Fonte du Groenland (suite) // Greenland melting (continued)

Une étude par une équipe de chercheurs américains, publiée dans la revue Geophysical Research Letters en décembre 2020 apporte des nouvelles inquiétantes quand au dégel de la banquise arctique. Les scientifiques ont découvert que les bactéries présentes dans la banquise du Groenland favorisent l’agrégation de sédiments, ce qui accélère la fonte des glaces.

Les bédières tracées dans la glace de la banquise sont observées depuis plusieurs années par les glaciologues. L’eau de fonte s’infiltre et forme des petites rivières avec parfois des moulins très spectaculaires. Le problème, c’est que des sédiments (du sable et de la poussière notamment) s’accumulent dans ces courants et réduisent l’albedo, la faculté de la glace à réfléchir la lumière du soleil. La glace absorbe davantage de lumière, ce qui accélère sa fonte.

Dans le cadre de leur étude, les auteurs ont analysé les grains de poussière charriés par les sédiments, ainsi que le courant de l’eau, in situ au sud-ouest du Groenland là où les courants sont nombreux. Cette région a déjà été étudiée par d’autres équipes de chercheurs et ses caractéristiques sont donc bien connues.

En observant les grains de sable, ils se sont rendus compte qu’ils étaient trop petits pour ne pas être emportés par le courant de l’eau. Leur immobilité serait due à la présence de bactéries dans les sédiments. Ces bactéries maintiennent les grains entre eux pour former des boules beaucoup plus grosses qui ne sont pas emportées par l’eau.

Selon les auteurs de la dernière étude, le réchauffement climatique serait responsable de l’accélération de la croissance des bactéries qui existaient avant l’ère industrielle. Avec les températures qui deviennent plus douces, elles prolifèrent et se regroupent dans des trous dans la glace, des cryoconites, où elles deviennent encore plus difficiles à déloger.

Le phénomène est observé ailleurs, notamment en Alaska et dans l’Himalaya. Au Groenland, le phénomène est encore plus problématique puisque la banquise y est plus épaisse, autorisant des dépôts de bactéries plus importants et donc davantage de sédiments. Au final, le processus débouche sur une accélération de la fonte de la glace. C’est un véritable effet boule de neige dans lequel le réchauffement climatique favorise la concentration de bactéries, laquelle entraîne un réchauffement climatique encore plus important.

Plus récemment, des chercheurs ont étudié l’effet des sédiments venus du Sahara, poussés par le sirocco début février 2021, sur la neige des Alpes. Les premières analyses ont montré des grains ensevelis sous la neige fraîche, ce qui pourrait accélérer sa fonte.

Cette étude ne fait qu’accroître l’inquiétude autour du réchauffement climatique dans l’Arctique. En effet, si la hausse des températures se poursuit, les bactéries risquent de devenir plus nombreuses et plus problématiques. Il s’agit désormais de prévoir l’ampleur de cette évolution pour savoir quel sera son impact sur le réchauffement à venir et sur l’élévation du niveau des mers.

Source : Numerama.

—————————————–

 A study by a team of American researchers, published in the journal Geophysical Research Letters in December 2020 brings disturbing news about the melting of the Arctic uce sheet. Scientists have found that bacteria in the Greenland ice sheet promote aggregation of sediment, which accelerates the melting of the ice.

The glacial rills traced in the ice sheet have been observed for several years by glaciologists. The meltwater seeps in and forms small rivers with sometimes very spectacular mills. The problem is that sediment (especially sand and dust) accumulates in these currents and reduces albedo, the ice’s ability to reflect sunlight. Ice absorbs more light, which makes it melt faster. As part of their study, the authors analyzed dust grains carried by sediments, as well as the water current, in situ in southwest Greenland where the glacial rills are numerous. This region has already been studied by other teams of researchers and its characteristics are therefore well known.

As they observed the grains of sand, they realized that they were too small not to be washed away by the water current. Their immobility would be due to the presence of bacteria in the sediments. These bacteria hold the grains together to form much larger balls that are not washed away.

According to the authors of the latest study, global warming is responsible for accelerating the growth of bacteria that already existed before the industrial age. With the temperatures getting warmer, they proliferate and cluster in holes in the ice, cryoconites, where they become even more difficult to dislodge.

The phenomenon is observed elsewhere, notably in Alaska and the Himalayas. In Greenland, the phenomenon is even more acute since the ice sheet is thicker there, allowing more significant deposits of bacteria and therefore more sediment. In the end, the process leads to an acceleration of the melting of the ice. This is a real snowball effect in which global warming promotes the concentration of bacteria, which leads to even greater global warming.

More recently, researchers have studied the effect of sediments from the Sahara, pushed by sirocco in early February 2021, on snow in the Alps. The first analyses showed grains buried under fresh snow, which could accelerate its melting.

This study only heightens concerns about global warming in the Arctic. Indeed, if the rise in temperatures continues, bacteria may become more numerous and more problematic. It is now necessary to predict the magnitude of this proliferation to know what its impact will be on future warming and on sea level rise.

Source: Numerama.

Rivières dans la glace du Groenland (Source: NASA)

Les sources chaudes de Yellowstone et le coronavirus // Yellowstone hot springs and COVID-19

Les sources chaudes et les geysers du Parc National de Yellowstone sont l’un des hauts lieux du tourisme aux États-Unis. Cependant, très peu de visiteurs savent que ces sources contiennent des éléments essentiels à la science. Une fois encore, la Nature peut aider à sauver des vies.
Au cours de cinq visites à Yellowstone – dont une avec des mesures de température pour le compte de l’Observatoire – j’ai pris des centaines de photos des geysers, des sources chaudes et des mares de boue. On me demande souvent dans mes conférences pourquoi ces sources ont des couleurs aussi vives. J’explique qu’elles sont dues aux bactéries thermophiles (elles aiment la chaleur de l’eau) qui colonisent les sources chaudes. Ces couleurs extraordinaires varient également en fonction de la température de l’eau: bleu, jaune, orange, vert
Un article très intéressant sur le site Web du National Geographic nous apprend que certaines bactéries découvertes à Yellowstone sont utilisées en science, et plus particulièrement en science médicale. Un microbiologiste a découvert un jour un microbe qui produit des enzymes capables de résister remarquablement bien à la chaleur. Aujourd’hui, ces enzymes sont un élément clé de la réaction en chaîne par polymérase – Polymerase Chain Reaction ou PCR – une méthode utilisée dans les laboratoires du monde entier pour étudier de petits échantillons de matériaux génétiques en faisant des millions de copies. Cette technique est actuellement utilisée pour augmenter le signal des virus dans la plupart des tests disponibles pour le COVID-19.
Alors que le nouveau coronavirus se propage sur toute la planète, les tests sont devenus le coeur du suivi et du ralentissement de la pandémie. Il ne faudra donc oublier que le processus de PCR, partie essentielle du test, relativement simple et rapide, a pu être réalisé grâce à un groupe de bactéries qui prospèrent dans les sources chaudes de Yellowstone.
Une autre bactérie découverte à Yellowstone est le Thermus aquaticus. Cette bactérie a révolutionné la biologie moléculaire en donnant aux scientifiques un nouvel outil pour manipuler et étudier l’ADN. Depuis la découverte de la double hélice de l’ADN en 1953, les scientifiques n’ont eu de cesse d’étudier ces minuscules molécules génétiques. Pour mieux comprendre les différents types d’ADN, les scientifiques avaient besoin d’échantillons à grande échelle.
Dans les années 1980, une nouvelle technique a été élaborée pour imiter la façon dont une cellule copie naturellement son ADN pour croître et se diviser. L’ADN doit être chauffé puis refroidi dans un cycle permanent, ce qui double plus ou moins chaque fois le nombre de copies génétiques. Le problème, c’est que dans les premières expériences, les températures élevées de chaque cycle endommageaient l’ADN polymérase nécessaire pour faire ces copies.
Les chercheurs ont réalisé qu’une enzyme des bactéries Yellowstone pouvait survivre aux cycles de chauffage et de refroidissement et accélérer le processus. Au fil des ans, de telles enzymes ont permis aux scientifiques d’automatiser le processus de copie d’ADN. Désormais, les chercheurs sont capables de produire des centaines de millions de copies génétiques en quelques heures. Le test du COVID-19 utilise ce même processus, mais en intégrant quelques étapes supplémentaires.
Ces découvertes ont permis à la science de progresser à grands pas. Les scientifiques savent maintenant que les microbes ont mis au point des techniques uniques pour pouvoir se développer dans presque tous les environnements extrêmes de la Terre, que ce soit les sources chaudes de Yellowstone ou les fumeurs noirs au fond des océans. Ces organismes contiennent une mine de mécanismes biologiques jusque-là inimaginables. Il ne reste plus q’à les découvrir et les exploiter !
Source: National Geographic.

———————————————–

Yellowstone hot springs and geysers are one of the highlights of tourism in the United States. However, very few visitors realise that these springs contain elements that are critical in science. Once again, Nature can help to save lives.

Having visited Yellowstone five times – once on behalf of the Observatory to take temperature measurements –, I have hundreds of photos of the geysers, hot springs and mud pools. I am often asked in my conferences about the cause of their vivid colours. I explain that they are due to the thermophile bacteries (they love the heat of the water) that colonise the hot springs. These colours are also different according to the water temperature : blue, yellow, orange, green

An interesting article on the National Geographic website explains that certain species of bacteria have been used in science, and more particularly medical science. A microbiologist once discovered a microbe that produces unusual heat-resistant enzymes. Today, those enzymes are a key component in polymerase chain reaction, or PCR, a method used in laboratories around the world to study small samples of genetic material by making millions of copies. This technique is currently being used to boost the signal of viruses in most of the available tests for COVID-19.

As the novel coronavirus sweeps around the world, testing has become the crux of tracking and slowing the extension of the pandemic. The PCR process that is an essential part of the test is relatively simple and quick, thanks to a cluster of bacteria thriving in the thermal pools of Yellowstone.

Another example of the importance of Yellowstone bacteria is the Thermus aquaticus which has revolutionised molecular biology by giving scientists a new tool to manipulate and study DNA. Since the discovery of DNA’s double helix in 1953, scientists have grappled with the challenge of studying these tiny genetic molecules. To see and understand different types of DNA, scientists needed large scale samples.

In the 1980s, a new technique was developed to mimic the way a cell naturally copies its DNA to grow and divide. The DNA has to be heated and then cooled in a cycle again and again, each time roughly doubling the number of genetic copies. But in early experiments, the high temperatures of each cycle damaged the DNA polymerase needed to make those copies.

The researchers realised that an enzyme from the Yellowstone bacteria could survive the cycles of heating and cooling and speed up the process. Over the years, these enzymes have allowed scientists to automate the DNA-copying process. Now, researchers can produce upward of hundreds of millions of genetic copies in hours. The COVID-19 test uses this same process—but with a few additional steps.

Such discoveries have made a world of difference. Scientists now know that microbes have perfected unique ways to make a living in nearly every extreme environment on Earth, from Yellowstone’s hot pools to the black smokers of the deep sea. These organisms contain a trove of previously unimagined biologic mechanisms just waiting to be found.

Source : National Geographic.

Photos: C. Grandpey

La vie à Dallol et dans le Danakil ‘Ethiopie) // Life at Dallol and Danakil (Ethiopia)


Au cours des dernières années, plusieurs vidéos ont montré que des bactéries, des vers et des crevettes sont capables de survivre dans l’environnement très hostile des « fumeurs noirs » au fond des océans. Ces évents sous-marins émettent de l’eau très chaude et des gaz acides qui ne sont pas censés favoriser la vie.
De la même manière, des échantillons de liquide ont été prélevés à Dallol et sur le Danakil dans le nord de l’Éthiopie et les chercheurs ont pu constater que eux aussi hébergeaint de la vie, malgré un contexte très défavorable. Dallol est un volcan dans la dépression du Danakil, au nord-est de la chaîne de montagnes où se trouve l’Erta Ale. Il a été formé par une intrusion magmatique basaltique dans des dépôts de sel du Miocène et par une activité hydrothermale ultérieure. Des éruptions phréatiques ont eu lieu en 1926, donnant naissance au volcan Dallol. De nombreux autres cratères parsèment le désert de sel à proximité. Dallol est alimenté par de l’eau portée à haute température par la chambre magmatique peu profonde sous le volcan. C’est l’un des endroits les plus beaux, mais aussi des plus inhospitaliers de la planète.
L’analyse des échantillons prélevés par une équipe scientifique internationale a révélé la présence de microbes de très petite taille qui montrent comment la vie aurait pu se développer sur la planète Mars. Les résultats de l’étude ont été publiés dans les Scientific Reports.
Les chercheurs ont découvert une souche de bactéries capables de vivre à une température de 89°C et une acidité extrême avec un pH de 0,25. Ces conditions sont similaires à celles rencontrées sur la Planète Rouge lors de sa formation.
La région de Dallol et du Danakil est saturée en différents sels, parmi lesquels le chlorure d’argent, la sphalérite, le sulfure de fer et des sels minéraux, qui forment un paysage fantastique où cohabitent les jaunes, les rouges, les verts et les bleus. L’équipe scientifique a recueilli de fines couches de dépôts de sel et les a transportées en Espagne dans des flacons stériles et scellés. Ils ont été analysés par microscopie électronique, analyse chimique et séquençage de l’ADN. Les chercheurs ont découvert que les minuscules structures sphériques dans les échantillons de sel étaient en fait de minuscules microbes (Nanohaloarchaeles) vivant en colonies compactes. Chaque microbe est 20 fois plus petit que la moyenne des bactéries.
Une étude approfondie des sites de Dallol et du Danakil permettra de mieux comprendre les limites de la vie sur Terre et apportera des informations sur la recherche de la vie sur Mars et ailleurs dans l’univers. La géochimie inhabituelle du site a beaucoup de points communs avec de possibles environnements hydrothermaux découverts sur la Planète Rouge, y compris le cratère Gusev, où a atterri le Spirit Mars Exploration Rover, module d’exploration de la Nasa. Même si la planète Mars est sèche et désertique aujourd’hui, de plus en plus de recherches démontrent qu’elle était probablement recouverte de vastes étendues d’eau il y a trois ou quatre milliards d’années.
Source: The Independent.

—————————————

In the past few years, several videos have shown that bacteria , worms and shrimps are able to survive in the very hostile environment of the « black smokers » at the bottom of the oceans. These submarine vents emit very hot water and acid gases that are not supposed to favour life.
In the same way, samples of liquid have been collected from the Dallol volcano and Danakil Depression in northern Ethiopia.Researchers were suprised to see that life was present despite unfavorable conditions. Dallol is a cinder cone volcano in the Danakil Depression, northeast of the Erta Ale Range. It has been formed by the intrusion of basaltic magma into Miocene salt deposits and subsequent hydrothermal activity. Phreatic eruptions took place here in 1926, forming Dallol Volcano; numerous other eruption craters dot the salt flats nearby. It is fuelled by water that has been heated by the shallow magma reserve beneath the volcano. It is one of the most beautiful and the most inhospitable places on Earth.
The analysis of the samples by an international scientific team revealed the presence of ultra-small microbes which show how life could have once thrived on Mars. The results of the study have been published in Scientific Reports.
The researchers have found a strain of bacteria living in temperatures of 89°C and an extreme acidity with a pH 0.25. Such conditions are similar to those found on the Red Planet when it first formed.
The Dallol and Danakil area is saturated in various salts, including silver chloride, zinc iron sulphide and rock-salt which produce a landscape of yellows, reds, greens and blues. The team collected thin layers of salt deposits and transported them to Spain in sterile, sealed vials. They were analysed using electron microscopy, chemical analysis and DNA sequencing. The team found tiny, spherical structures within the salt samples were tiny microbes (Nanohaloarchaeles) living in compact colonies. Each microbe was 20 times smaller than the average bacteria.
In-depth study of the characteristics of Dallol and Danakil sites will improve the scientific understanding of the limits of life on Earth and bring information about the search for life on Mars and elsewhere in the universe. The sites’ unusual geochemistry makes it very similar to hydrothermal environments that would have been found on the Red Planet, including the Gusev Crater, where Nasa’s Spirit Mars Exploration Rover landed. While the Mars is mostly dry and desolate today, a growing body of research shows it was probably covered in large bodies of water between three and four billion years ago.
Source: The Independent.

Les couleurs de Dallol (Source: Wikipedia)

Les bactéries de l’Erebus (Antarctique) // The bacteria of Mt Erebus (Antarctica)

Jusqu’à présent, les études conduites sur l’Erebus (Antarctique) se concentraient principalement sur le lac de lave qui mijote dans les profondeurs du cratère, bien que l’équipe Tazieff avec François Le Guern et de François-Xavier Faivre-Pierret dans les années 1970 ait déjà travaillé sur les gaz qui s’échappent des flancs. du volcan.
De nouvelles études sur les caractéristiques géothermales du volcan pourraient permettre de comprendre la vie sur d’autres planètes. Les scientifiques pensent qu’elles pourraient même changer notre compréhension de la vie su Terre.
Dans une étude précédente, un microbiologiste néo-zélandais et ses collègues de l’Université de Waikato expliquent qu’ils ont creusé jusqu’à 12 centimètres de profondeur dans le sol du volcan et ont découvert une variété remarquable de bactéries vivant juste sous la surface. Ces bactéries sont très proches d’autres organismes de ce type vivant dans des systèmes géothermaux ailleurs dans le monde,. Cela donne à penser que ces êtres microscopiques ont été continuellement dispersés autour de la planète au niveau de l’atmosphère. Si tel est le cas, ils se peut qu’ils proviennent d’un volcan gigantesque qui est entré en éruption dans le passé, ce qui leur a permis de se déplacer à travers le monde et d’atteindre d’autres sites géothermaux. Plus intéressant encore, les chercheurs ont également découvert des bactéries non seulement endémiques à Erebus, mais encore plus anciennes que celles qui y vivent aujourd’hui. Au fur et à mesure que les chercheurs se sont enfoncés dans le sol, ils ont découvert non seulement de nouvelles bactéries, mais aussi des bactéries qui s’adaptent à la géochimie et aux gaz de l’Erebus.
On sait depuis plus d’un siècle qu’il existe des bactéries capables de vivre et de se développer grâce à l’énergie liée à certains éléments chimiques communs aux systèmes géothermaux lorsque leur nourriture habituelle à base de carbone est limitée. Ce qui est nouveau sur l’Erebus, c’est que ces éléments chimiques sont rares mais les bactéries parviennent tout de même à se développer dans un environnement pauvre en carbone.
Dans le cadre d’un nouveau programme de trois ans, une équipe néo-zélandaise dirigée par des chercheurs de l’Université de Canterbury retournera sur l’Erebus pour approfondir ces recherches. Les chercheurs prévoient d’effectuer des forages directement dans le volcan et d’utiliser de nouvelles approches pour étudier les bactéries, avant d’utiliser d’autres méthodes génomiques pour déterminer leur mode de vie et leur survie.
L’équipe espère découvrir de nouveaux mécanismes biologiques de la vie encore jamais observés, mais qui restent possibles. Il existe sur l’Erebus un système en situation d’isolement doté d’une géochimie inédite capable de donner naissance à des mécanismes tout à fait inhabituels qui peuvent héberger de la vie. Cette approche est susceptible d’aider la recherche de vie sur d’autres planètes.
Source: New Zealand Herald.

Je conseille la lecture du livre Erebus, volcan antarctique écrit par Haroun Tazieff et paru aux Editions Actes Sud.

——————————————————–

Up to now, studies of Mt Erebus in Antarctica had mostly been concentrated on the lava lake deep inside the crater although the Tazieff team with François Le Guern and François-Xavier Faivre-Pierret in the 1970s already worked on the gases coming out of the flanks of the volcano.

The new studies that have focused on the geothermal features on the volcano could be a key to understanding life on other planets. Scientists believe they may even have the potential to change how we understand life itself.

In a previous study, a New Zealand microbiologist and his colleagues of Waikato University had dug just 12 centimetres into the soil on the mountain to find a remarkable variety of bacteria living just below the surface. They were very closely related with other such organisms living in geothermal systems elsewhere in the world, a finding that suggested these microscopic beings were being continually dispersed around the planet through the atmosphere. If this was the case, they could have originated from a massive volcano going off sometime in the past and moving them around the world and into other geothermal sites. More interestingly, the researchers also discovered bacteria that are not only appear endemic to Erebus but ancient when compared to those living today. As they went deeper and deeper into the soil, they not only found novel bacteria, but possibly bacteria that are adapting to the novel geochemistry, or gases, at Mt Erebus.

It has been known for over a hundred years that there are bacteria that can live and grow on energy bound up in certain chemicals common to geothermal systems when normal carbon-based food is limited. What is new on Erebus is that these chemicals are not abundant and yet bacteria are found thriving in this carbon limited environment.

In a new three-year programme a New Zealand team led by researchers of the University of Canterbury will return to Erebus to investigate further. The researchers plan to drill directly into the volcano and use some new exciting approaches to grow the bacteria, before using a range of genomic methods to work out how they function and survive.

The team hope to uncover new biological mechanisms for life that have never been seen, yet remained theoretically feasible. At Mt Erebus, there is an isolated system with novel geochemistry that can drive completely unusual mechanisms to support life. This would be appropriate for looking for life on other planets.

Source : New Zealand Herald.

Vue du sommet de l’Erebus (Crédit photo: Wikipedia)

Cristal d’anorthoclase et échantillon du lac de lave de l’Erebus prélevés par l’équipe Tazieff (Collection personnelle)