Japon : forte sismicité dans un volcan éteint // Japan : significant seismicity through an extinct volcano

Un essaim sismique significatif est enregistré depuis trois ans sur la péninsule de Noto, au bord de la mer du Japon, dans le nord du pays. Selon une nouvelle étude réalisée par des scientifiques japonais, l’essaim semble être causé par le déplacement de fluides à travers un volcan éteint dont l’effondrement a formé une caldeira.
Il n’y a pas eu d’activité volcanique dans cette région depuis 15,6 millions d’années. Cependant, la nouvelle étude publiée en juin 2023 dans la revue JGR Solid Earth a révélé que la sismicité se produit selon un schéma qui laisse supposer que du magma liquide se déplace toujours sous la surface d’une ancienne caldeira effondrée. Les auteurs de l’étude pensent que « l’essaim sismique a été causé par l’ascension de fluides à travers un réseau complexe de failles ».
L’essaim a commencé en décembre 2020. Depuis lors, on a enregistré plus de 1 000 secousses de magnitude M 2,0 ou plus, dont un événement de M 5,4 en juin 2022 et un autre de M 6,5 en mai 2023 qui a tué une personne et en a blessé des dizaines d’autres.
Les auteurs de l’étude ont étudié les ondes sismiques émises par plus de 10 000 événements de magnitude M 1,0 ou plus qui se sont produits dans la région au cours des trois dernières années. Ils ont découvert que les séismes avaient leurs hypocentres à une vingtaine de kilomètres de profondeur dans la croûte, avant de migrer progressivement vers la surface. Selon les chercheurs, cela peut s’expliquer par l’ascension de fluides à travers un réseau de failles existant. Les épicentres sont disposés selon un schéma circulaire, correspondant à la structure en forme d’anneau de ce réseau de failles. Cela pourrait indiquer l’ancienne caldeira effondrée d’un volcan aujourd’hui éteint.
Il n’est pas rare que des volcans inactifs depuis longtemps contiennent encore des poches de magma. Lorsque ces fluides se déplacent, ils peuvent déformer la croûte et faire glisser les failles les unes contre les autres. Des essaims comme celui de la péninsule de Noto peuvent se produire à tout moment dans les zones de subduction, là où le frottement d’une plaque sur une autre déplace continuellement les fluides dans la croûte. Une autre hypothèse est que le puissant séisme de Tohomu (M 9.1) en 2011 a provoqué un mouvement fluides dont l’effet se fait encore sentir aujourd’hui ; on se souvient que ce séisme a été suivi de plusieurs petits essaims dans le nord-est du Japon.
La question est maintenant de comprendre comment l’essaim actuel a commencé avec de nombreux petits séismes avant d’être suivi d’un puissant événement qui a causé des dégâts en mai 2023. Les scientifiques essayent de savoir comment la croûte a pu se déplacer sans générer de sismicité avant ce puissant tremblement de terre.
Source : Live Science via Yahoo News.

———————————————

A significant swarm of earthquakes has been rocking the Noto Peninsula by the Sea of Japan, on the north coast of the countryover the past three years. According to a new study by Japanese scientists, the swarm appears to be the result of fluids moving through an extinct, collapsed volcano.

There has not been volcanic activity in this area for 15.6 million years. However, the new study published in June 2023 in the journal JGR Solid Earth found that the quakes are occurring in a pattern that suggests liquid magma is still moving around deep below the surface in an ancient, collapsed caldera. The authors of the study think « the earthquake swarm was caused by upward fluid movement through a complex network of faults. »

The swarm began in December 2020. Since then, there have been over 1,000 M 2.0 or larger earthquakes, including one M 5.4 quake in June 2022 and an M 6.5 event in May 2023 that killed one person and injured dozens more.

The authors of the study investigated the swarm by studying the seismic waves from more than 10,000 M 1.0 or larger quakes that occurred in the area in the past three years. They found that the quakes originated about 20 kilometers deep in the crust, before gradually migrating to shallower depths. According to the researchers, this is consistent with fluid ascending through an existing network of faults. The location of the quake epicenters occurred in a circular pattern, suggesting a ring-like structure to this fault network. This could indicate an ancient, collapsed caldera from a now-extinct volcano.

It’s not unusual for long-dead volcanos to still hold pockets of magma, and when these fluids move, they can deform the crust and cause faults to slip and slide against one another. Swarms like this can happen anytime in subduction zones, where the grinding of one plate under another continuously moves fluids around the crust. Another hypothesis is that the devastating M 9.1 Tohoku earthquake in 2011 set off fluid movement that is still echoing today; that quake was followed by several small swarms in northeastern Japan.

The question now is to understand how this current swarm transitioned from many small quakes to the large, damaging event that occurred in May 2023. The scientific team is working to understand how the crust might have been moving without shaking before that quake.

Source : Live Science through Yahoo News.

Localisation de la péninsule de Noto (Source : Wikipedia)

Fonte des glaciers et émissions de méthane au Svalbard // Glacier melting and methane emissions in Svalbard

Des scientifiques en mission au Svalbard (Norvège) ont découvert que le recul rapide des glaciers provoque la libération dans l’atmosphère de méthane (CH4), bien connu pour être un puissant gaz à effet de serre. Les émissions de ce gaz se produisent lorsque les glaciers laissent derrière eux le sol à découvert. Le phénomène s’avère plus répandu dans l’Arctique, où les températures augmentent rapidement et où les glaciers fondent, mais les émissions de méthane pourraient être d’une autre ampleur à l’échelle mondiale. L’étude a été publiée début juillet 2023 dans Nature Geoscience par des chercheurs d’universités de Norvège, du Canada et du Royaume-Uni. Les scientifiques ont étudié 78 glaciers du Svalbard. Certains étaient sur la terre ferme tandis que d’autres finissaient leur course dans la mer.
Au fur et à mesure que les glaciers du Svalbard reculent, les eaux souterraines remontent et forment des sources. Dans 122 cas sur 123, les scientifiques ont découvert que l’eau qui sort en bouillonnant contient du méthane à des concentrations très élevées. La quantité de CH4 émise par ces sources n’a pas été quantifiée avec précision, mais elle est importante.
Le plus préoccupant est l’âge du méthane émis. Le fait qu’il soit ancien laisse supposer qu’il provient de très grands réservoirs souterrains qui ont le potentiel de libérer beaucoup de gaz. Les chercheurs ont découvert que les émissions de gaz les plus intenses se produisaient dans des régions possédant des couches de schiste vieilles de millions d’années. Le méthane analysé au Svalbard n’est pas produit par des microbes, mais lors de la formation des roches. Cela signifie que le gaz est resté séquestré pendant de longues périodes dans d’anciens gisements de combustibles fossiles, principalement du gaz naturel et du charbon, mais que quelque chose – en l’occurrence la hausse des températures – a récemment fait disparaître le «capuchon cryosphérique», autrefois fourni par les glaciers ou le pergélisol. Ce couvercle retenait le méthane et son élimination a permis au gaz autrefois stable de s’échapper dans l’atmosphère.
Les scientifiques ont déclaré que le phénomène actuel se produit certainement dans de nombreux endroits autres que Svalbard ; il accélère potentiellement le réchauffement climatique dans l’Arctique. Le Svalbard est particulièrement concerné car le chapelet d’îles a connu un réchauffement impressionnant qui a provoqué le fort recul des glaciers. La région s’est considérablement réchauffée depuis 1976.
Comme je l’ai écrit plus haut, il n’existe pas de quantification officielle de l’ampleur des émissions de méthane provenant du recul des glaciers dans le monde. La fonte du pergélisol ajoute une source supplémentaire d’émissions de ce gaz dans l’Arctique. Les auteurs de l’étude estiment que 2 310 tonnes de méthane pourraient être émises au Svalbard chaque année. À titre de comparaison, la Norvège a déclaré que son secteur agricole a émis 105 940 tonnes de méthane en 2021. L’agriculture représente la plus grande source d’émission de ce gaz dans le pays. Dans l’ensemble, les émissions causées par le retrait des glaciers au Svalbard constitueraient un peu plus de 1 % de toutes les émissions de méthane en Norvège pour l’année 2021.
La vraie crainte des scientifiques n’est pas ce qui se passe au Svalbard, mais plutôt ce que cela entraînerait si le phénomène était plus répandu et s’il s’aggravait en raison de la poursuite du recul des glaciers. L’un des auteurs de l’étude a travaillé sur un lac qui émet du méthane en Alaska. Ce gaz d’origine géologique ancienne était émis au rythme alarmant de près de 11 tonnes par jour.
La dernière étude de juillet 2023 est importante car elle montre à quel point les émissions de méthane d’origines diverses sont omniprésentes dans l’environnement des glaciers en recul. Des émissions semblables, riches en méthane, ont été observées en Alaska et au Groenland en bordure des glaciers et de la calotte glaciaire. Dans une étude publiée en 2012, des chercheurs ont estimé que 2 millions de tonnes par an de méthane ancien, stocké profondément sous la terre, pourraient pénétrer dans l’atmosphère au niveau de l’Arctique. Avec le dégel du pergélisol, de nouveaux lacs se forment ; ils offrent au méthane de nouvelles voies pour atteindre l’atmosphère.
Source : The Washington Post.

—————————————————

Scientists working in Svalbard (Norway) have found that rapidly retreating glaciers are triggering the release into the atmosphere of methane, a potent greenhouse gas. The releases are triggered as glaciers leave behind newly exposed land. If the phenomenon is found to be more widespread across the Arctic, where temperatures are quickly rising and glaciers melting,the emissions could have global implications. The study was published in early July 2023 in Nature Geoscience by researchers from universities in Norway, Canada and the United Kingdom. The scientists studied 78 Svalbard glaciers that are based on land and several additional glaciers that end up into the ocean.

As the Svalbard glaciers move and land is left behind, groundwater seeps upward and forms springs. In 122 out of 123 of them, the scientists found, the water is filled with methane gas at very high concentrations that bubble upward under pressure. The amount of emissions these springs are emitting is not well quantified, but it is significant.

Most concerning is the apparent age of the emitted methane. The fact that it appears to be ancient suggests it could be coming from very large underground reservoirs with the potential to unleash a lot of gas. The researchers found that the most intense gas flows occurred in regions with underground shale layers that are millions of years old. The methane is not being produced contemporarily by microbes ; it was created when the rocks were formed. This implies that the gas has been sequestered for long periods in ancient deposits of fossil fuels, principally natural gas and coal, but that something – rising temperatures – has recently removed a “cryospheric cap,” once provided by glaciers or permafrost. It kept a lid on the methane, and its removal allowed the once stable gas to escape upward.

Scientists said the current phenomenon could certainly be happening in many places other than Svalbard, potentially adding another accelerator of warming in the Arctic.

If the methane releases represent a new phenomenon tied to the warming of the planet, Svalbard is an appropriate place for it. The string of islands has seen extraordinary warming, causing the strong retreat of glaciers. Svalbard has warmed dramatically since 1976.

As I put it above, there is no official quantification of how large methane emissions from retreating glaciers around the world could be. Together with the thawing permafrost, the phenomenon will add an additional source of methane emissions in the Arctic. The authors of the study estimate that 2,310 tons of methane could be emitted in Svalbard each year. By comparison, Norway reported 105,940 tons of methane emissions from its agricultural sector in 2021, the largest source of emissions for this gas. Overall, the emissions caused by retreating glaciers in Svalbard would constitute a little over 1 percent of all of Norway’s methane emissions for 2021.

The real fear is not what is happening in Svalbard, but rather, what it would mean if the phenomenon were more widespread, and if it is poised to worsen due to further glacial retreat. One of the authoors of the study documented a bubbling lake in Alaska that was also emitting ancient, geologic methane at the alarming rate of nearly 11 tons of gas per day.

The latest study is important because it shows how ubiquitous methane seeps, of various origins, are in the environment of retreating glaciers. Similar methane rich seeps have been found in Alaska and Greenland along margins of glaciers and the ice sheet. In a 2012 study, researchers estimated that 2 million tons per year of ancient methane gas, stored deep beneath the earth, could be seeping into the air across the Arctic. As the permafrost thaws, new lakes form and other changes provide new paths for the gas to reach the atmosphere.

Source : The Washington Post.

Evolution des températures annuelles au Svalbard entre 1976 et 2022 (Source : NASA)

 

Olympus Mons une île volcanique ? // Was Olympus Mons a volcanic island ?

Dominant la planète Mars, Olympus Mons – la plus haute montagne du système solaire – était peut-être autrefois une île volcanique cernée par un océan de près de 6 km de profondeur. C’est ce que semblent montrer des caractéristiques géologiques dans les imposantes falaises qui entourent le volcan éteint.
Olympus Mons s’élève à environ 22.500 m au-dessus de la surface martienne, et s’étale sur une immense base d’environ 600 km de diamètre. Une caldeira volcanique couronne le sommet du volcan dont la dernière éruption remonte à 25 millions d’années.
Le 24 juillet 2023, une équipe dirigée par Anthony Hildenbrand de l’Université Paris-Saclay (France) a publié dans la revue Earth and Planetary Science Letters une étude révélant qu’Olympus Mons présente des similitudes avec des îles volcaniques sur Terre, telles que les Açores, la Îles Canaries et les îles hawaïennes.
Cette hypothèse est étayée par les falaises et escarpements d’une hauteur de près de 6 km autour d’Olympus Mons. Selon l’équipe scientifique, les escarpements donnent l’impression de s’être formés lorsque la lave qui s’écoulait sur les flancs du volcan a rencontré l’eau profonde de l’océan. Cet événement a probablement eu lieu il y a environ 3,7 à 3,4 milliards d’années.
Des scientifiques ont déjà tenté de mettre en relation les escarpements et l’eau liquide, sans vraiment apporter de preuves à cette hypothèse jusqu’à présent. Si les scientifiques français ont raison, c’est effectivement que le sommet des escarpements était un ancien rivage. Aujourd’hui, on peut voir autour d’Olympus Mons une grande dépression causée par le poids de la montagne. La hauteur des escarpements indique que l’eau de l’océan a probablement rempli cette dépression jusqu’à une profondeur de 6 kilomètres.
On peut observer des reliefs similaires sur le flanc nord d’un autre volcan martien, Alba Mons, qui se trouve à plus de 1 800 km d’Olympus Mons, avec la présence possible de l’ancien océan.
Les volcans géants de Mars se sont peut-être formés au-dessus de points chauds où la convection dans le manteau fait s’élever un magma plus chaud dans un panache géant. L’auteur principal de l’étude ne pense pas que tous les volcans de la région se sont formés à partir du même panache. Selon lui, « l’hypothèse la plus probable est [qu’il y avait] localement des panaches distincts sous Olympus Mons et Alba Mons, séparés en surface par des centaines de kilomètres. » Ces panaches ont provoqué une inflation de la surface sur une grande échelle. L’équipe scientifique explique que le soulèvement du manteau qui a alimenté les volcans a eu un effet particulièrement important sur l’océan qui les entoure. En déformant considérablement la croûte de la planète, il a déplacé l’emplacement de l’océan.
Des études antérieures ont trouvé des preuves de deux rivages distincts dans une région de basse de Mars appelée Vastitas Borealis. Les chercheurs pensaient qu’ils étaient la preuve de deux océans distincts qui existaient dans Vastitas Borealis à des centaines de millions d’années d’intervalle. Cependant, les scientifiques français pensent qu’au lieu de plusieurs océans, il n’y en avait qu’un seul. Lorsque la poussée du manteau a fait se soulever la croûte de la planète et formé le Dôme (ou renflement) de Tharsis, la surface de Mars s’est suffisamment déformée pour déplacer l’emplacement de l’océan, ce qui explique la séparation de deux rivages dans le temps.
La dernière étude apporte aux planétologues plus de détails sur l’histoire de l’eau sur Mars. Lorsque le littoral de l’océan s’est déplacé, on pense que l’océan avait déjà commencé à reculer et à s’assécher. Si, par hasard, Mars avait été habitable, ce qui s’est passé à cette époque aurait probablement marqué la fin de cette habitabilité.
Source :space.com.

—————————————————

Mars’ mighty Olympus Mons – the tallest mountain in the solar system – may have once been a volcanic island surrounded by an ocean nearly 6 km deep, according to geological evidence found in towering cliffs that ring the extinct volcano.

Olympus Mons rises about 22.500 m above the Martian surface, and with an enormous base about 601 km wide. A volcanic caldera crowns the summit of the volcano. It last erupted 25 million years ago.

On July 24th, 2023, a team led by Anthony Hildenbrand of Université Paris-Saclay (France) published in the journal Earth and Planetary Science Letters a new study revealing that Olympus Mons displays similarities with volcanic islands on Earth, such as the Azores, the Canary Islands and the Hawaiian islands.

The evidence is in the form of giant cliffs, or escarpments, that rise nearly 6 km around Olympus Mons. According to the scientific team, the escarpments have the signature appearance of having formed when lava flowing down the flanks of the volcano encountered deep ocean water all around it. This event probably took place around 3.7 – 3.4 billion years ago.

While scientists have previously tried to connect the escarpments with liquid water, the exact relationship between them had not been clear until now. If the French team is correct, then the top of the escarpments marks an ancient shoreline. Today, around Olympus Mons, one can see a large depression in the surface, caused by the sheer weight of the mountain. The height of the escarpments indicates that ocean water probably filled in this depression to a depth of 6 kilometers.

Similar features are found on the northern flank of another Martian volcano, Alba Mons, which is located over 1,800 km away from Olympus Mons and indicates the possible extent of the ancient ocean.

The giant volcanoes of Mars may have formed over hot spots in the mantle where convection causes warmer magma to rise in a giant plume. Rather than all the volcanoes in the region having formed from the same plume, the lead author of the study explains that « the most probable hypothesis is [that there were] distinct regional plumes under Olympus Mons and Alba Mons, separated at the surface by hundreds of kilometers. » These plumes caused the surface to bulge outwards over a large area. The scientific team argues that the mantle uplift that powered the volcanoes had an even greater effect on the ocean around them, by deforming the planet’s crust so much that it shifted the location of the ocean.

Previous studies have found evidence for two distinct shorelines within a lowland region on Mars called Vastitas Borealis. They had been interpreted as evidence for two different oceans that existed in Vastitas Borealis hundreds of millions of years apart. However,the French team thinks that rather than multiple oceans, there was just one long-lasting ocean. As the mantle uplift pushed against the planet’s crust and formed the Tharsis Bulge, it deformed Mars’ surface enough to actually shift the location of the ocean, which accounts for two shorelines being separated in age.

The findings provide planetary scientists with further details about the history of water on Mars. When the ocean shoreline shifted, it is thought that the ocean was already beginning to recede and dry up. If Mars were ever habitable, this era could have signaled the end of that habitability.

Source : space.com

(Source : NASA)

Surveillance du Kilauea (Hawaii) avec le bruit de l’océan // Monitoring of Kilauea (Hawaii) with ocean noise

La houle océanique se produit constamment dans les océans sur Terre. Cette houle interagit avec la croûte océanique qui se trouve en dessous et cela crée un bruit océanique continu qui se déplace autour de notre planète, y compris à travers les volcans actifs de la Grande Ile d’Hawaii.
Étant donné que les signaux de bruit océanique sont générés en permanence, les scientifiques peuvent utiliser ces sources sismiques pour identifier les petits changements qui se produisent dans la croûte terrestre au fil du temps.
Dans les climats qui connaissent les quatre saisons, les scientifiques ont observé que le bruit de l’océan traverse ces régions plus rapidement lorsque la neige est présente et plus lentement lorsque la neige a fondu. Cette accélération hivernale est due au manteau neigeux sus-jacent qui comprime le sous-sol et ferme toutes les fractures qui se trouvent en dessous. Lorsque la neige fond, le sous-sol n’est plus comprimé, les fractures s’ouvrent à nouveau et l’eau de fonte de la neige s’infiltre dans ces systèmes de fractures. En conséquence, le bruit de l’océan traverse ces régions plus lentement au printemps et en été. De même, dans les climats qui connaissent des précipitations très abondantes, comme Hawaii, ces précipitations se diffusent dans le sol, ouvrent des fractures et des fissures et provoquent un ralentissement de la vitesse de propagation du bruit océanique.
En se déplaçant sous des volcans actifs, le magma peut provoquer semblable ouverture et fermeture des systèmes de fractures, ce qui entraîne des changements dans la vitesse à laquelle les signaux de bruit océanique traversent un volcan. Les scientifiques du HVO développent de nouvelles techniques utilisant ces changements de vitesse pour comprendre ce qui se passe sous la surface des volcans sur la Grande Ile d’Hawaii.
De septembre à mi-octobre 2020, la vitesse de propagation du bruit océanique dans la région sommitale du Kilauea est restée relativement constante. Cependant, à la mi-octobre 2020, cette vitesse a commencé à diminuer rapidement. Lorsque le magma migre sous la surface, il ouvre des fissures et des fractures dans la région immédiatement au-dessus. L’ouverture de ces systèmes de fractures et l’afflux du magma proprement dit provoquent un ralentissement de la vitesse de propagation des signaux de bruit océanique à travers cette région.
Les scientifiques du HVO ont conclu que le magma avait commencé son ascension sous le sommet du Kilauea à la mi-octobre 2020. Au début du mois de décembre de cette même année, la vitesse de propagation du bruit océanique a commencé à diminuer à un rythme plus rapide, en relation avec un afflux plus rapide de magma vers le sommet du Kīlauea. À ce stade, les schémas de sismicité et de déformation du sol sous le sommet ont indiqué qu’une petite intrusion magmatique s’était produite.
À la mi-décembre 2020, la vitesse du bruit océanique à travers le sommet du Kilauea a continué de diminuer, indiquant la poursuite de l’intrusion magmatique à l’intérieur du volcan.
Finalement, vers 21h30 le 20 décembre, l’éruption sommitale du Kilauea a commencé. Après le début de cette éruption, on a observé une augmentation spectaculaire de la vitesse de propagation des signaux de bruit océanique à travers la région sommitale. Au fur et à mesure que le magma quittait le réservoir peu profond, avec émission de lave en surface, la région située au-dessus se dégonflait. Cette déflation a provoqué la fermeture de fractures dans la partie sommitale peu profonde et une augmentation de la vitesse de propagation du bruit océanique à travers le sommet.
Cet exemple montre que l’observation des changements de vitesse du bruit océanique pourrait être utilisée pour prévoir l’activité volcanique. Les scientifiques du HVO essayent de mieux comprendre ce processus et de l’utiliser dans le cadre de la surveillance en temps réel du Kilauea et du Mauna Loa.
Source : USGS/HVO.

—————————————————

Ocean swells are constantly occurring across the Earth’s oceans. These swells interact with the ocean crust below, creating continuous ocean noise that travels around the Earth, including through active volcanoes in Hawaii. Because ocean noise signals are always being generated, scientists can use these seismic sources to identify small changes occurring in the Earth’s crust through time.

In climates that experience all four seasons, scientists have shown that ocean noise travels through these regions faster when snowpack is present and slower when the snow has melted. This winter speedup is because of the overlying snowpack compressing the subsurface and closing any fractures below it. When the snow thaws, the subsurface is no longer compressed, the fractures open again and the snow melt percolates into these fracture systems. This causes ocean noise to travel through these regions more slowly in the spring and summer months. Similarly, in climates that experience excessive rainfall, such as Hawaii, such precipitation diffuses into the ground, opening fractures and cracks and causing slowdowns in ocean noise propagation speeds.

Magma moving under active volcanoes can cause similar opening and closing of fracture systems resulting in changes in the velocity at which ocean noise signals travel through a volcano. HVO scientists are developing new techniques that use such velocity changes to understand what is happening beneath the surface of volcanoes on Hawaii Island.

From September to mid-October 2020, the velocity of ocean noise in the Kilauea summit region remained fairly constant. However, by mid-October 2020, velocities in the summit region began to decrease rapidly. When magma migrates beneath the surface, it opens cracks and fractures in the region immediately above it. The opening of these fracture systems and the influx of the magma itself cause a slowdown in the propagation speed of ocean noise signals through that region.

HVO scientists have concluded that magma began to move from deeper depths beneath the Kilauea summit by mid-October 2020. By early December that year, velocities began to decrease at a more dramatic rate, suggesting a more rapid inflow of magma into the Kīiauea summit. At that point, earthquake and ground deformation patterns beneath the summit indicated a small intrusion of magma had occurred.

By mid-December 2020, the velocity of ocean noise traveling through Kilauea’s summit decreased even more, indicating the continued invasion of magma into the volcano

Finally, at about 9:30 p.m. on December 20th, the eruption at Kilauea’s summit began. Following the onset of this eruption, a dramatic increase in the propagation speed of ocean noise signals through the summit region was observed. As magma was removed from the shallow storage reservoir by the outpouring of lava, the region above it deflated. This deflation caused the closure of fractures within the shallow summit, and a resulting increase in the velocity of ocean noise through the summit.

This example demonstrates how monitoring for changes in ocean noise velocity could potentially be used to aid in forecasting volcanic activity. HVO scientists are working to better understand this process and apply it as a real-time monitoring tool at Kilauea and Mauna Loa volcanoes.

Source : USGS / HVO.

Ce schéma montre les changements dans la vitesse de propagation des signaux de bruit océanique (cercles remplis de rouge) à travers le Kilauea de septembre 2020 à février 2021, plusieurs mois avant et dans le mois après le début de l’éruption sommitale en décembre 2020. Des valeurs positives indiquent une accélération dans la vitesse de propagation du bruit océanique tandis que des valeurs négatives indiquent un ralentissement de cette vitesse. La barre noire autour de chaque cercle rouge indique l’incertitude dans le changement de vitesse relative. (Source : HVO)

++++++++++

The figure shows changes in the propagation speed of ocean noise signals (red filled circles) through Kīlauea volcano from September 2020 to February 2021, several months before and in the month after the start of the summit eruption in December 2020. Positive values indicate a speedup in the propagation speed of ocean noise while negative values indicate a velocity slowdown. The black bar around each red circle indicates the uncertainty in the relative velocity change measurement. (Graph courtesy of the Hawaiian Volcano Observatory)