L’Islande va stocker le CO2 dans le basalte // Iceland is going to store CO2 in basalt

Dans une note rédigée le 17 juin 2016, j’expliquais qu’une équipe dirigée par des chercheurs de l’Université de Southampton avait participé au projet CarbFix, à côté d’une centrale géothermique dans la périphérie de Reykjavik. Cette centrale exploite une source de vapeur produite par le magma à faible profondeur, en sachant que du CO2 et des gaz soufrés d’origine volcanique sont émis en même temps que la vapeur. Le but est de capter le gaz et de le réinjecter dans le sous-sol. Le processus se fait avec un puits d’injection foré dans le soubassement basaltique. Les chercheurs séparent le dioxyde de carbone de la vapeur produite par la centrale et l’envoient vers un puits d’injection. Le dioxyde de carbone est injecté dans un tuyau qui de trouve lui-même logé à l’intérieur d’un autre tuyau rempli d’eau en provenance d’un lac situé à proximité. A plusieurs dizaines de mètres de profondeur, le dioxyde de carbone est libéré dans l’eau où la pression est si élevée qu’il se dissout rapidement. Ce mélange d’eau et de dioxyde de carbone dissous, qui devient très acide, est envoyé plus profondément dans une couche de roche basaltique où il commence à lessiver des minéraux comme le calcium, le magnésium et le fer. Les composants du mélange finissent par se recomposer et se minéraliser en roches carbonatées.

L’idée d’injecter du CO2 dans le substratum basaltique a fait son chemin depuis 2016 et la construction d’une installation de stockage et d’élimination du dioxyde de carbone – la première du genre au monde – est en passe de démarrer à Straumsvík, sur la Péninsule de Reykjanes. La structure, baptisée Coda Terminal, recevra du CO2 de l’Europe du Nord par bateau. Le projet devrait créer 600 emplois directs et indirects.

Le CO2 proviendra d’émetteurs industriels du nord de l’Europe et sera injecté dans le substrat basaltique où il se transformera rapidement en pierre grâce à la technologie Carbfix. En fonctionnement maximal, Coda Terminal pourra stocker chaque année 3 millions de tonnes de CO2.

En recevant du CO2 des pays voisins pour son stockage permanent dans le substrat basaltique, l’Islande joue un rôle de pionnier en Europe. Le CO2 sera acheminé par des navires spécialement conçus. Le transport du CO2 vers l’Islande est rendu possible par les faibles coûts associés au stockage sur la terre ferme. Coda Terminal sera le premier projet de stockage géologique à grande échelle en Europe à être réalisé sur la terre ferme. Dans une note publiée le 12 novembre 2020, j’avais indiqué que la Norvège avait l’intention de stocker le CO2 dans d’anciens gisements de gaz naturel sous la mer du Nord.

La technologie Carbfix sera par la suite utilisée pour transformer de façon permanente et en toute sécurité le CO2 en pierre, au plus profond du substrat rocheux basaltique. Coda Terminal pourra également stocker le CO2 en provenance des industries locales, ainsi que le CO2 capté directement dans l’air. La construction se fera en trois phases. Le forage des premiers puits est prévu pour 2022, avec pour objectif de démarrer l’exploitation en 2025 et d’atteindre la pleine capacité d’ici 2030.

Source: Iceland Monitor.

———————————

In a post written on June 17th, 2016, I explained that a team led by a University of Southampton researcher was involved in the CarbFix project, located next to a geothermal power plant outside Reykjavik. This plant basically taps a source of steam above Iceland’s shallow magma chambers, but some volcanic CO2 and sulfur gas come along with it. The goal is to capture that gas and stick it back underground. That’s done with an injection well drilled down into basalt bedrock. The researchers separate the carbon dioxide from the steam produced by the plant and send it to an injection well. The carbon dioxide gets pumped down a pipe that’s actually inside another pipe filled with water from a nearby lake. Dozens of metres below the ground, the carbon dioxide is released into the water, where the pressure is so high that it quickly dissolves. That mix of water and dissolved carbon dioxide, which becomes very acidic, gets sent deeper into a layer of basaltic rock, where it starts leaching out minerals like calcium, magnesium and iron. The components in the mixture eventually begin to mineralize into carbonate rocks.

The idea to inject CO2 into the basalt bedrock has worked its way since 2016 and preparations are underway for the construction of a carbon dioxide storage and disposal facility – the first of its kind in the world – in Straumsvík, on the Reykjanes peninsula.

The facility, Coda Terminal, will receive CO2 from Northern Europe by ship. It is expected to create 600 jobs, directly and indirectly.

The CO 2 will be sourced from industrial emitters in Northern Europe and will be injected into the basaltic bedrock where it rapidly turns into stone via the Carbfix technology. At full scale, the Coda Terminal will provide an annual storage amounting to three million tonnes of CO2.

By receiving CO2 from neighbouring countries for permanent mineral storage, Iceland takes a pioneering role within Europe. The Coda Terminal will receive CO2 transported by specifically designed ships. The transport of CO2 to Iceland is enabled by the low costs associated with onshore mineral storage. In fact, the Coda Terminal will be the first large scale geological storage project in Europe that is carried out onshore. In a post published on November 12th, 2020, I indicated that Norway intended to store CO2 in former natural gas fields under the North Sea.

The Carbfix technology will then be used to permanently and safely turn CO 2 into stone, deep in within the basaltic bedrock. The Terminal will also be able to store CO2 from local industries, as well as CO2 captured directly from the air.

Construction will be done in three phases. Drilling of the first wells is planned for 2022, with the aim of beginning operation in 2025 and reaching full capacity by 2030.

Source : Iceland Monitor.

Source : Carbfix

Le mot juste // The right word

Dans un article sur l’utilisation d’une terminologie précise en volcanologie, les scientifiques du HVO se demandent quel mot doit être utilisé pour désigner les masses de matériau basaltique que l’on observe au milieu du lac de lave dans le cratère de l’Halema’uma’u depuis le début de la dernière éruption du Kilauea.

Au début de l’éruption, ces masses de basalte se déplaçaient lentement dans le lac et s’élevaient à mesure que la lave s’accumulait dans le cratère. Ce  ne sont pas des îles qui sont, par définition, immobiles dans leur environnement. Il y a une centaine d’années, les volcanologues du HVO ont utilisé l’expression «îles flottantes» pour y faire référence, mais l’expression n’est pas vraiment exacte, elle non plus.

Pour plus de facilité, le HVO a utilisé le mot «île» pour décrire ces masses en mouvement dans le lac de lave actuel. Il semblerait toutefois que le mot «radeau» soit mieux adapté au vu de leur mobilité. Un radeau est généralement perçu comme une masse flottante avec un faible tirant d’eau, mais les géologues du HVO pensent (sans en être certains) que la grande île – ou le grand radeau? – que l’on observe actuellement dans le lac a un tirant d’eau relativement important qui expliquerait son lent déplacement.

Des scientifiques ont suggéré d’appeler ces masses flottantes des «bergs de basalte» par analogie avec les icebergs dont la majeure partie de la masse est submergée. Îles flottantes? Radeaux?  Bergs de basalte? Autre appellation? Seul le temps dira quel mot ou expression sera finalement retenu !

——————————————–

In an article about the use of accurate terminology in volcanology, HVO scientists wonder what word should be used to refer to the masses of solid basalt material seen in the middle of the lava lake within Halema’uma’u Crater since the start of the new Kilauea eruption.

At the start of the eruption, these basalt masses moved slowly around in the lake and rose as the lake deepened. The masses are therefore not islands, which are stationary relative to their surroundings. HVO volcanologists 100 years ago used the phrase ‘floating islands’ for such features, an expressive but inaccurate phrase.

HVO used the word “island” to describe these drifting masses in Halema‘uma‘u’s current lava lake, though “raft” may be a better term to acknowledge their mobility. A raft, however, is usually perceived as a floating mass having a shallow draft, but HVO geologists suspect (admittedly with little confidence) that the largest current island/raft has a relatively deep draft reflecting a sluggish foundation.

It was suggested that the floating masses might be termed ‘basalt bergs’ by analogy with icebergs, which are mostly submerged. Floating islands, rafts, basalt bergs, or something else? Only time will tell what name finally sticks.

°°°°°°°°°°

Afin d’illustrer cet article, le HVO a publié deux photos du cratère de l’Halema’uma’u en 1917 et en 2021 avec la présence d’ « îles » à la surface des lacs de lave.

Le cliché panoramique de 1917 a été pris depuis le bord du lac de lave qui se trouvait alors à seulement une trentaine de mètres sous la lèvre de la caldeira de Kilauea.

L’île s’élevait à une vingtaine de mètres au-dessus de la surface et mesurait 100 mètres de large.

En janvier 2021, la plus grande île faisait environ 250 mètres de long, 135 mètres de large et environ 20 mètres de haut. L’île a effectué une rotation et s’est déplacée vers l’est et vers l’ouest depuis son apparition dès le premier jour de l’éruption. (Crédit photo: K. Mulliken)

————————————

In order to illustrate the article, HVO has released two photographs of Halema’uma’u Crater from 1917 and 2021 showing islands floating in lava lakes.

The 1917 photographic panorama was taken from the edge of the lava lake, which was only about 30 metres below Kilauea caldera floor. The island rose about 20 metres from the surface and was 100 metres wide.

In January 2021, the largest island is about 250 metres long, 135 metres wide, and roughly 20 metres tall. The island has rotated and moved both eastward and westward since its formation on the first day of the eruption. (Crédit photo : K. Mulliken)

Relation entre les éruptions à Hawaii et en Californie // Relationship between eruptions in Hawaii and in California

Dans sa série Volcano Watch, l’Observatoire des Volcans d’Hawaii (HVO) a publié un nouvel article fort intéressant sur les volcans des Etats Unis.

Les scientifiques du HVO expliquent que certaines régions surveillées par les différents observatoires volcanologiques ont connu des éruptions géologiquement «jeunes» qui sont néanmoins trop vieilles pour avoir eu des témoins oculaires et avoir laissé des traces écrites. Cela pose un problème aux volcanologues car ils aimeraient s’appuyer sur les éruptions du passé pour mieux anticiper les éruptions du futur. Les magmas émis dans différentes régions se forment de manière différente, et les éruptions peuvent durer des jours, des semaines, des mois, des années, et parfois même plusieurs décennies.

Les observatoires volcanologiques gérés par l’USGS, qui comprennent l’Observatoire des Volcans d’Hawaii (HVO), l’Observatoire Volcanologique des Cascades (CVO), l’Observatoire Volcanologique de l’Alaska (AVO), l’Observatoire Volcanologique de Yellowstone (YVO) et l’Observatoire Volcanologique de Californie (CalVO), surveillent de nombreux types de volcans et d’éruptions, depuis le Mont St. Helens qui émet en général une lave visqueuse, jusqu’aux éruptions plus récentes du Kilauea et du Mauna Loa où des laves fluides sont généralement observées.

La Californie héberge le Mont Shasta, stratovolcan d’aspect classique, et la grande caldeira de Long Valley. Cependant, aucun de ces volcans n’a connu d’éruption historique, bien que chacun montre les preuves d’une activité géologiquement récente. L’éruption la plus récente en Californie a eu lieu de 1914 à 1917 sur le Lassen Peak où s’est édifié un dôme de lave accompagné de dépôts de cendres.

Une zone à l’est du Mont Shasta et de Lassen Peak est relativement plate mais on y observe de jeunes coulées de lave. Le volcan de Brushy Butte appartient à cette région et des travaux récents sur le terrain montrent qu’il y a au moins 29 dépôts volcaniques constitués de scories, de cônes de projection et de coulées de lave. La question est de savoir combien de temps il a fallu pour édifier ces 29 cônes et coulées de lave.

 Le problème est que les éruptions de Brushy Butte ont eu lieu il y a environ 35000 ans, et pour répondre à cette question, les géologues du CalVO ont utilisé le vieil axiome géologique de «l’uniformitarisme» selon lequel «le présent est la clé du passé».

Pour mieux comprendre comment l’éruption de Brushy Butte et essayer de savoir combien de temps elle a pu durer, les scientifiques se sont tournés vers des volcans actifs d’un type et d’un environnement similaires. Le volcan de Brushy Butte se trouve dans une zone de rift et la lave émise est un basalte tholéiitique. Le Kilauea et le Mauna Loa, même s’ils ne présentent pas la même morphologie, sont proches de Brushy Butte car leurs laves sont généralement émises dans des zones de rift et on rencontre un basalte tholéiitique similaire. Les récentes éruptions volcaniques de ces volcans hawaïens pourraient donc aider à comprendre comment ont été émises les laves du volcan de Brushy Butte et combien de temps les éruptions ont pu durer.

L’un des outils les plus utiles pour comprendre les éruptions de Brushy Butte est le LiDAR, acronyme pour Light Detection and Ranging. L’ensemble de données obtenues par cette technologie permet de créer une image détaillée de la surface d’une coulée de lave avec les différentes formes de relief édifiées lors de l’éruption, tandis que la lave s’éloigne de son point d’émission. (voir l’image ci-dessous)

Les volcans hawaïens sont très actifs. L’éruption du Pu’uO’o, qui a duré plusieurs décennies, a montré les différents types de reliefs que les basaltes tholéiitiques peuvent former sur de longues périodes. En utilisant l’éruption du Pu’uO’o comme référence, les géologues du CalVO ont estimé que les 29 bouches éruptives qui ont émis des coulées de lave ont été créées par l’éruption de Brushy Butte pendant au moins 20 ans. Ils ont pu tirer ces conclusions en observant les différentes formes de relief créées par les coulées de lave et leur emplacement à l’intérieur du volcan. .

Source: USGS / HVO.

———————————————–

In its Volcano Watch series, the Hawaiian Volcano Observatory has published another interesting article about U.S. volcanoes.

HVO scientists explain that some regions monitored by the volcano observatories had geologically ‘young’ eruptions that are nonetheless old enough to lack written documentation. This creates a dilemma for geologists interested in how a future eruption might occur and how long it could last. The magmas that erupt from these different regions are formed in different ways, and eruptions can range from days, weeks, months, years to as long as several decades in duration.

USGS volcano observatories, which include the Hawaiian Volcano Observatory (HVO), Cascades Volcano Observatory (CVO), Alaska Volcano Observatory (AVO), Yellowstone Volcano Observatory (YVO), and California Volcano Observatory (CalVO), monitor many different types of volcanoes and eruptions, from Mount St. Helens that erupts viscous lava, to the more recent eruptions of Kilauea and Mauna Loa, where fluid lavas are usually observed.

California displays Mount Shasta, a classic-looking stratovolcano, and the large caldera of Long Valley. However, but neither has erupted historically though each has evidence of geologically young activity. The most recent eruption in California was from 1914–1917 at Lassen Peak, creating a lava dome and related ash deposit.

An area east of Mount Shasta and Lassen Peak is relatively flat but contains young looking lava flows. Brushy Butte Volcano is part of this region, and recent field research shows that it contains at least 29 volcanic deposits consisting of scoria and spatter cones and lava flows. The question about Brushy Butte Volcano is:how long did it take to erupt these 29 cones and lava flows?

The problem is that the Brushy Butte eruptions took place approximately 35,000 years ago, and to answer this question CalVO geologists have used the old geologic axiom of ‘uniformitarianism’ or ‘the present is the key to the past.’

To better understand how Brushy Butte erupted and how long it might have taken, active volcanoes of a similar type and setting were used as an analog. The Brushy Butte Volcano is located in a rifting area, and the type of magma erupted there is tholeiitic basalt. Kilauea and Mauna Loa, though not exactly the same, are close in that their lavas erupt commonly from rift zones and are usually of a similar tholeiitic basalt type. So, the recent volcanic eruptions from these Hawaiian volcanoes could help understand how lavas erupted from Brushy Butte Volcano and how long it might have taken.

One of the most helpful tools used to understand the Brushy Butte eruptions is Light Detection and Ranging or LiDAR. The resulting dataset creates a detailed picture of the surface of a lava flow showing the different landforms created as a volcano erupts and lava moves downhill away from its vent. (see image below)

Hawaiian volcanoes are very active, and in particular the decades-long eruption of Pu’uO’o displayed many types of landforms that tholeiitic basalts can form over long timeframes. Using Pu’uO’o as an analog, CalVO geologists estimated that the 29 closely-spaced vents and lava flows of Brushy Butte Volcano erupted over at least 20 years based on the different lava flow landforms created and their placement around the interior of the volcano.

Source : USGS / HVO.

Vue d’ensemble du site éruptif de Brushy Butte (Source : Wikipedia)

Carte montrant, à l’aide d’un dégradé de couleurs, le relief du volcan de Brushy Butte (environ 150 mètres de hauteur). Elle a été réalisée à l’aide des données LiDAR à résolution de 1 mètre. On y voit, sous forme de points, les différentes bouches éruptives ainsi que les chenaux et les levées tracés par les coulées de lave dans le paysage. (Source : CalVO)

L’Islande continue d’enterrer le gaz carbonique ! // Iceland keeps burying carbon dioxide !

Dans des notes publiées le 16 juin 2016 et le 15 novembre 2017, j’ai expliqué que l’Islande était probablement un bon endroit pour stocker dans le sol l’excès de dioxyde de carbone (CO2) contenu dans l’atmosphère.
https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

À l’époque, l’objectif du projet CarbFix était de capter le gaz et de le réinjecter dans le sous-sol. Le processus était réalisé avec un puits d’injection foré dans le soubassement basaltique. Si elle était opérationnelle, cette technologie aurait l’avantage de débarrasser l’atmosphère d’une partie de son CO2, l’un des principaux gaz à effet de serre qui contribuent au réchauffement de la planète.
La technologie imite, dans un format accéléré, un processus naturel qui peut prendre des milliers d’années, et qui consiste à injecter du dioxyde de carbone dans les pores du basalte où il se minéralise et reste stocké pour l’éternité.
En Islande, le projet CarbFix inclut des chercheurs et des ingénieurs du distributeur d’électricité Reykjavik Energy, de l’Université d’Islande, du CNRS et de la Columbia University aux États-Unis.
En Islande, au moins la moitié de l’énergie qui est produite provient de sources géothermiques. C’est une aubaine pour les chercheurs de CarbFix, qui ont transformé en laboratoire la centrale géothermique de Hellisheidi, l’une des plus grandes au monde.
La centrale, située sur le volcan Hengill dans le sud-ouest de l’Islande, repose sur une couche de roche basaltique et dispose de quantités d’eau pratiquement illimitées. L’usine pompe l’eau qui se trouve sous le volcan pour faire fonctionner six turbines qui fournissent de l’électricité et de la chaleur à la capitale, Reykjavik, située à une trentaine de kilomètres.

Le dioxyde de carbone de l’usine est capté par la vapeur, liquéfié par condensation, puis dissous dans de grandes quantités d’eau. Cette eau gazeuse est canalisée sur plusieurs kilomètres jusqu’à une zone où trônent des dômes gris en forme d’igloo. C’est ici que l’eau gazeuse est injectée sous haute pression dans la roche à 1 000 mètres de profondeur. La solution remplit les cavités de la roche basaltique et c’est alors que commence le processus de solidification. On a affaire à une réaction chimique qui se produit lorsque le gaz entre en contact avec le calcium, le magnésium et le fer dans le basalte.
Presque tout le dioxyde de carbone injecté s’est retrouvé minéralisé en deux ans au cours de l’opération pilote il y a trois ans; c’était beaucoup plus rapide que lors des expériences effectuées en laboratoire. Une fois que le CO2 est transformé en roche, il reste définitivement dans cet état.
Le projet CarbFix réduit d’un tiers les émissions de dioxyde de carbone de la centrale de Hellisheidi, ce qui représente le stockage et l’entreposage de 12 000 tonnes de dioxyde de carbone à un coût d’environ 25 dollars la tonne. En comparaison, les volcans islandais rejettent chaque année entre un et deux millions de tonnes de dioxyde de carbone.
Le principal inconvénient de cette méthode est qu’elle nécessite de gros volumes d’eau dessalée qui est abondante en Islande mais rare dans de nombreuses autres parties de la planète. Il faut 25 tonnes d’eau pour injecter chaque tonne de dioxyde de carbone. Des expériences sont en cours pour adapter la méthode à l’eau salée.
Dans le cadre de l’accord de Paris sur le climat, l’Islande a accepté de réduire ses émissions de gaz à effet de serre de 40% d’ici 2030, mais ses émissions ont augmenté de 2,2% entre 2016 et 2017 ; elles ont augmenté de 85% depuis 1990, selon un rapport de l’Agence islandaise de l’environnement. Un tiers de ces émissions provient du transport aérien qui est essentiel pour le tourisme de l’île. Les usines d’aluminium et de silicium représentent un autre tiers. Le ministère islandais de l’Environnement et des Ressources naturelles a encouragé ces usines à développer elles aussi des mécanismes de captage et de stockage du carbone.
Source: Philippine Daily Inquirer.

—————————————————-

In posts released on 16 June 2016 and 15 November 2017, I explained that Iceland could also be the right place to store in its ground the excess of carbon dioxide (CO2) in the atmosphere.

https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

By that time, the goal of the CarbFix project was to capture that gas and stick it back underground. This was done with an injection well drilled down into basalt bedrock. If it worked, the technology would have the advantage of getting the atmosphere rid of some of its CO2, one of the main greenhouse gases that contribute to global warming.

The technology mimics, in an accelerated format, a natural process that can take thousands of years, injecting carbon dioxide into porous basalt rock where it mineralizes, capturing it forever.

Iceland’s CarbFix project includes researchers and engineers from utility company Reykjavik Energy, the University of Iceland, France’s National Centre for Scientific Research (CNRS) and Columbia University in the United States.

In Iceland, at least half of the energy produced comes from geothermal sources. That is a bonanza for CarbFix researchers, who have turned the Hellisheidi geothermal power plant, one of the world’s biggest, into their own laboratory.

The plant, located on the Hengill volcano in southwestern Iceland, sits on a layer of basalt rock formed from cooled lava, and has access to virtually unlimited amounts of water. The plant pumps up the water underneath the volcano to run six turbines providing electricity and heat to the capital, Reykjavik, about 30 kilometres away.

The carbon dioxide from the plant is captured from the steam, liquified into condensate, then dissolved in large amounts of water. The fizzy water is piped several kilometres to an area where grey, igloo-shaped domes dot the landscape. Here the fizzy water is injected under high pressure into the rock 1,000 metres under the ground. The solution fills the rock’s cavities and begins the solidification process — a chemical reaction that occurs when the gas comes in contact with the calcium, magnesium and iron in the basalt.

Almost all of the injected carbon dioxide was mineralized within two years in the pilot injection three years ago, which was much faster than during the experiments in a laboratory. Once the CO2 is turned to rock, it is captured there for good.

The CarbFix project reduces the plant’s carbon dioxide emissions by a third, which amounts to 12,000 tons of carbon dioxide captured and stored at a cost of about 25 dollars a ton. By comparison, Iceland’s volcanoes spew out between one and two million tons of carbon dioxide each year.

The main drawback of the method is that it requires large volumes of desalinated water, which, while abundant in Iceland, is rare in many other parts of the planet. Around 25 tons of water is needed for each tonne of carbon dioxide injected. Experiments are currently underway to adapt the method to saltwater.

Under the Paris climate agreement, Iceland has agreed to slash its greenhouse gas emissions by 40% by 2030, yet its emissions rose by 2.2% from 2016 to 2017, and have risen by 85% since 1990, according to a report by Iceland’s Environment Agency. A third of its emissions come from air transport, which is vital to the island for its tourism sector. Its aluminum and silicon plants account for another third. The Icelandic Environment and Natural Resources Ministry has encouraged those plants to also develop carbon capture and storage mechanisms.

Source : Philippine Daily Inquirer.

Image de la calcite formée dans le basalte par interaction entre la roche et l’eau chargée en CO2 (Source : CarbFix).

Les secrets des prismes volcaniques // The secrets of volcanic prisms

Une nouvelle étude réalisée par des scientifiques de l’Université de Liverpool a identifié la température à laquelle le magma en phase de refroidissement se fracture pour former des colonnes géométriques telles que celles, bien connues, de la Chaussée des Géants en Irlande du Nord et de Devils Tower aux États-Unis.
Les colonnes géométriques sont présentes dans de nombreux types de roches volcaniques et se forment au fur et à mesure que la roche se refroidit et se contracte, en donnant naissance à un ensemble régulier de prismes ou de colonnes polygonales. Ces formations géologiques sont particulièrement étonnantes et ont donné naissance à de nombreuses et belles légendes. Celle sur la Chaussée des Géants figure dans le livre Mémoires Volcaniques que j’ai écrit conjointement avec Jacques Drouin (voir la colonne de droite de ce blog).
Les géologues ont longtemps voulu savoir à quelle température le magma en cours de refroidissant façonne ces colonnes aux formes régulières. Dans un article publié dans Nature Communications, des chercheurs de la School of Environmental Sciences de l’Université de Liverpool ont mis sur pied un nouveau type de manipulation visant à montrer comment, à mesure que le magma se refroidit, il se contracte et accumule des contraintes au point de se fracturer. L’étude a été réalisée sur des colonnes basaltiques du volcan Eyjafjallajökull en Islande.
Les scientifiques ont mis au point un nouvel appareil permettant à la lave en cours de refroidissement et maintenue dans une presse, de se contracter et de se fissurer pour former une colonne. Ces expériences ont démontré que la roche se fracture lorsqu’elle refroidit entre 90 et 140°C, en dessous de la température à laquelle le magma se cristallise, ce qui correspond à environ 980°C pour les basaltes. Cela signifie que les joints entre les colonnes basaltiques de la Chaussée des Géants et de Devils Tower, entre autres, se sont formés vers 840-890°C. Autrement dit, l’étude révèle que les prismes se forment lorsque le magma est encore très chaud mais après qu’il se soit solidifié. Les expériences en laboratoire démontrent clairement le rôle joué par la contraction thermique dans l’évolution des roches en phase de refroidissement et la formation des fractures.
Selon un scientifique de l’Université de Liverpool qui a participé à l’étude, il est très important de connaître le moment auquel le magma en cours de refroidissement se fracture, car il déclenche la circulation des fluides dans le réseau de fractures. L’écoulement des fluides contrôle le transfert de chaleur dans les systèmes volcaniques, ce qui peut être exploité pour la production d’énergie géothermique. Les résultats de l’étude ouvrent donc la voie à  d’importantes applications pour la recherche en volcanologie et en géothermie. Qui plus est, il est essentiel de comprendre comment le magma et les roches en cours de refroidissement se contractent et se fracturent afin de comprendre la stabilité des édifices volcaniques ainsi que le transfert de chaleur à l’intérieur de la Terre. Les résultats de l’étude ont mis en lumière les pertes de fluides de refroidissement observées par les ingénieurs islandais lors de forages dans des roches volcaniques à des températures dépassant 800 ° C. Une telle perte de fluides de refroidissement dans cet environnement n’était pas prévue, mais la dernière étude suggère qu’une contraction substantielle des roches chaudes a pu ouvrir des fractures suffisamment importantes pour permettre l’évacuation des boues de refroidissement par le trou de forage en, Islande.
Source: Université de Liverpool.

—————————————

A new study by scientists at the University of Liverpool has identified the temperature at which cooling magma cracks to form geometric columns such as those found at the Giant’s Causeway in Northern Ireland and Devils Tower in the USA.
Geometric columns occur in many types of volcanic rocks and form as the rock cools and contracts, resulting in a regular array of polygonal prisms or columns. These columnar joints are amongst the most amazing geological features on Earth and in many areas, they have inspired mythologies and legends. The one about the Giant’s Causeway is told in the book Mémoires Volcaniques I wrote together with Jacques Drouin (see right-hand column of this blog).
One of the most enduring and intriguing questions facing geologists has been the temperature at which cooling magma forms these columnar joints. In a paper published in Nature Communications, researchers and students at the University of Liverpool’s School of Environmental Sciences designed a new type of experiment to show how as magma cools, it contracts and accumulates stress, until it cracks. The study was performed on basaltic columns from Eyjafjallajökull volcano in Iceland.
The scientists designed a novel apparatus to permit cooling lava, gripped in a press, to contract and crack to form a column. These new experiments demonstrated that the rocks fracture when they cool about 90 to 140°C, below the temperature at which magma crystallises into a rock, which is about 980°C for basalts. This means that columnar joints exposed in basaltic rocks, as observed at the Giant’s Causeway and Devils Tower, amongst others, were formed around 840-890°C. In a nutshell, the study revealed that the prisms form when the magma was hot, but after it solidified. The laboratory experiments clearly demonstrate the power and significance of thermal contraction on the evolution of cooling rocks and the development of fractures.
According to one scientist in the Liverpool group, knowing the point at which cooling magma fractures is critical, as it initiates fluid circulation in the fracture network. Fluid flow controls heat transfer in volcanic systems, which can be harnessed for geothermal energy production. So the findings have tremendous applications for both volcanology and geothermal research. What is more, understanding how cooling magma and rocks contract and fracture is central to understand the stability of volcanic constructs as well as how heat is transferred in the Earth. The findings shed light on the enigmatic observations of coolant loss made by Icelandic engineers as they drilled into hot volcanic rocks in excess of 800°C; the loss of coolant in this environment was not anticipated, but the latest study suggests that substantial contraction of such hot rocks would have opened wide fractures that drained away the cooling slurry from the borehole in Iceland.
Source: University of Liverpool.

 

Illustration du processus de fracturation et de formation des colonnes basaltiques(Source: Université de Liverpool)

Chaussée des Géants (Irlande du Nord)

Devils Tower: De la science à la légende…

Photos: C. Grandpey

Histoire d’eau et de manteau…. // A story of water and mantle….

drapeau-francaisUne étude conjointe de la Carnegie Institution for Science et la Woods Hole Oceanographic Institution, dont les résultats ont été publiés dans la revue Science, a permis de découvrir que la température moyenne du manteau terrestre sous les bassins océaniques est d’une soixantaine de degrés Celsius supérieure à ce que l’on pensait jusqu’à présent, à cause de la présence d’eau dans les minéraux profonds.
Le manteau, la couche intermédiaire entre le noyau et la croûte terrestre, est la principale source du magma qui s’échappe à la surface sous forme de lave lors des éruptions volcaniques. Les minéraux qui composent le manteau contiennent de petites quantités d’eau, pas sous forme liquide, mais sous forme de molécules individuelles dans la structure atomique du minéral. Les dorsales océaniques se forment lorsque les minéraux contenus dans le manteau dépassent leur point de fusion, fondent partiellement et produisent le magma qui monte à la surface. En se refroidissant, le magma forme le basalte qui constitue la base de la croûte océanique. Dans ces dorsales océaniques, le basalte peut avoir de 5 à 7 kilomètres d’épaisseur. L’étude des dorsales sous-marines peut donner des indications sur ce qui se passe dans le manteau, ainsi que sur la géochimie sous la surface de la Terre.
Les scientifiques se sont pendant longtemps posé des questions sur  la mesure de la température potentielle du manteau. La température potentielle est une quantification de la température moyenne d’un système dynamique en supposant que chaque partie de ce système est théoriquement soumise à la même pression. La détermination de la température potentielle d’un système mantellique permet aux scientifiques de mieux comprendre les voies d’écoulement du magma et la conductivité sous la croûte terrestre. On peut estimer avec plus de précision la température potentielle d’une zone du manteau en connaissant le point de fusion des roches qui participent à une éruption sous forme de magma et refroidissent ensuite pour former la croûte océanique.
Dans les conditions d’humidité, le point de fusion de la péridotite, qui fond pour former l’essentiel des basaltes des dorsales médio-océaniques, est considérablement plus bas que dans les conditions sèches, quelle que soit la pression. Cela signifie que la profondeur à laquelle les roches du manteau commencent à fondre et remontent à la surface sera différente si la péridotite contient de l’eau et, sous la croûte océanique, on pense que les minéraux du manteau supérieur contiennent de petites quantités d’eau, entre 50 et 200 ppm.
Les auteurs de l’étude ont mis en oeuvre des expériences de laboratoire afin de déterminer le point de fusion de la péridotite sous des pressions analogues à celles du manteau, en présence de quantités d’eau connues. C’était la première fois que des expériences étaient menées pour déterminer précisément dans quelle mesure la température de fusion du manteau dépendait de petites quantités d’eau. Les chercheurs ont constaté que la température potentielle du manteau sous la croûte océanique est plus élevée que celle qui avait été estimée précédemment. Ces résultats sont importants car ils peuvent changer notre compréhension de la viscosité du manteau et ils permettront peut-être de savoir jusqu’à quel point elle joue un rôle dans certains mouvements des plaques tectoniques.
Source: Carnegie Institution for Science.

 ———————————–

drapeau-anglaisA joint study between the Carnegie Institution for Science  and the Woods Hole Oceanographic Institution, whose results have been published in the journal Science, has determined that the average temperature of Earth’s mantle beneath ocean basins is about 60 degrees Celsius higher than previously thought, due to water present in deep minerals.

Earth’s mantle, the layer just beneath the crust, is the source of most of the magma that erupts at volcanoes. Minerals that make up the mantle contain small amounts of water, not as a liquid, but as individual molecules in the mineral’s atomic structure. Mid-ocean ridges are formed when these mantle minerals exceed their melting point, become partially molten, and produce magma that ascends to the surface. As the magmas cool, they form basalt, the basis of oceanic crust. In these oceanic ridges, basalt can be 5 to 7 kilometres thick. Studying these undersea ridges can teach scientists about what is happening in the mantle, and about the Earth’s subsurface geochemistry.

One longstanding question has been a measurement of the mantle’s potential temperature. The potential temperature is a quantification of the average temperature of a dynamic system if every part of it were theoretically brought to the same pressure. Determining the potential temperature of a mantle system allows scientists to better understand flow pathways and conductivity beneath the Earth’s crust. The potential temperature of an area of the mantle can be more closely estimated by knowing the melting point of the mantle rocks that eventually erupt as magma and then cool to form the oceanic crust.

In damp conditions, the melting point of peridotite, which melts to form the bulk of mid-ocean ridge basalts, is dramatically lower than in dry conditions, regardless of pressure. This means that the depth at which the mantle rocks start to melt and well up to the surface will be different if the peridotite contains water, and beneath the oceanic crust, the upper mantle is thought to contain small amounts of water, between 50 and 200 ppm.

The authors of the study set out to use lab experiments in order to determine the melting point of peridotite under mantle-like pressures in the presence of known amounts of water. This was the first time experiments had ever been conducted to determine precisely how the mantle’s melting temperature depends on such small amounts of water. The researchers found that the potential temperature of the mantle beneath the oceanic crust is hotter than had previously been estimated. These results are important as they may change our understanding of the mantle’s viscosity and how it influences some tectonic plate movements.

Source : Carnegie Institution for Science.

perido

Nodules de péridotite (Photo: C. Grandpey)