L’apprentissage automatique au service des sismologues // Machine learning to help seismologists

Des algorithmes d’apprentissage automatique appliqués aux données de formes d’ondes de 2008 à 2022 ont révélé 86 276 séismes sous la caldeira de Yellowstone, soit environ dix fois plus que les données précédentes obtenues avec des techniques traditionnelles. Le catalogue révisé, basé sur 15 années de données de formes d’ondes, a été publié dans Science Advances le 18 juillet 2025. Il a été réactualisé par des chercheurs de la Western University, de Universidad Industrial de Santander et de l’U.S.G.S.
Ce nouveau catalogue a été rendu possible grâce à l’application de techniques avancées d’apprentissage automatique et d’un modèle de vitesse 3D spécifique à chaque région. Il montre dans quelle mesure l’intelligence artificielle peut améliorer radicalement la détection et la caractérisation de l’activité microsismique dans les régions volcaniques complexes.
Avant cette nouvelle approche, la détection des séismes reposait en grande partie sur des inspections manuelles et des algorithmes traditionnels, ce qui limitait l’échelle et la granularité des données sismiques. Pour surmonter ces obstacles, les chercheurs ont entraîné un modèle d’IA distinct pour chaque station sismique du réseau de Yellowstone.
Cette approche a permis une définition précise de la magnitude de chaque événement, même lors de périodes de chevauchement d’essaims. Lors de tests de validation, le modèle a récupéré 83 % des séismes précédemment documentés et identifié 855 nouveaux événements sur une période de seulement 10 jours, dont plus de 99 % ont été confirmés comme étant de véritables séismes.
Plus de la moitié des séismes se sont produits en essaims, généralement sans secousse principale dominante. L’analyse a révélé que les essaims étaient probablement déclenchés par une combinaison de lente migration des fluides et de variations soudaines de pression dans les systèmes hydrothermaux.
Le nouveau modèle réactualisé a permis de localiser avec précision les séismes et d’estimer leur magnitude en tenant compte des hétérogénéités du sous-sol qui affectent la propagation des ondes sismiques. Les chercheurs pensent que ces résultats pourraient contribuer à améliorer l’évaluation des risques dans d’autres régions volcaniques. Une meilleure imagerie sismique permet d’éviter plus facilement les zones où les mouvements de fluides déclenchent souvent des séismes.
Source : The Watchers.

Photo: C.Grandpey

——————————————————

Machine learning algorithms applied to waveform data from 2008 to 2022 have revealed 86 276 earthquakes beneath the Yellowstone caldera, which is about 10 times more than previously recorded. The revised catalogue, based on 15 years of waveform data, was published in Science Advances on July 18, 2025. It was created by researchers from Western University, Universidad Industrial de Santander, and the U.S.G.S.

The new catalogue was made possible through the application of advanced machine learning techniques and a region-specific 3D velocity model. It demonstrates how artificial intelligence can radically improve detection rates and characterization of microseismic activity in complex volcanic regions.

Prior to this new approach, earthquake detection relied heavily on manual inspections and traditional algorithms, limiting the scale and granularity of the seismic record. To overcome these limitations, researchers trained a separate AI model for each seismic station in the Yellowstone network.

This approach allowed accurate magnitude assignment, even during periods of overlapping swarm events. In validation tests, the model recovered 83% of previously documented earthquakes and identified 855 new events over just a 10-day window, with over 99% of those confirmed as real earthquakes.

More than half of the earthquakes were found to occur in swarms, typically lacking a dominant mainshock. The analysis revealed that swarms were likely triggered by a combination of slow fluid migration and sudden pressure changes in hydrothermal systems.

This model helped accurately locate earthquakes and estimate magnitudes by accounting for heterogeneities in the subsurface that affect seismic wave propagation. Researchers say the findings could help improve hazard assessments in other volcanic regions. Better seismic imaging makes it easier to avoid areas where fluid movement often triggers earthquakes.

Source : The Watchers.

Les deux types de tsunamis à Hawaï // The two types of tsunamis in Hawaii

De nombreuses vidéos et autres articles de presse ont été publiés sur le séisme de magnitude M8,8 qui a été enregistré au large du Kamtchatka, avec la menace de tsunamis dévastateurs dans l’océan Pacifique. Les séismes et les tsunamis nous rappellent que nous vivons sur une planète dynamique.. Dans un article de la série Volcano Watch, l’Observatoire Volcanologique d’Hawaï (HVO) fait la différence entre les séismes dont l’épicentre est situé loin d’Hawaï de ceux dont les épicentres se trouvent à proximité de l’archipel. Si les tsunamis générés par de puissants séismes lointains mettent des heures à traverser l’océan Pacifique, les séismes locaux peuvent également générer des tsunamis, mais avec un délai d’alerte beaucoup plus court.

Voici une vidéo diffusée par la NOAA et illustrant la propagation du tsunami du 29 juillet dans l’océan Pacifique :

L’événement de magnitude M8,8 enregistré au large du Kamtchatka à 13 h 24 le 29 juillet 2025, à environ 5 000 kilomètres d’Hawaï, est un exemple de séisme et de tsunami de longue distance. Une alerte tsunami a été émise dans l’archipel à 14 h 43 (heure locale). Le Centre d’alerte aux tsunamis dans le Pacifique (Pacific Tsunami Warning Center) a annoncé que les premières vagues atteindraient les côtes hawaïennes quelques minutes après 19 h.
Plusieurs heures avant l’arrivée éventuelle des vagues de tsunami, les sirènes ont retenti et les téléphones portables ont reçu des messages d’alerte, tandis que les zones côtières devaient être évacuées.
Les vagues du tsunami ont commencé à atteindre l’archipel hawaïen après 19 h, avec une hauteur maximale de 1,70 mètre à Kahului, sur l’île de Maui. Aucun dégât important n’a été signalé à Hawaï, et l’alerte a été levée juste avant 23 h.
Par le passé, de forts séismes lointains ont généré des tsunamis qui ont causé d’importants dégâts et des décès à Hawaï. Un séisme de magnitude M7,9 dans les Aléoutiennes en 1946 a provoqué un tsunami qui a tué 159 personnes à Hawaï, avec une hauteur de vague de 16 mètres mesurée à Pololū Valley, sur la Grande Île d’Hawaï. En 1960, un séisme de magnitude M9,5 au Chili (le plus puissant jamais enregistré) a provoqué un tsunami qui a fait 66 morts à Hilo, avec une hauteur de vague de plus de 10 mètres. En 2011, le séisme de magnitude M9,1 de Tōhoku (Japon) a provoqué un tsunami avec des vagues d’environ 3,60 mètres de hauteur à Hawaï. Malgré des dégâts importants, aucun décès n’a été signalé.
L’amélioration de la détection des séismes et de la surveillance des tsunamis, ainsi que les techniques modernes de communication d’urgence, réduisent aujourd’hui le risque de blessures ou de décès par tsunami. Un autre facteur important est le temps de réaction : les vagues de tsunami générées par des séismes lointains mettent des heures à atteindre Hawaï, ce qui laisse le temps aux populations d’évacuer les zones vulnérables. Cependant, cela suppose que l’évacuation soit gérée correctement, ce qui n’a pas été le cas à Honolulu lors de la dernière alerte tsunami !

Les tsunamis locaux, en revanche, n’ont pas besoin de parcourir de longues distances pour atteindre les côtes hawaïennes, ce qui laisse aux habitants et aux organismes de gestion des urgences un délai d’intervention beaucoup plus court. D’importants mouvements de failles à la base des volcans hawaïens ont par le passé provoqué des séismes dévastateurs, générant des tsunamis locaux, et cela se reproduira certainement à l’avenir. Ces événements laissent peu de temps aux habitants pour se mettre en sécurité.
Des chercheurs de l’Université d’Hawaï ont expliqué qu’un tsunami généré depuis le flanc sud de l’île d’Hawaï peut atteindre la baie d’Hilo 4 à 5 minutes après le séisme, avant de se propager à travers les îles hawaïennes en moins d’une heure.
Un séisme de magnitude estimée à M7,9, s’est produit en 1868 sous le Mauna Loa à Kaʻū, provoquant des glissements de terrain et un tsunami qui a touché toute la côte sud de l’île d’Hawaï et tué près de 100 personnes. En 1975, un séisme de magnitude M7,2, sous le flanc sud du Kilauea, a généré un tsunami dont les vagues ont atteint environ 14 mètres de hauteur. Deux personnes ont été tuées et de nombreuses autres blessées. Même le séisme de magnitude M6,9 de 2018 sous le Kilauea a généré un petit tsunami local avec une hauteur de vague de 4,70 mètres à Hilo.

Effondrement sommital de la caldeira sommitale du Kilauea en 2018 (Source: HVO)

L’article de Volcano Watch propose quelques recommandations. Si des personnes ressentent de fortes secousses lors d’un séisme de forte amplitude, il est important de se rappeler que le laps de temps avant l’arrivée d’un tsunami peut être de quelques minutes. Le retrait des eaux peut être le signe d’un tsunami imminent. Il est déconseillé d’attendre les sirènes ou les messages d’alerte téléphoniques, car le tsunami peut survenir avant que ces alertes ne soient envoyées. Il est conseillé de se diriger immédiatement vers des zones plus élevées et d’attendre que les services de gestion des urgences donnent le signal de fin d’alerte avant de retourner sur le rivage.
Source : USGS / HVO.

—————————————————–

There have been a lot of videos in the media and articles in the newspapers about the M8.8 earthquake that struck offshore from Kamchatka, with tha threat of destructive tsunamis across the Pacific Ocean. Earthquakes and tsunamid are a reminder that we live on a dynamic planet. In an article of the series Volcano Watch, the Hawaiian Volcano Observatory (HVO) makes a difference between earthquakes whose epicenters are located far from Hawaii and those that are triggered close to the archipelago. While tsunamis generated by large, distant earthquakes take hours to traverse the Pacific Ocean, it is important to remember that local earthquakes can also generate tsunamis, but with much less warning.

Ae example of long distance earthquake and tsunami was the M8.8 event that was recorded offshore from Kamchatka at t 1:24 p.m. July 29, 2025,, about 5,000 kilometers from Hawaii. A tsunami warning was issued at 2:43 p.m. for Hawaii, and the Pacific Tsunami Warning Center issued a forecast for the first waves of a tsunami to arrive at Hawaiian shores a few minutes after 7 p.m.

With hours to prepare for the eventual arrival of tsunami waves, sirens sounded and cellphones received multiple alarms as coastal areas were evacuated.

Tsunami waves began moving through the Hawaiian Islands after 7 p.m., with a maximum measurement of 1.70 meters in Kahului, Maui. There was no significant damage in Hawaii, and the warning was canceled just before 11 p.m.

Large distant earthquakes in the past have generated tsunamis that caused significant damage and deaths in Hawaii. An M7.9 Aleutian earthquake in 1946 generated a tsunami that killed 159 people in Hawaii, with a maximum wave run-up height of 16 meters measured at Pololū Valley on Hawaiʻi Island. An M9.5 earthquake in Chile generated a tsunami in 1960 that killed 66 people in Hilo, with a maximum wave run-up height of more than 10 meters. In 2011, the M9.1 Tōhoku earthquake (Japan) generated a tsunami with maximum wave heights of about 3.60 meters in Hawaii. Though there was significant damage, there were no deaths.

Improved earthquake detection and tsunami monitoring, along with modern emergency communication techniques reduce the risk of people being injured or killed by tsunami. Another important factor is response time; tsunami waves generated by distant earthquakes take hours to reach the Hawaiian Islands, giving people time to evacuate vulnerable areas. However, this assumes that the evacuation is managed properly, which was not the case in Honolulu during the last tsunami alert !

Local tsunamis, however, do not need to travel far to reach Hawaiian shores, leaving residents and emergency management agencies a much shorter time to respond. Large fault slips along the bases of Hawaiian volcanoes have historically produced damaging earthquakes that generated local tsunamis, and they will certainly do so again in the future. These events leave residents little time to evacuate to safety.

Researchers at University of Hawai‘i modeled that a tsunami generated from the south flank of the Hawai‘i Island can reach Hilo Bay within 4 to 5 minutes after the earthquake, before propagating through the Hawaiian Islands in less than an hour.

An estimated M7.9 earthquake occurred in 1868 beneath Mauna Loa volcano in Kaʻū, causing landslides and a local tsunami that affected the entire south coast of Hawai‘i Island and killing nearly 100 people. An M7.2 earthquake in 1975 beneath the south flank of Kilauea generated a tsunami with waves up to about 14 meters high. Two people were killed and many more injured. Even the M6.9 earthquake in 2018 beneath Kilauea generated a small local tsunami with a maximum wave height of 4.70 meters in Hilo.

The Volcano Watch article goes on with some recommendationns. If people feel strong shaking from a large earthquake, they should remember that the time they have to respond before a tsunami arrives could be minutes. Receding water could be a sign of an impending tsunami wave to follow. People should not wait for sirens or cellphone alarms because the tsunami could occur before there is time for those alerts to be sent. They should immediately head for higher ground, and wait for emergency management agencies to sound the all-clear before returning to the shoreline.

Source :USGS / HVO.

Retour sur le séisme de M8,8 au Kamchatka // A look back at the M8.8 earthquake in Kamchatka

Le séisme de magnitude M8,8 au large de la Russie, avec des alertes tsunami dans le Pacifique, n’a pas vraiment surpris les sismologues. En effet, la zone, qui comprend également les Aléoutiennes, est sismiquement active et peut être secouée par de puissants événements.

Celui du 29 juillet s’est produit sur une « faille de méga-chevauchement », où la plaque Pacifique, plus dense,s’enfonce sous la plaque nord-américaine plus légère. La plaque Pacifique est en mouvement, ce qui rend la péninsule du Kamtchatka particulièrement vulnérable à de telles secousses, et de fortes répliques ne sont pas à exclure. L’épicentre a été localisé près de la ville de Petropavlovsk-Kamtchatski. Il s’agit du séisme le plus puissant depuis celui de Tohuku (Japon) en 2011.

Illustration du phénomène de subduction

Suite au séisme du 29 juillet, les scientifiques expliquent que les phénomènes de subduction, où une plaque s’enfonce sous une autre, sont susceptibles de générer des séismes bien plus puissants que sur les failles de décrochement, comme celui qui a frappé la Birmanie en mars 2025, où les plaques coulissent horizontalement à des vitesses différentes. La région du Kamtchatka est particulièrement vulnérable et a connu un événement de magnitude M9,0 en novembre 1952, avec des dégâts dans la ville de Severo-Kurilsk et jusqu’à Hawaï.
Les phénomènes de « méga-chevauchement » à faible profondeur sont plus susceptibles de provoquer des tsunamis, car ils déplacent d’énormes volumes d’eau. Avec une profondeur de 20,7 km, le dernier séisme était très susceptible de générer un puissant tsunami.

Illustration du déplacement des vagues de tsunami (Source: USGS)

Des vagues d’environ 1,70 mètre ont atteint Hawaï, moins hautes que prévu initialement, mais les scientifiques expliquent que de telles vagues n’ont pas besoin d’être particulièrement fortes pour endommager les côtes basses des nations insulaires du Pacifique. Certaines régions de Polynésie française ont été invitées à se préparer à des vagues pouvant atteindre 4 mètres de hauteur. Heureusement, des vagues mineures ont été observées et n’ont pas eu d’impact destructeur. L’impact d’un tsunami dépend de la morphologie des fonds marins à l’approche des côtes. Si la montée vers la côte est très longue et peu profonde, une grande partie de l’énergie se dissipe sur cette montée lente, mais si la pente est très raide avant que le tsunami n’atteigne la côte, la hauteur des vagues peut être plus élevée.

Source: IPGP

Le séisme du 29 juillet a déjà déclenché au moins dix répliques supérieures à M5,0, et celles-ci pourraient se poursuivre pendant des mois. En effet, les séismes de forte magnitude génèrent des séquences de répliques qui commencent immédiatement après l’événement, et certaines peuvent être dévastatrices. Cependant, en général, leur magnitude et leur fréquence ont généralement tendance à diminuer avec le temps. Un événement plus important est toujours possible, mais il se produit généralement relativement rapidement, dans les jours ou les semaines qui suivent. L’événement de magnitude M8,8 est survenu moins de deux semaines après un séisme de magnitude M7,4 dans la même zone ; il a été identifié comme un « précurseur » par les sismologues. Cer derniers confirment que les séismes sont imprévisibles. Il n’existe pas de précurseurs scientifiquement cohérents dans les séquences sismiques. Les zones où les puissants séismes risquent de se produire sont assez bien identifiées sur Terre, mais la prévision s’arrête là.

La NOAA a mis en ligne une vidéo illustrant la propagation du tsunami du 29 juillet dans l’océan Pacifique :

—————————————————

The M8.8 earthquake off Russia that triggered tsunami warnings across the Pacific did not really come as a surprise to seismologists. Indeed the area that also includes the Aleutians is seismically active and can be rocked by powerful earthquakes.

The 29 July event occurred on a « megathrust fault », where the denser Pacific Plate is sliding underneath the lighter North American Plate. The Pacific Plate has been on the move, making the Kamchatka Peninsula especially vulnerable to such tremors, and bigger aftershocks cannot be ruled out. With its epicentre near the city of Petropavlovsk-Kamchatsky, it was the biggest earthquake since the Tohuku event (Japan) in 2011.

Following the 29 July quake, scientists explain that subduction events, in which one plate pushes under another, are capable of generating far stronger earthquakes than « strike slips », such as the one that hit Myanmar in March 2025, where plates brush horizontally against one another at different speeds. The Kamchatka area is particularly vulnerable and experienced an M9.0 event in November 1952, severely damaging the town of Severo-Kurilsk and causing extensive damage as far away as Hawaii.

Shallow « megathrust » events are more likely to cause tsunamis because they burst through the sea floor and displace huge volumes of water. With a relatively shallow depth of 20.7 km, the latest earthquake was highly likely to create such tsunami risks.

Tsunami waves of around 1.7 metres reached as far as Hawaii, less high than originally expected, but scientists warned that such waves do not have to be especially big to do damage to the relatively low-lying coastlines of Pacific island nations.

Parts of French Polynesia were told to brace for waves as high as 4 metres. Fortunately, minor waves were observed and they did not have a destructive impact. The impact of a tsunami depends on its « run-up » as it approaches coastlines. If there is a very long, shallow run-up to the coast, a lot of the energy can be dissipated over that run-up, but if it is a very steep shelf before the tsunami gets to the coast, the wave height can be higher.

The July 29 earthquake has already triggered at least 10 aftershocks above magnitude M5.0, and they could continue for months. Indeed, large-magnitude earthquakes generate aftershock sequences that start immediately, and some of these can be damaging in their own right. However, their magnitude and frequency normally tend to decrease over time.There is always a chance of a larger event, but that larger event will usually occur relatively soon after, within days or weeks.

The M8.8 event came less than two weeks after an M7.4 earthquake in the same area, which has now been identified as a « foreshock ».

Seismologists confirm that earthquakes are unpredictable. There are no precursors that are scientifically consistent in earthquake sequences. The areas where powerful earthquakes may occur are fairly well identified on Earth, but predictions do not go any further.

Un avenir sombre pour les glaciers // A dark future for the glaciers

Une nouvelle étude conduite par des chercheurs de l’Université de Bristol (Royaume-Uni) et l’Université d’Innsbruck (Autriche), en collaboration avec des collègues de l’Institut international d’analyse des systèmes appliqués (IIASA), confirme ce que j’ai écrit précédemment sur ce blog : les glaciers ne se régénéreront pas avant des siècles, même si nous parvenons d’ici là à ramener la température de la planète à la limite de 1,5 °C stipulée par la COP 21 de Paris en 2015.

Glacier d’Aletsch (Suisse)

L’étude présente les premières simulations jamais effectuées sur l’évolution des glaciers jusqu’en 2500, en s’appuyant sur des scénarios pessimistes selon lesquels le réchauffement de la planète dépasserait temporairement la limite de 1,5 °C et atteindrait 3 °C avant de se refroidir à nouveau, sauf si les politiques climatiques adoptées par les gouvernements restent inchangées.
Les résultats de l’étude, publiés dans la revue Nature Climate Change, montrent qu’un tel scénario pourrait entraîner une perte de masse des glaciers allant jusqu’à 16 % de plus par rapport à un monde qui ne franchirait jamais le seuil de 1,5 °C.

Mer de Glace (France)

Dans cette étude, les chercheurs ont cherché à déterminer si les glaciers pourraient se rétablir si la planète se refroidissait à nouveau. Malheureusement, la réponse de l’étude est négative. En effet, la hausse globale des températures indique un risque important de dépassement des limites de l’Accord de Paris. Par exemple, 2024 a été l’année la plus chaude jamais enregistrée sur Terre et la première à dépasser la barre des 1,5 °C.
Les scientifiques ont évalué l’évolution future des glaciers selon un scénario pessimiste dans lequel les températures continueraient d’augmenter jusqu’à 3 °C vers 2150, avant de retomber à 1,5 °C en 2300 et de se stabiliser. Ce scénario suppose un avenir avec zéro émissions de gaz à effet de serre, dans lequel les technologies comme le captage du carbone seraient mises en œuvre pour éviter le dépassement des seuils critiques de réchauffement.
Même dans un tel contexte, les résultats montrent que les glaciers subiraient une perte supplémentaire de 16 % de leur masse d’ici 2200, et de 11 % de plus d’ici 2500, en plus des 35 % déjà promis à la fonte à 1,5 °C. Cette eau de fonte supplémentaire finira par atteindre l’océan, contribuant à une élévation encore plus importante du niveau des océans.

Glacier Athabasca (Canada)

Les auteurs de l’étude ont utilisé un nouveau modèle développé par l’Université de Bristol et des institutions partenaires, qui simule l’évolution passée et future de tous les glaciers du monde, à l’exception des deux calottes polaires. Ce modèle a été combiné à de nouvelles projections climatiques proposées par l’Université de Berne (Suisse).
Le modèle montre qu’il faudrait plusieurs siècles, voire des millénaires, aux grands glaciers pour se rétablir suite à une hausse de température de 3 °C. Pour les glaciers plus petits, comme ceux des Alpes, la régénération ne se fera pas avant les prochaines générations, mais elle est possible d’ici 2500. L’eau de fonte des glaciers dans ces régions montagneuses est vitale pour les populations situées en aval, en particulier pendant les saisons sèches.
L’étude a été menée dans le cadre du projet PROVIDE, financé par l’Union Européenne, qui étudie les impacts des dépassements climatiques sur des secteurs clés à travers le monde. On peut y lire dans l’étude que « le comportement des glaciers du futur dépendra de nos actions ou inactions climatiques actuelles. L’heure n’est pas à la complaisance. Nous devons réduire drastiquement nos émissions [de gaz à effet de serre] dès maintenant et atteindre la neutralité carbone afin d’éviter les pires conséquences du réchauffement climatique.»
Source : Institut international d’analyse des systèmes appliqués (IIASA).

Référence :
Schuster, L., Maussion, F., Rounce, D.R., Ultee, L., Schmitt, P., Lacroix, F., Frölicher, T.L., & Schleussner, C-F (2025). Irreversible glacier change and trough water for centuries after overshooting 1.5 °C. Nature Climate Change DOI: 10.1038/s41558-025-02318-w

Glacier Fox (Nouvelle Zélande)

Photos: C. Grandpey

———————————————

New research by the University of Bristol in the UK and the University of Innsbruck in Austria in collaboration with colleagues from the I nternational Institute for Appliied Systems Analysis (IIASA) and Switzerland highlights that mountain glaciers across the globe will not recover for centuries, even if human intervention cools the planet back to the 1.5°C limit.

The research presents the first global simulations of glacier change up to 2500 under so-called pessimistic scenarios when the planet temporarily exceeds the 1.5°C limit up to 3°C before cooling back down, which may never happen if the current government climate policies remain unchanged.

The results, which have been published in Nature Climate Change, show that such a scenario could result in glaciers losing up to 16% more of their mass compared to a world that never crosses the 1.5°C threshold.

In the study, the researchers aimed to discover whether glaciers can recover if the planet cools again. Unfortunately, the study’s answer is negative. Indeed, rising global temperatures now indicate a significant chance of overshooting the Paris Agreement limits adopted in 2015. For example, 2024 was the hottest year ever recorded on Earth and the first calendar year to exceed the 1.5°C mark.

The scientists assessed future glacier evolution under a pessimistic scenario in which global temperatures continue rising to 3.0°C by around 2150, before falling back to 1.5°C by 2300 and stabilizing. This scenario reflects a delayed net-zero future, in which negative emission technologies like carbon capture are only deployed after critical warming thresholds have been exceeded.

The results show glaciers would undergo an additional 16% of glacier mass being lost by 2200, and 11% more by 2500, on top of the 35% already committed to melting even at 1.5°C. This extra meltwater eventually reaches the ocean, contributing to even greater sea-level rise.

The research used a new model developed at the University of Bristol and partner institutions, which simulates past and future changes in all of the world’s glaciers, excluding the two polar ice sheets. It was combined with novel global climate projections produced by the University of Bern (Switzerland).

The model shows it would take many centuries, if not millennia, for the large polar glaciers to recover from a 3°C remperature increase. For smaller glaciers such as those in the Alps, the recovery won’t be seen by the next generations but is possible by 2500. Glacier meltwater in these mountain regions is vital to downstream communities – especially during dry seasons.

This research was conducted as part of the EU-funded PROVIDE project, which investigates the impacts of climate overshoots on key sectors around the world. One can read that“the glaciers of the future will bear witness to the consequences of our climate actions or inactions today. This is not a time of complacency. We need to slash emissions now and decisively on the race to net zero to avoid the worst consequences of climate change. »

Source : International Institute for Appliied Systems Analysis (IIASA)

Reference :
Schuster, L., Maussion, F., Rounce, D.R., Ultee, L., Schmitt, P., Lacroix, F., Frölicher, T.L., & Schleussner, C-F (2025). Irreversible glacier change and trough water for centuries after overshooting 1.5 °C. Nature Climate Change DOI: 10.1038/s41558-025-02318-w