Des similitudes entre El Tatio (Chili) et la planète Mars // Similarities between El Tatio (Chile) and Mars

drapeau-francaisEn 2007, Spirit, le module d’exploration de la planète Mars – Mars Exploration Rover (MER) – a atteint une plate-forme légèrement surélevée que les scientifiques ont baptisée Home Plate. Cet affleurement rocheux avait une base composée de cendres solidifiées avec, à proximité, des dépôts de basaltes riches en gaz. A côté de cette plate-forme, on apercevait sous la surface un sol de couleur claire mis à jour par les roues du robot. Les spectres des minéraux de ce sol ont été envoyés vers la Terre et les analyses ont révélé qu’il était composé presque entièrement de silice.
D’un point de vue géologique, il semblait y avoir deux hypothèses: Home Plate avait peut-être été une fumerolle volcanique, ou bien il pouvait s’agir des restes d’une source chaude riche en minéraux. Quoi qu’il en soit, l’eau et la chaleur avaient probablement joué un rôle, et la découverte a fait naître de nouvelles questions et de nouveaux projets d’études.
C’est à ce moment que le robot Spirit a décidé de se taire et de ne plus émettre ! Pour essayer de percer le mystère de la Home Plate martienne, les chercheurs ont parcouru la Terre dans l’espoir de trouver des signaux minéralogiques semblables à ceux observés sur Mars. Ils pensaient qu’en découvrant des conditions identiques ou quasiment identiques à l’environnement martien, ils pourraient être en mesure de reconstituer les événements qui ont ponctué l’ancien passé de la planète.
C’est pourquoi une équipe scientifique de l’Université d’Arizona s’est rendue à El Tatio, un ensemble de sources chaudes de l’altiplano chilien. À 4200 mètres d’altitude, le paysage froid et sec est proche de l’environnement martien. Une fois sur place, les chercheurs sont partis à la recherche de la silice opaline, une combinaison amorphe de dioxyde de silicium (SiO2) et d’eau qui forme une fine croûte de dépôts autour des canaux d’évacuation de l’eau. En utilisant le même type de spectromètre infrarouge que le robot Spirit sur Mars, ils ont cherché des échantillons montrant une forte capacité d’absorption au nombre d’ondes 1 260 dans le spectre. Alors que la plupart des bandes d’absorption sur Home Plate étaient plausibles en se référant la géologie terrestre, cette bande d’absorption de 1 260 restait mystérieuse.
Les scientifiques ont découvert que certains échantillons prélevés à El Tatio présentaient la capacité d’absorption à 1 260 dans le spectre ; de plus, ces échantillons présentaient une fine couche de chlorure de sodium (NaCl) au-dessus de la silice. En y regardant de plus près avec un microscope électronique, ces roches présentaient des couches minces qui faisaient alterner la silice compacte et une texture remplie de trous qui, semblables à des échantillons prélevés en Nouvelle Zélande, ont été façonnées par des activités microbiennes. Au fur et à mesure que les biofilms des communautés microbiennes denses croissent, ils excrètent une boue riche en sucre qui se lie à la silice ou aux minéraux riches en calcium qui précipitent hors de l’eau chaude. Des roches se forment, et tandis que certaines cellules sont trop lentes pour s’échapper et se trouvent noyées dans la silice, la plupart s’extirpent vers la surface, laissant derrière elles  un réseau de trous qui se remplit d’eau salée pour finir recouvert de halite (espèce minérale solide composée de chlorure de sodium de formule brute).
Suite à leurs observations à El Tatio, les scientifiques de l’Arizona ont publié un rapport faisant valoir que la silice opaline à Home Plate provenait probablement d’une source chaude plutôt que d’une fumerolle volcanique.

Source: Discover Magazine.

Et pendant ce temps, les abysses de nos océans, où se cachent les zones de subduction génératrices de puissants séismes et tsunamis, restent dans l’obscurité. Comme me le faisait remarquer le biologiste marin Laurent Ballesta il y a quelque temps, plus de 75 % des zones très profondes restent inexplorées.

———————————-

drapeau-anglaisIn 2007, the Mars Exploration Rover (MER) Spirit came across a slightly raised platform which scientists named Home Plate. The rocky outcrop had a base of solidified ash, with nearby deposits of gas-filled basalts. Next to the plateau, a light-coloured soil just beneath the surface was exposed by the rover’s wheels. Mineralogical spectra of this soil were beamed back to Earth, revealing that it was composed almost entirely of silica.

From a geological standpoint, there seemed to be two main options: Home Plate may have been a volcanic fumarole, or it could signify the remnants of a mineral rich hot spring. Either way, water and heat were likely involved, and the discovery led to new questions and exciting plans for further studies.

But then, the Spirit rover went silent. To pursue the Home Plate mystery, they travelled over the Earth for mineralogical signals most similar to those found on Mars. They thought that by determining the conditions that best recapitulate the Martian data, they might be able to piece together the events of Mars’ ancient past.

Which is why a team of scientists at Arizona State University travelled to El Tatio, a series of hot springs in Chile’s altiplano. At 4,200 metres high, the cold and dry landscape was close to the Martian environment. Once there, they tracked down opaline silica, an amorphous combination of SiO2 and water that forms thin, crusty deposits around water channels. Using the same type of infrared spectrometer that the Spirit rover deployed on Mars, they looked for samples that showed a strong absorption feature at 1,260 wavenumbers in the spectrum. While most of the Home Plate absorption bands made sense based on terrestrial geology, that 1,260 band had remained mysterious.

Remarkably, some samples at El Tatio showed the 1,260 feature – samples that had a thin crust of NaCl on top of the silica. Looking even closer with electron microscopy, these rocks showed thin layers that alternated between compacted silica and a hole-filled texture that has, in similar samples from New Zealand, been shaped through microbial activity. As biofilms of dense microbial communities grow, they excrete sugar-rich slime, which binds silica or calcium minerals that precipitate out of the hot water. Rocks are constructed, and while some cells are too sluggish to escape and are entombed by the silica, most squirm upward to the surface, leaving a network of holes that is filled in with salty water and ultimately coated with halite.

Bringing several types of data together – mineralogical, morphological, and chemical – The Arizona scientists have published a report arguing that the opaline silica at Home Plate came from a hot spring rather than a volcanic fumarole.

Source : Discover Magazine.

And during this time, the abysses of our oceans, where subduction zones are generating powerful earthquakes and tsunamis, remain in complete darkness. As marine biologist Laurent Ballesta told me some time ago, more than 75% of the very deep ocean areas remain unexplored.

el-tatio-blog

« Geysers » d’El Tatio (Photo: C. Grandpey)

De la tridymite sur la planète Mars! // Tridymite on Mars!

drapeau-francaisLa tridymite n’est pas le minéral volcanique le plus connu. Une définition proposée par les encyclopédies nous apprend que la tridymite est « une des formes polymorphes de la silice cristalline. Elle est présente dans les roches volcaniques où elle coexiste avec la cristobalite, une autre forme de silice cristalline. Certaines formes de silices cristallines peuvent être converties en d’autres formes en fonction de l’augmentation ou de l’abaissement de la température ».

Les scientifiques ont été très surpris de trouver la tridymite sur Mars. En effet, sur Terre le minéral provient généralement de volcans extrêmement chauds dont la lave a été exposée à beaucoup d’eau de mer. De telles conditions ne sont pas censées exister sur Mars.
Un échantillon de roche prélevé par le robot Curiosity dans le cratère Gale, que l’on pense être le fond d’un ancien lac, a révélé cette tridymite qui est généralement produite sur Terre par des éruptions puissantes comme celle du Mont St. Helens. La planète Mars possède des volcans, mais ils sont basaltiques, comme à Hawaii; ils émettent une lave riche en fer et en magnésium, mais pauvre en silice. Au contraire, la lave produite par les volcans de la Chaîne des Cascades aux États-Unis contient beaucoup de silice, un minéral qui se forme en présence d’eau et nécessite des températures très élevées pour fondre et recristalliser en un matériau comme la tridymite. Les volcans des Cascades se sont formés lorsque la plaque Juan de Fuca s’est enfoncée sous la plaque continentale nord-américaine, emportant avec elle une grande quantité d’eau de mer. Il n’y a aucune preuve de tectonique des plaques sur Mars; c’est la raison pour laquelle les chercheurs ont été surpris de trouver de la tridymite dans les échantillons recueillis par Curiosity. Il n’y a pas non plus de traces de volcans siliciques, ni suffisamment d’eau sur Mars pour qu’elle soit descendue assez profond pour participer au processus qui génère la tridymite sur Terre.
Il n’y a pourtant pas le moindre doute sur la présence du minéral. Les instruments à bord du robot ont non seulement identifié sa chimie, mais ils ont aussi utilisé les rayons X pour analyser la structure du cristal et confirmer son identité.
Curiosity continuera de recueillir et d’analyser des échantillons du sol martien lorsqu’il escaladera le Mont Sharp, une colline formée de plusieurs couches de matériaux. Les chercheurs sont impatients de savoir s’ils trouveront de nouveau de la tridymite dans ce secteur.
Source: CBC News.

—————————————–

drapeau-anglaisTridymite is not the most popular mineral found on volcanoes. One of the definitions found in encyclopediae goes as follows: “Tridymite is one of the polymorphic forms of crystalline silica. It is present in volcanic rocks where it coexists with cristobalite, another form of crystalline silica. Certain forms of crystalline silicas can be converted in other forms according to the increase or the reduction in temperature”.

Scientists were quite surprised to find tridymite on Mars as, on Earth, the mineral typically comes from extremely hot volcanoes whose lava was exposed to lots of ocean water. Earth conditions that aren’t known on Mars are needed to produce tridymite.

A rock sample drilled by the Curiosity rover in the Gale Crater, believed to be the bed of an ancient lake, included tridymite, typically produced on Earth by powerful eruptions of volcanoes such as Mount St. Helens. While Mars has volcanoes, they are basaltic volcanoes like those in Hawaii; they produce a lava high in iron and magnesium and low in silica. On the contrary, lava produced by the Cascade volcanoes in the U.S. contain a lot of silica, a mineral that forms in the presence of water and requires extremely hot temperatures to melt and recrystallize into a material like tridymite. The Cascade volcanoes were formed when the Juan de Fuca plate in the Pacific Ocean pushed under the continental North American plate, taking a lot of ocean water with it. There’s no evidence for plate tectonics on Mars; this is the reason why researchers were so surprised to find tridymite in the samples collected by the Curiosity rover. Nor is there any sign of any silicic volcanoes, nor evidence that there was ever enough water on Mars or any way to get it down deep enough to undergo the kind of processes that generate tridymite on Earth.

There is not the slightest doubt about the mineral. The rover’s instruments not only identified the chemistry of the material, but also used X-rays to analyze the structure of the crystal and confirm its identity.

The Curiosity rover will continue to collect and analyse samples of the ground as it climbs up a multi-layered hill called Mount Sharp. The researchers are interested to see whether they will find more tridymite on the way up.

Source : CBC News.

Mars_modifié-1

Exemple de forage effectué par le robot Curiosity sur la planète Mars. Le diamètre du trou correspond environ à celui d’une pièce de un centime d’euro (Source: NASA).