic alert level remains at Yellow. SERNAGEOMIN advises avoiding approaches to the crater area due to the risk of minor explosions and ashfall. The last eruptive phase at this volcano lasted from November 2018 to May 2019, with Volcanic Explosivity Index (VEI) estimated at 2.

Source : SERNAGEOMIN.

++++++++++

Land inflation and magma accumulation beneath Svartsengi (Iceland) continue, though at a slower pace, according to the Icelandic Meteorological Office. There’s still little seismic activity in the area. By the end of October, roughly 14 million cubic meters of magma had accumulated beneath Svartsengi since the last eruption ended on August 5, 2025. Comparing eruptions since March 2024, the amount of magma released from Svartsengi in each event has varied between 12 and 31 million cubic meters.

According to the Met Office, the slowdown in land inflation means that some deep-seated inflow is decreasing over time and has probably been doing so gradually. « This suggests we’re approaching some kind of endpoint — though we don’t know what that means in terms of timing. The slower the inflation, the greater the uncertainty. »

When the activity first began, land inflation was rapid, making it easier to predict that another eruption was near. “Now, nothing is certain. This could end with an eruption — or without one — and it could take weeks or even months before anything happens. We’re simply waiting.” In other words, eruptive prediction currently amounts to zero.

On Novemver 10, 2025, it was exactly two years since residents of Grindavík were forced to evacuate their homes after strong earthquakes struck the fishing port and caused widespread damage.

Source : Met Office.

++++++++++

The eruption at Nyamulagira (also known as Nyamuragira) in the Democratic Republic of the Congo remains effusive, characterized by continuous lava lake activity and strong degassing. Sentinel-2 imagery from November 12 2025 shows that lava from the active lake overflowed the northern rim of the summit caldera and advanced downslope along the northwestern flank, reaching a length of approximately 6.5 km..No explosive activity or significant ash emissions have been observed, confirming the eruption remains dominantly effusive.

Source : The Watchers.

++++++++++

RSS feed

Quick reminder: I am sometimes asked how it is possible to receive and read my posts when they are published. Just go to the top of the right column of my blog where you can see the RSS feed. It will allow you to automatically receive updates from the blog.
You can also click on “Suivre Claude Grandpey: Volcans et Glaciers”.

Réchauffement climatique : La grêle va devenir de plus en plus destructrice // Global warming: Hail will become increasingly destructive

Un article qui vient d’être diffusé sur le site Futura Sciences a attiré mon attention car je me sens particulièrement concerné. Dans la soirée du 19 juin 2022, un violent orage de grêle, avec des grêlons gros comme des balles de tennis a sérieusement endommagé la toiture de ma maison. L’événement a suivi un couloir d’environ un kilomètre de largeur. Les maisons en dehors de ce couloir ont été épargnées. Inversement, ces derniers jours, j’ai peu ressenti les vents de la tempête Benjamin, alors que des arbres ont été mis à terre à quelques kilomètres de chez moi. La plupart des climatologues s’accordent pour dire que de tels événements extrêmes vont devenir encore plus violents, même si leur fréquence n’augmentera pas forcément.

Les tempêtes de grêle représentent un risque météorologique coûteux pour les assurances. Il vient s’ajouter aux inondations, comme celles qui ont profondément affecté le nord de la France. On peut se demander ce qui se passera quand le réchauffement climatique amplifiera ces phénomènes. Une récente étude scientifique publiée en août 2024 dans Nature Climate and Atmospheric Science révèle ce paradoxe inquiétant : moins de tempêtes, mais des impacts financiers démultipliés. Les chercheurs ont utilisé des modèles météorologiques de pointe pour analyser l’évolution de ces phénomènes dans un contexte de réchauffement climatique. Ils sont arrivés à la conclusion que si les chutes de grêle deviendront moins fréquentes, les tempêtes les plus importantes gagneront en intensité et en coût économique.

Le réchauffement climatique modifie profondément la dynamique atmosphérique des orages de grêle. Selon l’étude, un seuil critique existe autour de quatre centimètres de diamètre. En dessous de cette taille, les grêlons fondent plus facilement dans l’air ambiant devenu plus chaud. En revanche, l’atmosphère plus chaude et plus humide créera des conditions favorables à la formation de grêlons exceptionnellement volumineux. Ces masses de glace resteront suspendues plus longtemps dans les courants ascendants, leur permettant de grossir considérablement. Une fois que les grêlons atteignent le diamètre critique de quatre centimètres, leur vitesse de chute devient si importante qu’ils ne fondent plus durant leur descente vers le sol.

Les conséquences financières de cette évolution inquiètent particulièrement les experts. Des tempêtes moins fréquentes mais plus destructrices généreront des pertes économiques concentrées et considérables. Les zones densément peuplées touchées par ces phénomènes exceptionnels subiront des dommages d’une ampleur inédite. Les chiffres actuels illustrent déjà cette tendance. Aux États Unis, les orages de grêle causent davantage de dégâts que les tornades et les vents violents combinés. Cette réalité économique s’intensifie depuis une décennie, créant des défis majeurs pour les compagnies d’assurance.

L’augmentation de la taille des grêlons pose aussi des défis techniques considérables aux matériaux de construction actuels qui ne sont pas prévus pour recevoir de tels blocs de glace. Les tuiles de mon domicile en savent quelque chose ! La plupart des toitures, véhicules et installations ne résistent pas aux impacts de projectiles de glace dépassant quatre centimètres de diamètre.

Cette vulnérabilité structurelle nécessite une réflexion approfondie sur l’adaptation des normes de construction et des matériaux utilisés. Les industriels devront développer des solutions plus résistantes, tandis que les assureurs repenseront leurs modèles de risque. L’enjeu dépasse la simple prévention : il s’agit de repenser entièrement notre rapport aux phénomènes météorologiques extrêmes.

Source : Futura Sciences.

————————————————-

An article recently published on the Futura Sciences website caught my attention because I felt particularly concerned. On the evening of June 19, 2022, a violent hailstorm, with hailstones the size of tennis balls, seriously damaged the roof of my house. The event followed a path about a kilometer wide. Houses outside this path were spared. Conversely, in recent days, I barely felt the winds of Storm Benjamin, while trees were brought down a few kilometers from my home. Most climatologists agree that such extreme events will become even more violent, even if their frequency will not necessarily increase.
Hailstorms represent a costly meteorological risk for insurance companies. It comes on top of floods, such as those that have profoundly affected northern France. One may wonder what will happen when global warming amplifies these phenomena. A recent scientific study published in August 2024 in Nature Climate and Atmospheric Science reveals this disturbing paradox: fewer storms, but increased financial impacts. Researchers used cutting-edge weather models to analyze the evolution of these phenomena in the context of global warming. They concluded that while hailstorms will become less frequent, the largest storms will increase in intensity and economic cost.
Global warming is profoundly changing the atmospheric dynamics of hailstorms. According to the study, a critical threshold exists around four centimeters in diameter. Below this size, hailstones melt more easily in the warmer ambient air. On the other hand, the warmer and more humid atmosphere will create favorable conditions for the formation of exceptionally large hailstones. These masses of ice will remain suspended longer in updrafts, allowing them to grow considerably. Once hailstones reach the critical diameter of four centimeters, their falling speed becomes so great that they no longer melt during their descent to the ground.
The financial consequences of this development are of particular concern to experts. Less frequent but more destructive storms will generate concentrated and considerable economic losses. Densely populated areas affected by these exceptional events will suffer damage on an unprecedented scale. Current figures already illustrate this trend. In the United States, hailstorms cause more damage than tornadoes and strong winds combined. This economic reality has been intensifying for a decade, creating major challenges for insurance companies.
The increase in hailstone size also poses considerable technical challenges for current building materials that are not designed to withstand such large chunks of ice. The tiles on my house are no exception! Most roofs, vehicles, and installations cannot withstand the impacts of ice projectiles exceeding four centimeters in diameter. This structural vulnerability requires in-depth consideration of adapting construction standards and the materials used. Manufacturers will need to develop more resilient solutions, while insurers will rethink their risk models. The challenge goes beyond simple prevention: it involves completely rethinking our relationship with extreme weather events.
Source: Futura Sciences.

Vortex volcanique pendant l’Épisode 36 du Kilauea (Hawaï) // Volcanic vortex during Kilauea’s Episode 36 (Hawaii)

Lors du 36ème épisode éruptif du Kilauea, les fontaines de lave ont atteint une hauteur de 300 à 330 mètres. Le volcan a émis 8 à 9 millions de mètres cubes de lave. Le débit éruptif moyen des fontaines était supérieur à 500 mètres cubes par seconde, soit le débit d’effusion le plus élevé enregistré depuis le début de cette éruption.
Un autre phénomène a été observé au plus fort de l’activité volcanique. Un vortex, semblable à une tornade, s’est formé au-dessus des fontaines de lave vers midi le 9 novembre 2025. Ce phénomène, causé par un fort réchauffement et un cisaillement du vent localisé, a été filmé par plusieurs personnes :
https://youtu.be/4ZlbTiVUuak

Le vortex a parfois été appelé « volnado », un terme parfois utilisé familièrement pour décrire de petits vortex éphémères générés par la chaleur d’un volcan. Selon le HVO, la formation de ce type de vortex se produit lorsque l’intense chaleur de surface générée par l’éruption donne naissance à de puissants courants ascendants convectifs qui se mettent à tourner. Si cette rotation s’organise, on peut voir une colonne tourbillonnante, transportant des cendres, des gaz et de fines particules. Ces vortex sont généralement éphémères ; ils ne durent que quelques secondes à quelques minutes, et sont beaucoup moins puissants que les tornades associées aux orages. On les appelle parfois ‘tourbillons de lave’ ou ‘tourbillons de feu’. Bien que visuellement impressionnants, ces phénomènes ne présentent généralement qu’un danger minime au-delà de la zone éruptive.

Un événement similaire a été observé par l’USGS lors d’une phase précédente de l’éruption du Kilauea (Épisode 32) le 2 septembre 2025, lorsqu’on a pu voir des panaches rotatifs comparables au-dessus du plancher du cratère.

https://youtu.be/MMCaoXTZW6g

De tels phénomènes ont également été observés ailleurs dans le monde, notamment sur l’Etna en Italie et le Fuego au Guatemala, bien qu’ils restent relativement rares en raison des conditions spécifiques requises pour leur formation.

Source : USGS / HVO.

Sur cette capture d’écran on voit parfaitement à gauche le vortex généré par l’activité volcanique intense.

———————————————-

During Kilauea’s 36th eruptive episode, lava fountains reached a height of 300-330 m. The volcano produced an estimated 8-9 million cubic meters of lava. The average eruption rate was over 500 cubic meters per second from the fountains. This is the highest effusion rate recorded during this eruption.

Another phenomenon was observed while activity was the most intense. A tornado-like vortex formed above the lava fountains around noon on November 9, 2025. The phenomenon, caused by intense heating and localized wind shear, was captured on video :

https://youtu.be/4ZlbTiVUuak

The vortex was observed and recorded by multiple observers who sometimes described it as a “volnado” — a term sometimes used informally to describe small, transient vortices generated by volcanic heat.

According to the Hawaiian Volcano Observatory (HVO), vortex formation of this type occurs when the intense surface heating from erupting lava produces strong convective updrafts that begin to rotate. If the rotation becomes organized, a visible vortex column can develop, carrying ash, gas, and small particles. Such vortices are typically short-lived, lasting only a few seconds to a few minutes, and are much weaker than tornadoes associated with thunderstorms. They are sometimes referred to as lava whirlwinds or fire whirls in volcanological observations. While visually striking, these features usually pose minimal hazard beyond the immediate eruptive area.

A similar event was noted by the USGS during a previous phase of Kīlauea’s eruption in September 2025, when observers described comparable rotating plumes over the crater floor.

https://youtu.be/MMCaoXTZW6g

Similar features have been documented at volcanoes worldwide, including Mount Etna in Italy and Fuego in Guatemala, though they remain relatively rare due to the specific conditions required for formation.

Source : USGS / HVO.

Une histoire de lacs de lave sur Io, la lune de Jupiter // A story of lava lakes on Io, Jupiter’s moon

J’ai rédigé plusieurs notes sur Io, la lune de Jupiter, sur ce blog. Dans l’une d’elles parue le 23 avril 2024, j’expliquais qu’une nouvelle animation réalisée à partir des données de la sonde Juno de la NASA révélait un immense lac de lave à la surface d’Io. Juno a survolé la surface d’Io à moins de 1 500 kilomètres de distance entre décembre 2023 et janvier 2024. Ces survols ont permis d’observer la lune de Jupiter qui héberge des centaines de volcans actifs.

Selon la NASA, les éruptions de ces volcans sont parfois si puissantes qu’elles sont visibles avec des télescopes depuis la Terre. Les images fournies par Juno montrent Loki Patera, un lac de lave de 200 km de diamètre à la surface d’Io. Les scientifiques observent ce lac de lave depuis des décennies. Il se situe au-dessus des réservoirs de magma situés sous la surface d’Io. La lave en cours de refroidissement au centre du lac est entourée d’un cercle de magma possiblement en fusion sur les bords. Les données de la sonde Juno ont permis de créer une animation du lac de lave Loki Patera :
https://youtu.be/GsbEpYNVTFc

 

Image du lac de lave extraite de l’animation

Un article paru récemment sur le site space.com nous apprend que grâce aux données fournies par la sonde Juno, des scientifiques ont découvert que Io, le corps le plus volcanique du système solaire, est encore plus chaud qu’on le pensait. En effet, la lune de Jupiter semble émettre depuis sa surface une quantité de chaleur des centaines de fois supérieure aux estimations précédentes.
Cette sous-estimation n’est pas due à un manque de données, mais à une erreur d’interprétation des données transmises par la sonde Juno. De plus, on apprend qu’environ la moitié de la chaleur rayonnée par Io provient de seulement 17 des 266 sources volcaniques connues sur la lune.

Au vu de cette concentration apparente de chaleur, les chercheurs pensent qu’il n’existerait pas un immense lac de lave sous la surface de Io, contrairement aux hypothèses émises antérieurement. Le chef de l’équipe scientifique à l’Institut national d’astrophysique (INAF) a déclaré : « Ces dernières années, plusieurs études ont suggéré que la distribution de la chaleur émise par Io, mesurée dans le spectre infrarouge, pourrait nous permettre de savoir si un océan de magma existe sous la surface de Io. Cependant, en comparant ces résultats avec d’autres données fournies par Juno et des modèles thermiques plus détaillés, nous avons constaté une anomalie : les valeurs de la chaleur émise semblent trop faibles par rapport aux caractéristiques physiques des lacs de lave connus. »

Le chef de l’équipe scientifique a également expliqué que, jusqu’à présent, les études d’Io s’étaient principalement concentrées sur une bande spécifique de lumière infrarouge la bande M. Les données de la bande M recueillies par le JIRAM (Jovian InfraRed Auroral Mapper) à bord de Juno ont permis d’identifier les régions les plus chaudes d’Io et, par conséquent, de comprendre son volcanisme. Cependant, les mesures effectuées dans cette bande spectrale ont pu avoir influencé les estimations de chaleur précédentes. « Le problème est que cette bande n’est sensible qu’aux températures les plus élevées et tend donc à privilégier les zones les plus incandescentes des volcans, tout en négligeant les zones plus froides mais beaucoup plus étendues. »
En repensant leur approche des données fournies par le JIRAM de Juno, l’équipe scientifique a modifié sa vision de la structure des lacs de lave d’Io. Il en ressort que la plupart des volcans d’Io ne sont pas uniformément chauds, mais possèdent plutôt un anneau extérieur chaud et brillant avec une croûte centrale plus froide et solide (voir image ci-dessus). Cette dernière région est moins brillante dans la bande M de la lumière infrarouge, mais couvre une plus grande surface, ce qui lui permet d’émettre une quantité de chaleur considérable.

Source : space.com

——————————————

I have written several posts about Io, Jupiter’s moon, on this blog. In an article published on April 23rd, 2024, I explained that a new animation performed with NASA Juno spacecraft data revealed an enormous lava lake on the surface of Io. Juno swept within 1,500 kilometers of the volcanic surface of Io in December 2023 and January 2024. These flybys provided the closest look ever at Jupiter’s moon. Io hosts hundreds of active volcanoes. According to NASA, their eruptions are sometimes so powerful that they can be seen with telescopes on Earth. The new images showes Loki Patera, a 200-km-wide lava lake on Io’s surface. Scientists have been observing this lava lake for decades. It sits over the magma reservoirs under Io’s surface. The cooling lava at the center of the lake is ringed by possibly molten magma around the edges.

Juno spacecraft data has been used to create an animation of the lava lake Loki Patera :

https://youtu.be/GsbEpYNVTFc

An article recently published on the website space.com informs us that using data from NASA’s Juno spacecraft, scientists have discovered that io, the solar system’s most volcanic body, is even hotter than we thought. In fact, Jupiter’s moon Io could be emitting hundreds of times as much heat from its surface as was previously estimated.

The reason for this underestimate wasn’t due to a lack of data, but was a result of how Juno’s data was interpreted. The results also demonstrate that about half of the heat radiating from Io comes from just 17 of 266 the moon’s known volcanic sources.

The team behind this research thinks that this clear concentration of heat, rather than a global emission, could suggest that an Io-wide lava lake may not exist beneath the surface of this moon of Jupiter as has previously been theorized. « In recent years, several studies have proposed that the distribution of heat emitted by Io, measured in the infrared spectrum, could help us understand whether a global magma ocean existed beneath its surface, » the team leader of the National Institute for Astrophysics (INAF) said in a statement. « However, comparing these results with other Juno data and more detailed thermal models, we realized that something wasn’t right: the thermal output values ​​appeared too low compared to the physical characteristics of known lava lakes. »

The team leader also explained that until now, studies of Io have focused heavily on a specific band of infrared light known as the M-band. M-band data collected by the Jovian InfraRed Auroral Mapper (JIRAM) aboard Juno have allowed to identify the hottest regions of Io and thus understand its volcanism. However, but the measurements collected in this spectral band could have influenced previous heat estimates. « The problem is that this band is sensitive only to the highest temperatures, and therefore tends to favor the most incandescent areas of volcanoes, neglecting the colder but much more extensive ones. »

Reconsidering their approach to Juno’s JIRAM data changed the team’s view of the structure of Io’s lava lakes. They found that most of Io’s volcanoes are not uniformly hot but instead possess a hot and bright outer ring with a cooler, solid central crust (seeimage above). This latter region is less bright in the M-band of infrared light but covers a larger surface area, allowing it to emit an enormous amount of heat.

Source : space.com.