Eruption à La Palma : pas de risque de tsunami // La Palma eruption: no tsunami hazard

Lorsque l’éruption du Cumbre Vieja a commencé le 19 septembre 2021, des rumeurs de méga-tsunami ont commencé à circuler sur les réseaux sociaux. Ceux qui émettaient cette hypothèse pensaient que l’arrivée de la lave dans la mer pourrait déclencher une telle catastrophe. Nous en sommes encore loin étant donné que la lave émise par le volcan n’a toujours pas atteint le littoral. Le front de lave, d’une hauteur moyenne de six mètres, semble s’être stabilisé. Il avançait à environ 300 mètres par heure au début de l’éruption, mais il faut que l’alimentation de la coulée à la source soit suffisante pour assurer la progression de ce tapis roulant sur une longue distance. On pensait tout d’abord que la lave atteindrait le rivage lundi soir, puis mardi matin, puis mardi soir. Nous sommes jeudi et il ne s’est toujours rien produit.

S’agissant du tsunami, plusieurs études scientifiques ont expliqué qu’un accident géologique majeur aux Canaries pourrait avoir des répercussions jusque de l’autre côté de l’Atlantique. Un professeur du University College de Londres a étudié le risque d’un tel événement.et décrit dans une vidéo le pire des scénarios :

Toutefois, ce scénario catastrophe ne semble pas à l’ordre du jour. .Tout d’abord, l’éruption actuelle, de type strombolien, n’aura pas une durée suffisante pour apporter une masse de lave susceptible de provoquer un glissement de terrain déclencheur d’un tsunami. On peut se référer à l’événement de 1971 qui n’a duré que quelques semaines. L’Institut volcanologique des îles Canaries a estimé la durée de l’éruption actuelle entre 24 et 84 jours, avec une moyenne de l’ordre de 55 jours.
Si la lave parvient a atteindre la mer, elle va agrandir la surface de La Palma de quelques centaines de mètres carrés, comme cela se produit périodiquement à Hawaii et à La Réunion, mais elle ne déclenchera pas de tsunami.

———————————–

When the Cumbre Vieja eruption began on September 19th, 2021, mega-tsunami rumors began to spread on social media. Those who put forward this hypothesis believed that the arrival of lava in the sea could trigger such a catastrophe. We are still far from it since the lava emitted by the volcano has still not reached the coast. The lava front, with an average height of six meters, seems to have stabilised. At the start of the eruption, lava advanced at about 300 meters per hour, but the supply at the source needs to be sufficient to ensure the progression of this conveyor belt over a long distance. It was initially thought that the lava would reach the shore on Monday evening, then Tuesday morning, then Tuesday evening. Today is Thursday and nothing has happened yet.
Regarding the tsunami, several scientific studies have explained that a major geological accident in the Canaries could have repercussions as far as the other side of the Atlantic. A professor at University College London studied the risk of such an event and described the worst-case scenario in a video.
https://youtu.be/6utAunBKXV4
However, this disaster scenario does not seem to be on the agenda. First of all, the current eruption, of the Strombolian type, will not have a sufficient duration to bring a sufficient mass of lava likely to trigger a landslide and a tsunami. We can refer to the 1971 event which lasted only a few weeks. The Volcanological Institute thinks it will last between 24 and 84 days.
If the lava manages to reach the sea, it will enlarge the surface of La Palma by a few hundred square meters, as happens periodically in Hawaii and Reunion Island, but it will not trigger a tsunami.

Image extraite de la vidéo ci-dessus

De la Geldingadalir (Islande) à la planète Mars // From Geldingadalir (Iceland) to Mars

Pour les scientifiques, l’Islande est un excellent terrain d’entraînement dans le domaine de la conquête spatiale. Aujourd’hui, ce pays sert de banc d’essai pour expérimenter des drones qui pourraient un jour être utilisés dans des missions martiennes.
Dans le cadre d’un tel projet, les scientifiques équipent les drones d’une gamme de dispositifs allant du Lidar capable de déterminer l’épaisseur et le volume de lave, aux caméras d’imagerie thermique et aux foreuses capables de prélever des échantillons. Les paysages islandais sont très semblables à ceux de Mars, ce qui en fait un lieu idéal pour tester différents types de technologies de drones.
Voici une vidéo tournée à Geldingadalir (Islande) dans laquelle le volcanologue Christopher Hamilton (Université d’Arizona) explique toutes les possibilités offertes par les drones :.

https://www.bbc.com/news/av/technology-58104819

Le 19 mars 2021, une éruption a commencé sur la péninsule de Reykjanes. C’était la première fois en 800 ans qu’un tel événement se produisait dans cette partie de l’Islande. À seulement 35 kilomètres de Reykjavik, la facilité d’accès a permis aux scientifiques de collecter des données qui sont souvent impossibles à rassembler lors d’éruptions plus dangereuses ou plus difficiles d’accès.
Christopher Hamilton est professeur de sciences planétaires à l’Université de l’Arizona. Il est également professeur adjoint à l’Université d’Islande. Il se trouvait en Islande lorsque le volcan est entré en éruption. Contrairement à certains autres scientifiques présents dans la Geldingadalir qui essayaient de percer les secrets de la Terre, Hamilton avait en tête des idées allant bien au-delà de notre planète.
Dans la vidéo ci-dessus, il explique vouloir se servir de cette éruption comme d’une fenêtre pour étudier d’autres planètes. Le paysage islandais relativement aride ressemble beaucoup à l’environnement martien
Hamilton a reçu une subvention de trois millions de dollars de la NASA pour mettre au point un drone capable de voler sur Mars. Il s’appelle RAVEN, acronyme de Rover Aerial Vehicle Exploration Network. (voir ma note du 19 janvier 2021 à propos de ce drone). Hamilton explique que les instruments utilisés dans l’espace doivent être testés dans différents environnements. L’Islande constitue un substitut parfait pour le paysage volcanique accidenté de la planète Mars. Avec ses étendues de glace stériles, ses immenses champs de lave et son activité volcanique constante, l’Islande est l’environnement parfait pour tester le projet de drone.
Dans le cadre de la mission Mars 2020 de la NASA, l’hélicoptère Ingenuity a permis de tester avec succès au mois d’avril 2021 un vol motorisé sur Mars. Cet hélicoptère était équipé de deux caméras, une pour la navigation et l’autre pour les images. Il a accompagné le rover (robot d’exploration) Perseverance de sorte que les deux véhicules ont prouvé que les hélicoptères et les rovers peuvent fonctionner ensemble sur Mars. Hamilton dit qu’il s’agit d’une technologie véritablement transformatrice ; la mission islandaise permettra de tester la prochaine génération de systèmes d’exploration spatiale.
Le drone RAVEN sera utilisé avec un rover et volera devant lui et en envoyant des données pour générer des cartes 3D. Il explorera des zones auparavant inaccessibles sur Mars et disposera d’une griffe capable de récupérer des échantillons de roches martiennes et de les apporter au rover.
Hamilton est convaincu que « le drone a révolutionné notre façon de travailler sur le terrain. Si on pouvait envoyer un drone équipé d’une griffe ou une perceuse pour pouvoir acquérir un échantillon et le ramener à un rover, cela fournirait un paradigme radicalement nouveau pour explorer les parties vraiment accidentées et encore inaccessibles de Mars. »

RAVEN est un projet prévu pour s’étaler sur trois années. L’équipe de Christopher Hamilton espère tester un prototype d’ici 2022, et fournir des recommandations technologiques à la NASA d’ici 2023.
Source : BBC News.

——————————————-

Scientists are using Iceland as a testbed for deploying drone technology that they hope may one day feature on missions exploring Mars.

The project equips drones with a range of devices from Lidar which can help inform the thickness and volume of lava, to thermal imaging cameras and drills capable of taking core samples. The characteristics of Iceland’s environment are very similar to Mars making it an ideal test place for different types of drone technology.

Here is a video shot in Geldingadalir (Iceland) in which volcanologist Christopher Hamilton (University of Arizona) explains all the possibilities offered by the drones:.

https://www.bbc.com/news/av/technology-58104819

On March 19th, 2021, a new eruption started on the Reykjanes Peninsula. It was the first time in 800 years a volcanic eruption had occurred on that part of the country. Only 35 kilometres from Reykjavik, the ease of access provided an opportunity for scientists to collect data that is often lost at more hazardous or remote volcanic eruptions.

Christopher Hamilton is an associate professor of planetary sciences at the University of Arizona. He is also an adjunct professor at the University of Iceland. He happened to be in Iceland when the volcano erupted. Unlike some of the other scientists in Geldingadalir trying to unlock the secrets of the Earth, Hamilton’s interests went far beyond this planet.

In the video, he says that he wanted to be able to use this eruption as a window to study other planets. The landscape in Iceland, with relatively barren vegetation, is very similar to the Martian environment

Hamilton received a three-million-dollar grant from NASA to develop a drone that will fly on Mars. It is called RAVEN, which stands for Rover Aerial Vehicle Exploration Network. (see my post of January 19th, 2021 about this drone). Hamilton explained that instruments used in space need to be tested in different environments. Iceland is the perfect substitute for the rugged volcanic landscape found on Mars. With its barren icefields, huge lava fields, and constant volcanic activity, Iceland is the perfect test environment for the drone project.

Part of NASA’s Mars 2020 Mission, the Ingenuity helicopter successfully tested powered flight on Mars for the first time in April. This helicopter was equipped with two cameras, one for navigation and one for imaging. It accompanied the rover Perseverance, and together the crafts tested how helicopters and rovers can work together on Mars. Hamilton says this is a truly transformative technology; what they are testing in Iceland is the next generation of explorationsystems.

The RAVEN drone will work with a rover by flying ahead of it and sending back data to generate 3D maps. It will explore previously inaccessible areas on Mars, and have a claw that can retrieve Martian rocks and deliver them to the rover.

Hamilton is convinced that « the drone has completely revolutionized the way that we do fieldwork, If you could send a drone with a claw or a drill to be able to acquire a sample and bring it back to a rover, that provides a radically new paradigm for being able to explore the really rugged parts of Mars that we haven’t been able to get to on the ground. »

RAVEN is scheduled to be a three-year project. Christopher Hamilton’s team hopes to test a prototype by 2022, and to publish technological recommendations for NASA by 2023.

Source: BBC News.

Le désert de l’Odadahraun a déjà servi de terrain d’entraînement aux missions lunaires (Photo: C. Grandpey)

Mesure et cartographie des gaz sur le Kilauea (Hawaii) // Measuring and mapping gases on Kilauea (Hawaii)

Un nouvel article publié par l’Observatoire des Volcans d’Hawaii (HVO) aborde un sujet fort intéressant: la mesure et de la cartographie des émissions de gaz sur le volcan Kilauea. Comme le répétait fort justement Haroun Tazieff, les gaz sont le moteur des éruptions. Leur analyse est donc essentielle pour comprendre comment fonctionne un volcan.

De grandes quantités de gaz volcaniques, tels que le dioxyde de carbone (CO2), le dioxyde de soufre (SO2) et le sulfure d’hydrogène (H2S), sont libérés dans l’atmosphère lors des éruptions volcaniques. Mais même entre les éruptions, de plus petites quantités de ces mêmes gaz continuent de s’échapper du sol et peuvent fournir des indications importantes sur l’état d’un volcan et sur le magma qui sommeille dans les profondeurs de la Terre.

Pour mesurer ces gaz, les scientifiques du HVO doivent d’abord identifier leur provenance. Des études sur le terrain à propos des émissions gazeuses dans la caldeira du Kilauea ont été réalisées dans le passé, mais aucune n’a été effectuée dans la caldeira dans son ensemble. Et aucune étude n’a été entreprise depuis l’éruption de 2018.

Au cours de l’été 2021, les scientifiques du HVO ont donc mené une étude détaillée des gaz sur le plancher et en bordure de la caldeira afin de comprendre la répartition des émissions actuelles. Les résultats seront comparés aux observations précédentes ; si des différences sont détectées, elles peuvent indiquer que le système d’alimentation au sommet du Kilauea s’est modifié en raison des effondrements survenus lors de l’éruption de 2018.

Les mesures de gaz volcaniques peuvent être effectuées à l’aide d’un MultiGAS qui pompe de l’air puis enregistre les concentrations de CO2, SO2 et H2S, plus la vapeur d’eau, en parties par million (ppm). Ces instruments MultiGAS peuvent être installés en permanence dans une zone particulière ou montés à bord d’un drone, en fonction de la zone à analyser et du type de données requises.

Pour la cartographie des gaz dans la caldeira du Kilauea au cours de l’été 2021, deux instruments MultiGAS ont été montés sur des supports dorsaux et les scientifiques du HVO ont parcouru la caldeira dans tous les sens, tout en collectant des données en continu. Leurs itinéraires de marche étaient espacés de 25 à 50 mètres afin de couvrir aussi bien la bordure de la caldeira que tout le plancher, ou bien la zone de blocs d’effondrement de l’éruption de 2018.

Même si ce travail a permis de couvrir tout le plancher de la caldeira, il restait des endroits eux aussi intéressants à analyser. Souvent, les émissions de gaz se concentrent le long de fissures ou de cavités qui permettent au gaz d’accéder facilement à la surface. De tels panaches peuvent être facilement observés dans diverses parties du plancher de la caldeira et dans des zones comme les Sulphur Banks et les Steam Vents dans le parc national. Des panaches comme ceux-ci sont souvent de bons indicateurs des endroits où les concentrations de gaz sont les plus élevées. De plus, au fur et à mesure que les gaz montent vers la surface depuis la chambre magmatique, ils interagissent avec et modifient les roches, entraînant des changements de couleur. Les zones de roches altérées peuvent révéler des émissions de gaz élevées.

Les scientifiques ont également collecté des échantillons de gaz dans des zones présentant des concentrations élevées de CO2 pour des analyses en laboratoire. Une grande seringue en plastique a été utilisée pour prélever l’échantillon qui a ensuite été transféré dans un récipient conçu pour contenir le gaz. La majorité des échantillons ont été prélevés sur les blocs d’effondrement de 2018 mentionnés précédemment car cette zone présente les concentrations les plus élevées de CO2.

Les analyses chimiques des différents isotopes de carbone dans le CO2 contenus dans ces échantillons peuvent fournir des informations sur l’emplacement du magma qui émet ces gaz. Cela permet aussi de savoir s’il s’agit d’un magma juvénile profond qui n’a encore jamais dégazé, ou d’un magma plus ancien qui a déjà été stocké pendant un certain temps dans le système d’alimentation du Kilauea.

La cartographie du plancher de la caldeira est maintenant terminée, mais les parois et le plancher du cratère de l’Halema’uma’u n’ont pas encore été cartographiés. Ils sont le site de nombreux bouches de gaz. Ces zones sont impossibles à parcourir à pied; la prochaine étape consistera donc à utiliser un MultiGAS monté sur drone.

Au final, les scientifiques du HVO produiront une nouvelle carte des émissions de gaz dans la caldeira du Kilauea en utilisant les données collectées au cours de l’été 2021. La carte sera essentielle pour déterminer si les remontées de gaz depuis le magma profond vers la surface ont été modifiées par les effondrements de 2018.

Source : USGS / HVO.

—————————————-

A new article released by the Hawaiian Volcano Observatory (HVO) deals with the measuring and mapping of gas emissions on Kilauea Volcano.

Large quantities of volcanic gases, such as carbon dioxide (CO2), sulfur dioxide (SO2), and hydrogen sulfide (H2S), are released into the atmosphere during volcanic eruptions. But even between eruptions, smaller amounts of the same gases continue to escape and can provide important clues about the current state of the volcano and the underlying magma. But to measure them, HVO scientists first must identify where gas is coming from.

Surveys of the gas emissions from the Kilauea caldera have been done in the past but never of the entire caldera at one time. And none had been done yet after the 2018 eruption.

Over the summer of 2021, HVO scientists conducted a detailed gas survey of the caldera floor and rim in order to understand the distribution of current emissions. The results will be compared to previous surveys; if differences are detected, they may indicate that the plumbing system of Kīlauea’s summit has changed because of the 2018 collapses.

Measurements of volcanic gases can be done using a MultiGAS instrument, which pumps in air and then records the concentrations of CO2, SO2, and H2S, plus water vapor, in parts per million (ppm).

These MultiGAS instruments can be permanently stationed at an area of interest, or mounted on a drone, depending on the location and type of data needed.

For the gas mapping in the Kilauea caldera during the summer 2021, two MultiGAS instruments were mounted on backpack frames and HVO scientists walked across and around the caldera while continuously collecting data. Their routes were spaced 25 to 50 metres apart and covered areas of the caldera rim, the caldera floor, and the down-dropped block that collapsed during the 2018 eruption.

Even though the survey covered the whole caldera floor, there were more interesting spots to analyse. Often gas emissions are concentrated along cracks or holes in the ground which provide the gas an easy path to the surface. Visible plumes can be seen in various parts of the caldera floor and at the Haʻakulamanu Sulphur Banks and Steam Vents within the National Park. Visible plumes of gas like this are often good indicators of where the gas concentrations may be elevated.

As gases rise towards the surface from the magma below, they interact with and alter the rocks in the area, resulting in colour changes. Looking for this altered rock is another way to identify areas that may have elevated gas emissions.

The scientists also collected gas samples from areas that had elevated concentrations of CO2 for later laboratory analyses. A large, plastic syringe was used to collect the sample which was then transferred to a foil bag designed for holding gas. The majority of the samples were collected on the down-dropped block, as that area showed the highest concentrations of CO2.

Chemical analyses of the different forms (isotopes) of carbon in the CO2 from these samples can provide information about where the magma that is releasing these gases is located, and whether it is new, deep magma that has never degassed before, or older magma that had already been stored for some time in Kilauea’s plumbing system.

While the caldera floor mapping is now complete, the walls and floor of Halemaʻumaʻu crater have not yet been mapped and are the site of many visible gas vents. These areas are impossible to traverse by foot, so the next step is to use a UAS-mounted MultiGAS to measure gases there..

HVO scientists will produce a new map of gas emissions in the Kilauea caldera using the data collected during the summer 2021. The map will be key to determining if gas pathways from deep magma to the surface were changed by the collapses in 2018.

Source: USGS / HVO.

SulphurBanks

Steam Vents

Emissions de gaz dans le cratère de l’Halema’uma’u en 2011

Photos: C. Grandpey

Température de prismation des colonnes basaltiques // Prismation temperature of basalt columns

J’ai écrit plusieurs notes – le 24 mars 2015, par exemple – sur Devils Tower qui est un site touristique très populaire dans le Wyoming aux Etats Unis. Un certain nombre d’hypothèses ont été formulées pour expliquer l’apparition de ce monolithe vieux de 49 millions d’années. Les explications les plus fréquemment avancées font état d’une montée de magma qui se serait frayé un chemin dans les couches sédimentaires sous la surface ou à l’intérieur d’une cheminée dans les profondeurs d’un volcan.
Une nouvelle étude réalisée par des géologues de l’Université de Liverpool a identifié la température à laquelle le magma en cours de refroidissement se fissure pour former des colonnes géométriques telles que celles rencontrées à la Chaussée des Géants en Irlande du Nord et à Devils Tower aux États-Unis.


Les colonnes géométriques apparaissent dans de nombreux types de roches volcaniques et se forment au fur et à mesure que la roche se refroidit et se contracte, ce qui donne naissance à un ensemble régulier de prismes et de colonnes polygonaux Les géologues se sont longtemps demandé à quelle température le magma en cours de refroidissement forme ces prismes.
Les scientifiques de Liverpool ont entrepris une étude pour découvrir à quel niveau de température les roches s’ouvrent pour former ces entablements spectaculaires. Dans un article publié dans la revue Nature Communications, ils expliquent avoir mis sur pied un nouveau type d’expérience pour montrer comment, lorsque le magma se refroidit, il se contracte et accumule du stress, jusqu’au moment où il se fissure. L’étude a été réalisée sur des échantillons de colonnes basaltiques issues de l’Eyjafjallajökull, en Islande.
Les chercheurs ont conçu un nouvel appareil permettant à la lave en cours de refroidissement, saisie dans une presse, de se contracter et de se fissurer pour former une colonne. Cette expérience a permis de constater que les roches se fracturent lorsqu’elles refroidissent à environ 90 à 140 degrés Celsius en dessous de la température à laquelle le magma cristallise, soit environ 980 °C pour les basaltes. Cela signifie que les joints que l’on peut observer entre les colonnes basaltiques à la Chaussée des Géants et à Devils Tower, entre autres, se sont formés à une température d’environ 840-890°C.
Les auteurs de l’expérience explique qu’elle a été compliquée d’un point de vue technique, mais elle montre parfaitement le rôle joué par la contraction thermique sur l’évolution des roches en cours de refroidissement et sur le développement des fractures. Connaître le niveau de température auquel le magma en cours de refroidissement se fracture est essentiel, car il amorce la circulation de fluides dans le réseau de fractures. La circulation de fluides contrôle le transfert de chaleur dans les systèmes volcaniques. Ce phénomène peut être exploité pour la production d’énergie géothermique. Cette dernière découverte présente donc d’importantes applications en volcanologie et dans le domaine de la recherche géothermique.
Source : Université de Liverpool.

Loin de cette approche scientifique, une légende raconte qu’un groupe de sept jeunes filles jouaient dans la forêt quand arriva brusquement un ours géant. Elles s’enfuirent mais l’ours les poursuivit. La situation semblait perdue car l’ours gagnait du terrain. Les filles se précipitèrent vers un rocher quelles essayèrent d’escalader en priant le Grand Esprit de leur venir en aide. A ce moment-là, le rocher se mit à grandir, soulevant les enfants dans les airs. L’ours sauta sur le rocher mais ne réussit pas à atteindre les jeunes filles car ses griffes glissaient sur la pierre. On peut voir aujourd’hui la marque de ses griffes sur le rocher qui continua à croître, poussant les filles vers le ciel, où elles devinrent les sept étoiles de la Pléiade.

Photos: C. Grandpey

—————————————

I have written several posts – on March 24th, 2015, for instance – about Devils Tower which is a popular tourist spot in Wyoming. A number of hypotheses for the 49-million-year-old monolith have been put forward over the years. The most popular explanations today refer to some magma ascent squeezed in between subsurface layers of sediments, or within a conduit deep inside a volcano.

A new study by geoscientists at the University of Liverpool has identified the temperature at which cooling magma cracks to form geometric columns such as those found at the Giant’s Causeway in Northern Ireland and Devils Tower in the USA.
Geometric columns occur in many types of volcanic rocks and form as the rock cools and contracts, resulting in a regular array of polygonal prisms or columns. One of the most intriguing questions facing geologists is the temperature at which cooling magma forms these columnar joints.

Liverpool geoscientists undertook a research study to find out how hot the rocks were when they cracked open to form these spectacular stepping stones. In a paper published in Nature Communications, they explain that they designed a new type of experiment to show how as magma cools, it contracts and accumulates stress, until it cracks. The study was performed on basaltic columns from Eyjafjallajökull volcano, Iceland.
The researchers designed a novel apparatus to permit cooling lava, gripped in a press, to contract and crack to form a column. These new experiments demonstrated that the rocks fracture when they cool about 90 to 140 degrees Celsius below the temperature at which magma crystallises into a rock, which is about 980°C for basalts.
This means that columnar joints exposed in basaltic rocks, as observed at the Giant’s Causeway (Ireland) and Devils Tower (USA) amongst others, were formed around 840-890°C.
The authors of the experiments say that they were technically very challenging, but they clearly demonstrate the power and significance of thermal contraction on the evolution of cooling rocks and the development of fractures. Knowing the point at which cooling magma fractures is critical, as it initiates fluid circulation in the fracture network. Fluid flow controls heat transfer in volcanic systems, which can be harnessed for geothermal energy production. So the findings have tremendous applications for both volcanology and geothermal research.
Source: The University of Liverpool.

Far from this scientific approach, a legend says that a group of seven girls were playing in the forest when a giant bear abruptly arrived. They fled but the bear chased them. The situation seemed lost because the bear was gaining ground. The girls rushed to a rock that they tried to climb, begging the Great Spirit to help them. At that moment, the rock began to grow, raising the children in the air. The bear jumped on the rock but failed to reach the girls because his claws slipped on the stone. We can see today the mark of his claws on the rock that continued to grow, pushing the girls to the sky, where they became the seven stars of the Pleiades.